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Real-Time Yoga Pose Detection using Machine
Learning Algorithm

Jothika Sunney
x20224532

1 Introduction

This Configuration manual describes the steps involved in implementing the research pro-
ject 'Real Time Yoga Pose Detection Using Machine Learning Algorithm’. Specific details
of the data sources, system specifications, libraries, and code used for implementation and
evaluation of the research models are disclosed in the manual.

Section 2 presents the System requirements for the research. Section 3 describes the
Data Collection. Section 4 defines the steps involved in Data preprocessing. A description
of the data transformation is provided in Section 5. The sixth section describes the
steps involved in the implementation and evaluation of different models. The following
section 7 describes the detection of yoga pose from an image, the section 8 presents the
implementation steps for real-Time yoga pose detection and the Final section concludes
the report.

2 System Requirements

The Hardware and Software Requirements for project Implementation is explained here

2.1 Hardware Requirements

Operating System Windows 10
Processor AMD Ryzen 5 4500U with
Radeon Graphics 2.38 GHz
Installed RAM 8.00 GB
System Type 64-bit operating system,
x64-based processor

Table 1: Hardware Requirements

2.2 Software Requirements

Python programming language was used for project implementation. The python code
was written and executed in Jupyter notebook.

e Python 3.8.8



e Jupyter Notebook
e Anaconda Navigator

Figure.1 shows libraries which were used in this research project for Data prepro-
cessing, Data Transformation, Evaluation and Implementation of Machine Learning and
Deep learning models and for implementing real-time Yoga pose detection Framework.

M #!pip install mediapipe opencv-python pandas scikit-Llearn
import mediapipe as mp #Mediapipe
import cv2#openCV
import csv
import numpy as np
import os
import sys
import tgdm
import random
import pandas as pd
import pickle # To save a model

#Packages for visualisation

import matplotlib.pyplot as plt

import seaborn as sns

#Packages for model Implementatin and Evaluation

from sklearn.metrics import confusion_matrix,classification_report
from sklearn import metrics

from sklearn.preprocessing impeort LabelEncoder

from sklearn.model_selection import train_test_split, RepeatedStratifiedKFold
from sklearn.model_selection impeort RandomizedSearchCV
from sklearn.ensemble impeort RandomForestClassifier
from xgboost import XGBClassifier

from sklearn.svm import SVC

from sklearn.tree import DecisionTreeClassifier

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import LSTM

from keras.layers import Embedding

from keras.layers impert SpatialDropoutlD

from keras.layers import InputLayer

from keras.layers import ConvlD

from keras.layers impeort Flatten

from keras.layers import Dropout

from tensorflow.keras.utils import to_categorical

from keras.layers import MaxPoolinglD

Figure 1: All Required Python libraries for the Research Project

3 Data Collection

This project uses a publicly available yoga image dataset from Kaggle to classify 5 com-
mon yoga poses.E|. The poses examined in this study were downdog (320 images), goddess
(260 images), plank (381 images), tree (229 images), and warrior (361 images). A total
of 1551 yoga pose images were included in this collection, consists of different individuals
with diverse background. Yoga poses were organized into folders with names correspond-
ing to the respective yoga pose.

4 Data Preprocessing

All the steps involved in converting the yoga image dataset into a csv file with 99 (33
Landmark points*3 Dimensions) landmark features and response variable are discussed

Yoga Pose Image Dataset thttps://www.kaggle.com/datasets/niharika41298/yoga-poses-dat
aset


https://www.kaggle.com/datasets/niharika41298/yoga-poses-dataset
https://www.kaggle.com/datasets/niharika41298/yoga-poses-dataset

in this section. Install Mediapipe and OpenCV before the Data preprocessing step, and
import all the necessary packages mentioned in Figure.1.

4.1 Feature Extraction

Following the definition of the input image path and output csv file, the Blazepose model
and Drawing helpers were imported from the Mediapipe library. Blazepose model was
used for 3D Landmark detection and Drawing helpers were used to draw the skeleton
image. Refer Figure.2 E|

M #Initialising input image path and output csv path
images in_folder = './dataset/Combined’
#images_out_folder = 'fitness_poses_images_out_basic'
csv_out _path = 'yoga poses landmark dataset.csv’

#from mediapipe.solutions import drowing utils as mp drawing
mp_drawing = mp.solutions.drawing_utils # Drawing helpers
#from mediapipe.solutions import pose as mp pose

mp_pose = mp.solutions.pose # Blazepose pose estimation model

Figure 2: Initialize path and Load Blazepose model

In the next step. The images were read from individual folders, then applied to
the Blazepose model to detect skeltal images. After that, the 33 3D landmark points
extracted from the skeltal image were appended to a CSV file. The Blazepose model
detects landmark arrays as four-dimensional arrays with directions x,y,z and visibility
component. The visibility component has been excluded from the features. So a total of
33 * 3, ie 99 features were generated by the model for each image. Since the features
were in standarized form , additional scaling was not required. Each landmark point was
then appended to a CSV file along with the corresponding folder name indicating the
yoga pose. Lastly, a header was added to the csv file with the pose name and the names
of the landmark points x, y, and z. Refer Figure.3,4 for the code snippet.

5 Data Transformation

Yoga pose name is the response variable which is a multiclass categorical variable. It
needs to be label encoded into numerical values before applying to any model. Refer
Figure.5 for the Feature Encoding steps. The pose names and encoded values were added
to a dictionary for display purposes.

After Label Encoding, the dataset was seperated into predictor and response variable
and then splitted the data into 70:30 ratio for training and testing respectively. Refer
Figure.6

2Mediapipe Blazepose thttps://google.github.io/mediapipe/solutions/pose.html


https://google.github.io/mediapipe/solutions/pose.html

Applying Blazepose model on Yoga pose Image Dataset

In [24]: M |# Iterating through each folder, converting images into Landmark points and saving it to a CSV file
with open(csv_out_path, 'w') as csv_out_file:
csv_out_writer = csv.writer(csv_out_file, delimiter=',", quoting=csv.QUOTE_MINIMAL)

# Folder names are used as pose class names

pose_class_names = sorted([n for n in os.listdir(images_in_folder) if nmot n.startswith('.')])
counter=1

for pose_class_name in pose_class_names:

print(’Extracting landmark points from Dataset ', pose class_name, filessys.stderr)
if not os.path.exists(os.path.join(images out folder, pose_class_name)):
os.makedirs (os.path.join(images_out_folder, pose_class_name))
image_names = sorted([
n for n in os.listdir(os.path.join(images_in_folder, pose_class_name))
if not n.startswith('.')])
for image name in tqdm.tqdm(image names, position=e):
Load image.
input_frame = cv2.imread(os.path.join(images_in_folder, pose_class_name, image_name))
input_frame = cv2.cvtColpr(input_frame, cv2.COLOR_BGR2RGB)

£

a*

Applying Blazepose model on the image and Extracting 33 3D Landmark point.
with mp_pose.Pose() as pose_tracker:
result = pose_tracker.process(image=input_frame)
pose_landmarks = result.pose_landmarks
Save Landmark peints to a csv file.
if pose_landmarks is not None:
# Check the number of Landmarks and take pose Landmarks.
assert len(pose_landmarks.landmark) == 33, 'Unexpected number of predicted pose landmarks: {}'.format(len(pos
pose_landmark = [[1mk.x, lmk.y, lmk.z] for lmk in pose_landmarks.landmark]

£

# Write pose sample to CSV.
pose_landmarks = np.around(pose_landmark, 5).flatten().astype(np.str).tolist()
#print(pose_Landmarks)
csv_out_writer.writerow([pose_class_name] + pose_landmarks)

Figure 3: Converting Image Dataset into 33 3D landmark points and appending to

CSV

Add header file to the csv

h.4

df_csv = pd.read_csv('./yoga_poses_landmark_dataset.csv’, headerzNone)

11=[ 'pose_name" ]

for i in range(1,34):
11.append('x'+str(i))
11.append('y'+str(i))
11.append('z'+str(i))

df_csv.to_csv('./yoga_poses_landmark_dataset_new.csv', header=11,index=False)

df_csvl = pd.read_csv('./yoga_poses_landmark_dataset_new.csv')

df_csvl
pose_name x1 y1 z1 x2 y2 22 x3 y3 @z . 230 x31 ys1 231 x32
o downdog 051255 072271 -006939 049571 074738 -0.10888 049218 074686 -0.10889 -0.09030 087879 088034 034875 078911 09
1 downdog 056914 078736 -0.04211 058289 079472 -0.02245 058382 079329 -002254 016459 014689 087059 -0.14172 024892 0.9C

Figure 4: Adding header to the CSV file



Feature Encoding

M

35]:

#Encode the response variable into numerical values
from sklearn.preprocessing import LabelEncoder

labelencoder = LabelEncoder()
df_csvl['label_enc'] = labelencoder.fit_transform(df_csvl['pose_name"])

classes=df_csvl[['label _enc', 'pose name']].drop_duplicates()
classes

#Adding pose names and encode values to a dictionary for display purposes
classes.set_index("label enc', inplace=True)

yoga_pose=classes.to_dict()

yoga_pose_dict=yoga_pose['pose_name']

yoga_pose_dict[4]="warrior’

yoga_pose_dict

{@: 'downdog', 1: "goddess', 2: "plank', 3: 'tree', 4: 'warrior'}

Figure 5: Label Encoding response variable

Splitting data into train test split - 70:30 ratio

M
X
¥

df_csvl.drop([ 'pose_name', 'label_enc'], axis=l) # features
df _csvl['label_enc'] # target value

M from sklearn.model_selection import train_test_split
X_train, X_test, y train, y test = train_test_split(X, y, test_size=0.3, random_state=1234,stratify=y)

Figure 6: Train Test split 70:30 ratio



6 Model Implementation and Evaluation

As part of the project, two deep learning models - LSTM, 1D CNN and four machine
learning models - Random Forest, XgBoost, SVM classifier and Decision Tree were Im-
plemented and evaluated. The Models were analysed based on accuracy, precision, Recall
,F'1 Score ,Time Complexity and Model Complexity.

6.1 Applying LSTM Model on generated landmark dataset
6.1.1 LSTM model Implementation

Before applying the LSTM model all the necessary libraries were imported, then the
landmark dataset was reshaped into an array of size (sample_Size,1,99) where 99 is the
total number of features. Figure.7 shows the the code screenshot for LSTM model Im-
plementation.

M #Reshaping the input array before applying to Lstm
y_train_re= to_categorical(y_train).astype(int)
y_test_re=to_categorical(y_test).astype(int)
X_train_lstm=np.array(X_train)
X_test_lstm=np.array(X_test)
X_train_lstm=X_train_lstm.reshape(X_train_lstm.shape[6],1,X_train_lstm.shape[1])
X_test_lstm=X_test lstm.reshape(x_test lstm.shape[e],1,X test Lstm.shape[1])

M #LSTM Model Implementation
#tf.set _random seed(122)
model = Sequential()
model.add(LSTM(64, return_sequences=True, activation='relu’,dropout=e.2, input_shape=(1,X_train_lstm.shape[2])))
model.add(LSTM(128, return_sequences=True,dropout=0.2, activation='relu"))
model.add(LSTM(64, return_sequences=False,dropout=e.2, activation='relu'))
model.add(Dense(64, activation='relu'))
model.add(Dense(32, activation='relu'))
model.add(Dense(5, activation='softmax'))
#Compile
model.compile(optimizer="Adam', loss="categorical crossentropy’, metrics=['categorical accuracy'])

#Fitting Lstm model on train data
history_model_lstm=model.fit(X_train_lstm, y_train_re, epochs=200,validation_data=(X_test_lstm,y_test re))

Figure 7: LSTM Model Implementation

6.1.2 LSTM model Evaluation

LSTM model was evaluated on the test dataset. Accuracy and loss plot were analysed
for model performance(Refer Figure.8). Matplotlib.pyplot and seaborn were the main
visualisation libraries used. The confusion metrics and confusion report were evaluated
to identify the model’s performance for each yoga pose. Code for confusion metric and
confusion report was replicated for other models as well. Refer Figure.9 for the code
snippet.

6.2 Applying 1D CNN Model on generated landmark dataset
6.2.1 1D CNN Model Implementation

The landmark data was reshaped into an array of size (sample_Size,99,1) and inputted to
the 1D CNN .Figure.10 shows the the code screenshot for CNN model Implementation.



M #Evaluating LSTM model on test data
model.evaluate(X_test_lstm,y_test_re)

15/15 [ ] - 1s 4ms/step - loss: ©.2308 - categorical accuracy: ©.9382

2]: [©.2308030128479004, ©.9381898641586304]

M #Plotting Accuracy and Loss curve
%matplotlib inline
import matplotlib.pyplot as plt
acc = history_model lstm.history['categorical accuracy']
val_acc = history_model lstm.history['val categorical accuracy']
loss = history_model_lstm.history[ loss’]
val loss = history_model lstm.history[ 'val loss']

epochs = range(len(acc))

plt.plot(epochs, acc, 'r', label="Training accuracy')
plt.plot(epochs, val_acc, 'b', label="Testing accuracy')
plt.title('Training and Testing accuracy - LSTM')
plt.legend()

plt.figure()

plt.plot(epochs, loss, 'r', label="Training Loss')
plt.plot(epochs, val_loss, 'b", label='Testing Loss')
plt.title('Training and Testing loss - LSTM')
plt.legend()

plt.show()

Figure 8: LSTM Model Evaluation on Test data and Accuracy/Loss plot visualization

M | #Confusion report
from sklearn.metrics import confusion_matrix,classification_report
y_predicted = model.predict(X_test_lstm)
y_pred=[]
for 1 in y_predicted:
y_pred.append(np.argmax(i))
y_predl=pd.Series(y_pred)
y_predl
print(classification_report(y_test,y_predi))

M | #Confusion metric
from sklearn import metrics
import seaborn as sns
cm=metrics.confusion_matrix(y_test,y_predl)
# create seabvorn heatmap with required Labels
sns.heatmap(cm, annot =True,cmap="Blues’, fmt='g', xticklabels=yoga_pose_dict.values(), yticklabels=yoga pose dict.values())

Figure 9: LSTM confusion report and confusion plot (same code has been replicated for
other models.



M | #Reshaping the input array before applying to 1D CNN
X_train_re=np.array(X_train)
X_test_re=np.array(X_test)
sample_size=X_train_re.shape[0]
time_steps=X_test_re.shape[1]
input_dim=1
X_train_re=Xx_train_re.reshape(sample_size,time_steps,input_dim)
X_train_re.shape
sample sizel=X test_re.shape[@]
time_stepsl=X_test_re.shape[1]
input_dim1=1
X_test_re=X_test_re.reshape(sample_sizel,time_stepsl,input_diml)
X_test_re.shape

3]t (453, 99, 1)

M | #1D CNN model Implementation
model_cnn = Sequential()
model_cnn.add(ConviD(128,kernel_size=3,input_shape=(X_train_re.shape[1],1)))
model cnn.add(Dropout(@.5))
model cnn.add(MaxPoolinglD(pool_ size=1,name="MaxPoclinglD"))
model cnn.add(Flatten())
model_cnn.add(Dropout(@.5))
model cnn.add(Dense(64, activation='relu'))
model_cnn.add(Dense(8, activation="relu"))
model cnn.add(Dense(5, activation='softmax'))
#Compiling the model

model_cnn.compile(optimizer="Adam', loss='categorical_crossentropy', metrics=['categorical_accuracy'])

#Fitting model on train data

history _model cnn=model_cnn.fit(X train_re, y train_re, epochs=200,validation_data=(X_test_re,y test re))

Figure 10: 1D CNN Model Implementation

6.2.2 1D CNN Model Evaluation

The confusion metrics and report code was replicated for CNN based on Figure.9 men-
tioned in previous section. Code snippet of Accuracy/Loss plot and Evaluation on test

data for 1D CNN is shown in the Figure.11

M #Evaluate the 1D CNN model on test data
model _cnn.evaluate(X_test_re,y test_re)

15/15 [= ] - @s 4ams/step - loss: ©.4823 - categorical_accuracy: ©.947@

7]: [0.4022853374481201, ©.9470198750495911]

M # visualize Loss & Accuracy plot of 1D CNM
%matplotlib inline
import matplotlib.pyplot as plt
acc = history_model cnn.history['categorical_accuracy']
val_acc = history_model_cnn.history['val_categorical_accuracy']
loss = history model cnn.history['loss"]
val_loss = history_model_cnn.history[‘val loss']

epochs = range(len(acc))

plt.plot(epochs, acc, 'r', label='Training accuracy')
plt.plot(epochs, val_acc, 'b', label='Testing accuracy")
plt.title('Training and Testing accuracy - 1D CNN')
plt.legend()

plt.figure()

plt.plot(epochs, loss, 'r', label='Training Loss")
plt.plot(epochs, val loss, 'b', label='Testing Loss')
plt.title( 'Training and Testing loss - 1D CNN')
plt.legend()

plt.show()

Figure 11: 1D CNN Model Evaluation



6.3 Applying Machine Learning Models on Generated Land-
mark Dataset

Four Different Classification models - Random Forest, XgBoost ,Support Vector Classifier
,Decision Tree Classifier were evaluated on the preprocessed 3D Landmark dataset gener-
taed from Blazepose model. This section depicts code for implementation and evalauation
of all the four Machine Learning Classifiers.

Refer Figure.12 for Random Forest Implementation and Figure.13 for Random Forest
Evaluation. Figure.14,15 shows the code for XgBoost Classifier Implementation and
Evaluation respectively and Figure.16, Figure.17 shows the code for Support vector Im-
plementation and Evaluation. Similarly Figure.18, Figure.19 shows the code for Decision
Tree Implementation and Evaluation respectively.

3.1 Random Forest Classifier

M #Fitting Generated landmark dataset on Random Forest Classifier
import numpy as np
seed = np.random.seed(22)
rng = np.random.RandomState(3)
from sklearn.model_ selection import train_test split, RepeatedStratifiedKFold
cv = RepeatedStratifiedkFold(n_splits=5, n_repeats=3, random_state=1)
#RandomizedSearchCV for hyperparameter tuning
from sklearn.model_selection import RandomizedSearchcv
from sklearn.ensemble import RandomForestClassifier
params = {'n_estimators': [16,20,30,40,50,60,70,80,90,100], 'max_features': ['log2’','sgrt’'], 'max_depth':[2,4,6,8,10],
‘min_samples_split':[2,5], 'min_samples_leaf':[1,2], 'bootstrap’:[True,False]}
random_forest=RandomizedSearchcv(RandomForestClassifier(random_state=rng),param_distributions=params,
hfiter:s,scoring:‘accuracy',nfjobs:-l,cv:cv,verbose:B,randomfstate:rng)
random_forest.fit(X_train, y_train)

Figure 12: Random Forest Implementation

Random Forest model Evaluation

M #best parameters
print(random_forest.best_params_)
print(“Accuracy is:",random_forest.score(X_test,y_test))

{'n_estimators': 1@@, 'min_samples split': 2, 'min_samples leaf': 2, 'max_features': 'sqrt', 'max_depth': 1@, 'bootstrap': F
alse}
Accuracy is: ©.9470198675496688

M
from sklearn import metrics
import seaborn as sns
y_pred_random = random_forest.predict(X_test)
random_forest_cm=metrics.confusion_matrix(y_test,y_pred_random)
# create seabvorn heatmap with required labels
sns.heatmap(random_forest_cm,annot =True,cmap='Blues’, fmt="g', xticklabels=yoga pose_dict.values(),
pticklabels:yoga_pose_dict.values())

M | # Model Accuracy, how often is the classifier correct?
print(“Accuracy - Random Forest:",round((metrics.accuracy_score(y_test, y_pred_random))*106,2))
print("Precision - Random Forest:",round((metrics.precision_score(y test, y pred_random,average="macro"))*1ee,2))
print(“Recall - Random Forest:",round((metrics.recall_score(y_test, y_pred_random,average="macro"))*1ee,2))
print("F1 Score - Random Forest:",round((metrics.f1_score(y_test, y pred_random,average="macro"))*1ee,2))

Figure 13: Random Forest Evaluation



3.2 XgBoost Classifier

M #XGBoost Classifier
seed = np.random.seed(22)
rng = np.random.RandomState(2)
from sklearn.model_selection import train_test_split, RepeatedStratifiedKFold
cv = RepeatedStratifiedkFold(n_splits=5, n_repeats=3, random_state=1)

from sklearn.model_selection import RandomizedSearchCV,GridSearchCV

from xgboost import XGBClassifier

#RandomizedSearchCV for hyperparameter tuning

params = {'alpha': [@.001, ©.01,0.1], 'max_depth': [1,2,3,4,5,10], 'learning_rate': [0.1,0.25,0.5]}

xgboost=RandomizedSearchCV(XGBClassifier(random_state=rng),param_distributions=params,n_iter=5,scoring="accuracy’,
h_jobs:—l,cv=cv,verbose=3,random_state:rng)

xgboost.fit(X_train, y_train)

Figure 14: XgBoost Implementation

XgBoost Evaluation

M #XxgBoost best params
print(xgboost.best_params_)
print(xgboost.score(X_test,y_test))

{'max_depth': 3, 'learning_rate': ©.25, 'alpha': ©.1}
©.9514348785871964

M from sklearn import metrics
import seaborn as sns
y_pred_xgboost = xgboost.predict(X_test)
cm=metrics.confusion_matrix(y_test,y_pred_xgboost)
# create seabvorn heatmap with required Labels
sns.heatmap(cm,annot =True,cmap='Blues', fmt='g', xticklabels=yoga_pose_dict.values(), yticklabels=yoga_pose_dict.values())

M # Model Accuracy,precision,Recall and F1 score
print("Accuracy - xgboost:",round((metrics.accuracy_score(y_test, y pred_xgboost))*100,2))
print("Precision - xgboost:",round((metrics.precision_score(y_test, y_pred_xgboost,average="macro"))*108,2))
print(“Recall - xgboost:",round((metrics.recall_score(y_test, y_pred_xgboost,average="macro"))*100,2))
print("F1l Score - xgboost:",round((metrics.fl_score(y_test, y_pred_xgboost,average="macro"))*100,2))

Figure 15: XgBoost Evaluation

3.3 Support Vector Machine Classifier

M from sklearn.svm import SVC
from sklearn.model_selection import RandomizedSearchCV
seed = np.random.seed(33)
rng = np.random.RandomState(3)
cv = RepeatedStratifiedkFold(n_splits=5, n_repeats=3, random_state=1)

param_grid={'C':[©.1,1,10,20,50,100], 'kernel':['rbf', 'poly', "sigmoid’, 'linear'], 'degree':[1,2,3,4,5,6]}
model_svm=RandomizedSearchCV(SVC(random_state = rng),param_distributions=param_grid,n_iter=5,scoring="accuracy',

h_jobs:-l,cv:cv,verbose:i,random_state = rng)
model_svm.fit(X_train,y_train)

Figure 16: Support vector classifier Implementation

10



SVM Evaluation

print(model_svm.best_params_)
print(model_svm.score(X_test,y_test))
{'kernel’: "poly', ‘'degree': 6, 'C': 1}
0.9205298013245033

M #Confusion Matrix
from sklearn import metrics
import seaborn as sns
y_pred_svm = model_svm.predict(X_test)
svc_cm=metrics.confusion_matrix(y_test,y pred_svm)
# create seabvorn heatmap with required labels
sns._heatmap(svc_cm,annot =True,cmap="Blues', fmt='g', xticklabels=yoga_ pose_dict.values(),
b/ti(klabelﬁ:yogaiposeidi(t.values())

M print(classification_report(y_test,y_pred_svm))

M # Model Accuracy, how often is the classifier correct?
print("Accuracy - SVM:",round((metrics.accuracy score(y_test, y _pred_svm))*100,2))
print("Precision - SWM:",round((metrics.precision_score(y_test, y_pred_svm,average="macro"))*160,2))
print("Recall - SVM:",round((metrics.recall score(y test, y pred svm,average="macro"))*100,2))
print("F1 Score - SVM:",round((metrics.fl_score(y_test, y pred_svm,average="macro"))#100,2))

Figure 17: Support vector classifier Evaluation

3.4 Decision Tree Classifier

M from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import RandomizedSearchCv
seed = np.random.seed(44)
rng = np.random.RandomState(4)
cv = RepeatedStratifiedKFold(n_splits=5, n_repeats=3, random_state=1)
param_grid={'max_depth':[1@,30e,5@,60,9@,180]
, 'max_features':['auto', 'sqrt’, 'log2'], 'min_samples_split':[2,4,6]}
model_decision=RandomizedSearchCV(DecisionTreeClassifier(random_state = rng),param_distributions=param_grid,
h_iter:S,scoring:’accuracy',
n_jobs=-1,cv=cv,verbose=3,random_state = rng)
model_decision.fit(X_train,y_train)

Figure 18: Decision Tree Implementation

Decision Tree Evaluation

M print(model_decision.best_params_)
print(model_decision.score(X_test,y_test))

{'min_samples_split': 4, 'max_features': 'sqgrt', 'max_depth': 18}
©.8675496688741722

M from sklearn import metrics
import seaborn as sns
y_pred_decision = model_decision.predict(X_test)
svc_cm=metrics.confusion_matrix(y_test,y_pred_decision)
# create seabvorn heatmap with required Labels
sns.heatmap(svc_cm,annot =True,cmap='Blues', fmt='g', xticklabels=yoga_pose_dict.values(),
yticklabels=yoga_pose_dict.values())

M # Model Accuracy, how often is the classifier correct?
print("Accuracy - Decision Tree:",round((metrics.accuracy_score(y_test, y_pred_decision))*1@6,2))
print("Precision - Decision Tree:",round((metrics.precision_score(y_test, y_pred_decision,average="macro"))*160,2))
print("Recall - Decision Tree:",round((metrics.recall_score(y_test, y_pred_decision,average="macro"))*100,2))
print("F1 Score - Decision Tree:",round((metrics.fl_score(y_test, y_pred_decision,average="macro"))*100,2))

Figure 19: Decision Tree Evaluation
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6.4 Save the optimum model

Based on the performance metrics analysis and model complexity, XgBoost is chosen as
the optimum classifier to be used with the Blazepose model for real-Time Yoga Pose
Prediction. Pickle library is used to store and load the trained Xgboost classifier as
" Xgb_model_loaded”. Ref Fig.20 for the code snippet.

Save the best model

M import pickle
file_name="xgb_reg.pkl"
pickle.dump(xgboost,open(file_name, "wb"))
xgb_model_loaded=pickle.load(open(file_name, "rb"))

Figure 20: Save XgBoost Classification Model

7 Predicting Yoga pose from an Image

The proposed framework was tested on a yoga pose sample image before being applied to
real-time video. First, a warrior pose image from the test dataset was loaded, and then
the Blazepose model was applied to extract the 3D landmark points. After the landmark
points were flattened, they were converted into a dataframe and passed to the XGBoost
classifier for prediction. The model correctly predicts the yoga pose as ”warrior”. The
implementation steps can be found in Figure.21 and Figure.22.

8 Real-Time Yoga Pose Detection Framework

This project provides a cost-effective solution for detecting yoga poses in real-time.
Blazepose model, XgBoost Classifier, and Computer Vision methodologies were com-
bined to develop the Framework. A real-time video was captured from webcam using the
Videocapture object of the openCV, features were extracted using the Blazepose model,
and then predicted using the XgBoost classifier. Users were provided with real-time feed-
back on yoga poses, probability, and grades. Refer Figure.23, Figure.24 and Figure.25
for Implementation steps. The prerequisites for real-time yoga pose detection is that the
user should be within 2 to 3 metres of the webcam, with the whole body visible.

9 Conclusion

The configuration manual explains the complete implementation of the research step by
step. Each section of the report has been explained in detail and sequentially to help the
reader replicate the process.
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Experiment 4 - Yoga Pose Detection from Image

M | #Read and display the input Image
import matplotlib.pyplot as plt
sample_img=cv2.imread(’./dataset/TEST/warrior2/eeeesees. jpg')
plt.figure(figsize = [18,18])
plt.title("sample_image")
plt.axis("off")
plt.imshow(sample_img)
plt.imshow(sample_img[:,:,::-1])
plt.shou()

M |#Define pose estimation and skeltal image drawing object
mp_drawing = mp.solutions.drawing_utils
mp_pose = mp.solutions.pose
pose=mp_pose.Pose(static_image_mode=True,model_complexity=2)
img_copy=sample_img.copy()
#Convert BGR to RGB format and apply the Blazepose pose estimation model
results = pose.process(cv2.cvtColor(sample_img,cv2.COLOR_BGRZRGE))
#Draw the Landmark points on the image and plot
if results.pose_landmarks:
mp_drawing.draw_landmarks(img_copy, results.pose_landmarks, mp_pose.POSE_CONNECTIONS,
mp_drawing.DrawingSpec(color=((255,127,88)), thickness=18, circle_radius=8),
mp_drawing.DrawingSpec(color=(58,205,58), thickness=18, circle_radius=7))

fig=plt.figure(figsize=[10,18])
plt.title("output_image")
plt.axis("off")
plt.imshow(img_copy[:,:,::-1])
plt.show()

Figure 21: Yoga pose Image Detection - Part 1

M #To draw it in 3D space
mp_drawing.plot_landmarks(results.pose world_landmarks,mp_pose.POSE_CONNECTIONS)

M # Extract the landmark data and pass to xgboost model for prediction
landmarks = results.pose_landmarks.landmark
#Flatten arraﬂ
pose_row = list(np.array([[landmark.x, landmark.y, landmark.z] for landmark in landmarks]).flatten())
X =pd.DataFrame([pose_row])
#Xgboost prediction
body_language class = xgb_model loaded.predict(X)[@]
body_language_prob = xgb_model_loaded.predict_proba(X)[@]
print(body_language_class, body_language_prob)

pose_detected=yoga_pose_dict[body_language_class]
prob=(round(body language prob[np.argmax(body language prob)],2))
print("The pose detected is:",pose_detected)

print("probablity :",prob)

4 [1.9156224e-04 2.90871721e-03 8.4374944e-04 6.4349913e-05 9.9608314e-01]
The pose detected is: warrior
probablity : 1.0

Figure 22: Yoga pose Image Detection - Part 2
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Experiment 5 - Yoga Pose Detection from Real-Time Video

M #Prediction from Real-time video
# Prerequistics :Make sure the webcam is working, Stand 2-3 metres away from camera,
#Make sure the entire body from head to toe is visible in the webcam

#Initialize the videocapture object
cap = cv2.VideoCapture(@)
## Setup mediapipe instance
with mp_pose.Pose(min_detection_confidence=8.5, min_tracking_confidence=@.5) as pose:
while cap.isOpened()
#cap.read to read each frames of the video
ret, frame = cap.read()

# Recolor image to RGB
image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
image.flags.writeable = False

# Make detection through Blazepose
results = pose.process(image)

# Recolor back to BGR
image.flags.writeable = True
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)

# Render detections

mp_drawing.draw_landmarks(image, results.pose_landmarks, mp_pose.POSE_CONNECTIONS,
mp_drawing.DrawingSpec(color=(255,127,8@), thickness=2, circle_radius=2),
mp_drawing.DrawingSpec(color=(5@,205,58), thickness=2, circle radius=2)

)

Figure 23: Real-Time Yoga pose Detection - Part 1

# Extract Landmarks through Blazepose pose estimation and then pass it to Xgboost model for prediction
try:

landmarks = results.pose_landmarks.landmark

pose_row = list(np.array([[landmark.x, landmark.y, landmark.z] for landmark in landmarks]).flatten())

X =pd.DataFrame([pose_row])

#Model prediction

body_language_class = xgb_model_loaded.predict(X)[@]

body language prob = xgb model loaded.predict proba(X)[@]

yoga_pose=yoga_pose_dict[body_language_class]
print(“pose detected:”,yoga_pose)
prob=(round(body_language_prob[np.argmax(body_language_prob)],2))
#Grade calculation
if prob»>=0.95:
grade="Very Good"
if prob<@.95 and prob>=@.9@:
grade="Good"
if prob<@.9@:
grade="Needs Improvement"

# Get status box
cv2.rectangle(image, (@,9), (1888, 4@), (245, 117, 18), -1)

# Display yoga pose Class , probablity and Grade
if prob>=08.85:
cv2.putText(image, 'Yoga Pose Detected’
, (158,12), cv2.FONT_HERSHEY_SIMPLEX, 8.5, (@, @, @), 1, cv2.LINE_AA)
cv2.putText(image, yoga_pose
» (150,35), cv2.FONT_HERSHEY_SIMPLEX, ©.5, (255, 255, 255), 1, cv2.LINE_AA)

# Display Probability
cv2.putText(image, 'Probablity’
, (38,12), cv2.FONT_HERSHEY_SIMPLEX, 8.5, (8, @, @), 1, cv2.LINE_AA)
cv2.putText(image, str(round(body_language_prob[np.argmax(body_language_prob)],2))
» (38,35), cv2.FONT_HERSHEY_SIMPLEX, ©.5, (255, 255, 255), 1, cv2.LINE_AA)
cv2.putText(image, ‘Grade®
, (40@,12), cv2.FONT_HERSHEY_SIMPLEX, €.5, (@, @, @), 1, cv2.LINE_AA)
cv2.putText(image, grade, (480,35), cv2.FONT_HERSHEY_SIMPLEX, ©.5, (255, 255, 255), 1, cv2.LINE_AA)
else:
cv2.putText(image, 'No Pose Detected”
, (188,38), cv2.FONT_HERSHEY_SIMPLEX, ©.8, (@, 8, @), 1, cv2.LINE_AA)
except Exception as e:
print(e)

Figure 24: Real-Time Yoga pose Video Detection - Part 2
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# Naming a window
cv2.namedWindow("Resized Pose detection Window™, cv2.WINDOW NORMAL)

# Resize the open Window
cv2.resizeWindow("Resized Pose detection Window", 2000, 1000)
cv2.imshow( 'Resized Pose detection Window', image)

#cv2.imshow( '"Mediapipe Feed', image)
if cv2.waitKey(10) & OxFF == ord('q"):

break
#Release Video capture object and close all opened windows
cap.release()
cv2.destroyAllWindows ()

Figure 25: Real-Time Yoga pose Video Detection - Part 3
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