
Real-Time Yoga Pose Detection using
Machine Learning Algorithm

Research Project - Configuration Manual

MSc.Data Analytics

Jothika Sunney
Student ID: x20224532

School of Computing

National College of Ireland

Supervisor: Paul Stynes, Pramod Pathak, Musfira Jilani

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Jothika Sunney

Student ID: x20224532

Programme: MSc.Data Analytics

Year: 2022

Module: Research Project - Configuration Manual

Supervisor: Paul Stynes, Pramod Pathak, Musfira Jilani

Submission Due Date: 15/08/2022

Project Title: Real-Time Yoga Pose Detection using Machine Learning Al-
gorithm

Word Count: 1473

Page Count: 14

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Jothika Sunney

Date: 16th September 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Real-Time Yoga Pose Detection using Machine
Learning Algorithm

Jothika Sunney
x20224532

1 Introduction

This Configuration manual describes the steps involved in implementing the research pro-
ject ’Real Time Yoga Pose Detection Using Machine Learning Algorithm’. Specific details
of the data sources, system specifications, libraries, and code used for implementation and
evaluation of the research models are disclosed in the manual.

Section 2 presents the System requirements for the research. Section 3 describes the
Data Collection. Section 4 defines the steps involved in Data preprocessing. A description
of the data transformation is provided in Section 5. The sixth section describes the
steps involved in the implementation and evaluation of different models. The following
section 7 describes the detection of yoga pose from an image, the section 8 presents the
implementation steps for real-Time yoga pose detection and the Final section concludes
the report.

2 System Requirements

The Hardware and Software Requirements for project Implementation is explained here

2.1 Hardware Requirements

Operating System Windows 10
Processor AMD Ryzen 5 4500U with

Radeon Graphics 2.38 GHz
Installed RAM 8.00 GB
System Type 64-bit operating system,

x64-based processor

Table 1: Hardware Requirements

2.2 Software Requirements

Python programming language was used for project implementation. The python code
was written and executed in Jupyter notebook.

• Python 3.8.8

1



• Jupyter Notebook

• Anaconda Navigator

Figure.1 shows libraries which were used in this research project for Data prepro-
cessing, Data Transformation, Evaluation and Implementation of Machine Learning and
Deep learning models and for implementing real-time Yoga pose detection Framework.

Figure 1: All Required Python libraries for the Research Project

3 Data Collection

This project uses a publicly available yoga image dataset from Kaggle to classify 5 com-
mon yoga poses.1. The poses examined in this study were downdog (320 images), goddess
(260 images), plank (381 images), tree (229 images), and warrior (361 images). A total
of 1551 yoga pose images were included in this collection, consists of different individuals
with diverse background. Yoga poses were organized into folders with names correspond-
ing to the respective yoga pose.

4 Data Preprocessing

All the steps involved in converting the yoga image dataset into a csv file with 99 (33
Landmark points*3 Dimensions) landmark features and response variable are discussed

1Yoga Pose Image Dataset :https://www.kaggle.com/datasets/niharika41298/yoga-poses-dat
aset

2

https://www.kaggle.com/datasets/niharika41298/yoga-poses-dataset
https://www.kaggle.com/datasets/niharika41298/yoga-poses-dataset


in this section. Install Mediapipe and OpenCV before the Data preprocessing step, and
import all the necessary packages mentioned in Figure.1.

4.1 Feature Extraction

Following the definition of the input image path and output csv file, the Blazepose model
and Drawing helpers were imported from the Mediapipe library. Blazepose model was
used for 3D Landmark detection and Drawing helpers were used to draw the skeleton
image. Refer Figure.2 2.

Figure 2: Initialize path and Load Blazepose model

In the next step. The images were read from individual folders, then applied to
the Blazepose model to detect skeltal images. After that, the 33 3D landmark points
extracted from the skeltal image were appended to a CSV file. The Blazepose model
detects landmark arrays as four-dimensional arrays with directions x,y,z and visibility
component. The visibility component has been excluded from the features. So a total of
33 * 3 , ie 99 features were generated by the model for each image. Since the features
were in standarized form , additional scaling was not required. Each landmark point was
then appended to a CSV file along with the corresponding folder name indicating the
yoga pose. Lastly, a header was added to the csv file with the pose name and the names
of the landmark points x, y, and z. Refer Figure.3,4 for the code snippet.

5 Data Transformation

Yoga pose name is the response variable which is a multiclass categorical variable. It
needs to be label encoded into numerical values before applying to any model. Refer
Figure.5 for the Feature Encoding steps. The pose names and encoded values were added
to a dictionary for display purposes.

After Label Encoding, the dataset was seperated into predictor and response variable
and then splitted the data into 70:30 ratio for training and testing respectively. Refer
Figure.6

2Mediapipe Blazepose :https://google.github.io/mediapipe/solutions/pose.html

3

https://google.github.io/mediapipe/solutions/pose.html


Figure 3: Converting Image Dataset into 33 3D landmark points and appending to a
CSV

Figure 4: Adding header to the CSV file

4



Figure 5: Label Encoding response variable

Figure 6: Train Test split 70:30 ratio

5



6 Model Implementation and Evaluation

As part of the project, two deep learning models - LSTM, 1D CNN and four machine
learning models - Random Forest, XgBoost, SVM classifier and Decision Tree were Im-
plemented and evaluated. The Models were analysed based on accuracy, precision, Recall
,F1 Score ,Time Complexity and Model Complexity.

6.1 Applying LSTM Model on generated landmark dataset

6.1.1 LSTM model Implementation

Before applying the LSTM model all the necessary libraries were imported, then the
landmark dataset was reshaped into an array of size (sample Size,1,99) where 99 is the
total number of features. Figure.7 shows the the code screenshot for LSTM model Im-
plementation.

Figure 7: LSTM Model Implementation

6.1.2 LSTM model Evaluation

LSTM model was evaluated on the test dataset. Accuracy and loss plot were analysed
for model performance(Refer Figure.8). Matplotlib.pyplot and seaborn were the main
visualisation libraries used. The confusion metrics and confusion report were evaluated
to identify the model’s performance for each yoga pose. Code for confusion metric and
confusion report was replicated for other models as well. Refer Figure.9 for the code
snippet.

6.2 Applying 1D CNN Model on generated landmark dataset

6.2.1 1D CNN Model Implementation

The landmark data was reshaped into an array of size (sample Size,99,1) and inputted to
the 1D CNN .Figure.10 shows the the code screenshot for CNN model Implementation.

6



Figure 8: LSTM Model Evaluation on Test data and Accuracy/Loss plot visualization

Figure 9: LSTM confusion report and confusion plot (same code has been replicated for
other models.

7



Figure 10: 1D CNN Model Implementation

6.2.2 1D CNN Model Evaluation

The confusion metrics and report code was replicated for CNN based on Figure.9 men-
tioned in previous section. Code snippet of Accuracy/Loss plot and Evaluation on test
data for 1D CNN is shown in the Figure.11

Figure 11: 1D CNN Model Evaluation

8



6.3 Applying Machine Learning Models on Generated Land-
mark Dataset

Four Different Classification models - Random Forest, XgBoost ,Support Vector Classifier
,Decision Tree Classifier were evaluated on the preprocessed 3D Landmark dataset gener-
taed from Blazepose model. This section depicts code for implementation and evalauation
of all the four Machine Learning Classifiers.

Refer Figure.12 for Random Forest Implementation and Figure.13 for Random Forest
Evaluation. Figure.14,15 shows the code for XgBoost Classifier Implementation and
Evaluation respectively and Figure.16, Figure.17 shows the code for Support vector Im-
plementation and Evaluation. Similarly Figure.18, Figure.19 shows the code for Decision
Tree Implementation and Evaluation respectively.

Figure 12: Random Forest Implementation

Figure 13: Random Forest Evaluation

9



Figure 14: XgBoost Implementation

Figure 15: XgBoost Evaluation

Figure 16: Support vector classifier Implementation

10



Figure 17: Support vector classifier Evaluation

Figure 18: Decision Tree Implementation

Figure 19: Decision Tree Evaluation

11



6.4 Save the optimum model

Based on the performance metrics analysis and model complexity, XgBoost is chosen as
the optimum classifier to be used with the Blazepose model for real-Time Yoga Pose
Prediction. Pickle library is used to store and load the trained Xgboost classifier as
”Xgb model loaded”. Ref Fig.20 for the code snippet.

Figure 20: Save XgBoost Classification Model

7 Predicting Yoga pose from an Image

The proposed framework was tested on a yoga pose sample image before being applied to
real-time video. First, a warrior pose image from the test dataset was loaded, and then
the Blazepose model was applied to extract the 3D landmark points. After the landmark
points were flattened, they were converted into a dataframe and passed to the XGBoost
classifier for prediction. The model correctly predicts the yoga pose as ”warrior”. The
implementation steps can be found in Figure.21 and Figure.22.

8 Real-Time Yoga Pose Detection Framework

This project provides a cost-effective solution for detecting yoga poses in real-time.
Blazepose model, XgBoost Classifier, and Computer Vision methodologies were com-
bined to develop the Framework. A real-time video was captured from webcam using the
Videocapture object of the openCV, features were extracted using the Blazepose model,
and then predicted using the XgBoost classifier. Users were provided with real-time feed-
back on yoga poses, probability, and grades. Refer Figure.23, Figure.24 and Figure.25
for Implementation steps. The prerequisites for real-time yoga pose detection is that the
user should be within 2 to 3 metres of the webcam, with the whole body visible.

9 Conclusion

The configuration manual explains the complete implementation of the research step by
step. Each section of the report has been explained in detail and sequentially to help the
reader replicate the process.

12



Figure 21: Yoga pose Image Detection - Part 1

Figure 22: Yoga pose Image Detection - Part 2

13



Figure 23: Real-Time Yoga pose Detection - Part 1

Figure 24: Real-Time Yoga pose Video Detection - Part 2

14



Figure 25: Real-Time Yoga pose Video Detection - Part 3

15


	Introduction
	System Requirements
	Hardware Requirements
	Software Requirements

	Data Collection
	Data Preprocessing
	Feature Extraction

	Data Transformation
	Model Implementation and Evaluation
	Applying LSTM Model on generated landmark dataset
	LSTM model Implementation
	LSTM model Evaluation

	Applying 1D CNN Model on generated landmark dataset
	1D CNN Model Implementation
	1D CNN Model Evaluation

	Applying Machine Learning Models on Generated Landmark Dataset
	Save the optimum model

	Predicting Yoga pose from an Image
	Real-Time Yoga Pose Detection Framework
	Conclusion

