ﬁ

\‘
National
Collegeof

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Priyanka Ashok Sujgure
Student ID: X20136706

School of Computing
National College of Ireland

Supervisor: Prof. Christian Horn

National College of Ireland

\——
\ National

. o Collegeof
MSc Project Submission Sheet
Ireland
School of Computing
Student Name: Priyanka Ashok Sujgure
Student ID: X20136706
Programme: Data Analytics
Year: 2020-2021
Module: MSc Research Project
Supervisor: Prof. Christian Horn

Submission Due Date:

16th Dec 2021

Project Title:

Configuration Manual

Word Count:

916

Page Count:

14

| hereby certify that the information contained in this (my submission) is information pertaining to research |
conducted for this project. All information other than my own contribution will be fully referenced and listed in
the relevant bibliography section at the rear of the project.

ALL internet material must be referenced in the bibliography section.

Students are required to use the

Referencing Standard specified in the report template. To use other author's written or electronic work is illegal
(plagiarism) and may result in disciplinary action.

Signature: Priyanka Ashok Sujgure

Date: 16" Dec 2021

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple copies) O
Attach a Moodle submission receipt of the online project submission, to each project a
(including multiple copies).

You must ensure that you retain a HARD COPY of the project, both for your own i

reference and in case a project is lost or mislaid. It is not sufficient to keep a copy on

computer.

Assignments that are submitted to the Programme Coordinator Office must be placed into the assignment box

located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Priyanka Ashok Sujgure
Student ID: X20136706

1 Introduction

This document consists of a detailed description of all the hardware, software requirements
and the code used to implement the “Automatic question generator using spaCy”.

Note: As the data is on cloud to execute the code simply a run all will execute the entire code.

2 System configuration

2.1 Hardware
e Processor: Intel(R) Core (TM) i5-10210U CPU @ 1.60GHz 2.11 GHz
¢ RAM: 8.00 GB (25.51GB GPU , TPU available on Google Colab Pro)
o System type: 64-bit operating system, x64-based processor
o Hard Disk Storage: 100GB (Google Drive Storage)

2.2 Software

o Software Computing Tools Used: Python 3 Jupyter Notebook (Google
Colab), Overleaf, Microsoft Excel, DB Browser, R.

e Browser Engine: Google Chrome/ Firefox
e Email: Gmail login to access Colab Pro.

3 Project Development

As a start, some of the basic libraries needed for spaCy, and other NLP functions have been
installed.

Among these tools and libraries are: spaCy, pandas, NLTK etc.

° |1pip install contextualSpellCheck # to install the latest wersion of spacy
Ipip install mega.py #In order to run this code the dataset was needed. To make it easier to run the code without having data in your loczl machine the data is uploaded onto mega
!python -m spacy download en_core_web_sm
Ipip install tensorflow #For BERT in true or false generation
Ipip install torch #for true or false generation
Ipip install sentence-transformers
Ipip install transformers
!pip install benepar
Ipip install summa
Ipip install nltk
!pip install scipy
Ipip install benepar

import matplotlib.pyplot as plt
import spacy

import pandas zs pd

import numpy as np

import tensorflow as tf

import pandas as pd

from keras.models import Sequential
from keras.layers import Dense

from keras.wrappers.scikit_learn import KerasClassifier
from keras.utils import np_utils

from keras.models import Sequential
from keras.layers import Bidirectional
from keras,layers import Embedding
from keras.layers import LSTM

import requests #for true or false
import json #for true or false
from summa.surmarizer import summarize
import benepar

import string

import nltk

from nltk import tokenize

from nltk.tokenize import sent_tokenize
import re

from random import shuffle

#import spacy

from nltk import tokenize

import scipy

[1 import torch
impert transformers
print (torch.__version_)
print (transformers._ version_)
import tensorflow as tf
print(tf.__version__)

1.10.0+culll
4.13.e
2.7.e

[1 #this package is required for the summa summarizer
nltk.download(punkt')
benepar.download(' benepar_en3")
benepar_parser = benepar.Parser("benepar_en3")

Figure 1: All the libraries imported at the start of the code

3.1 Design flow

As mentioned, perform major steps in Design process Stage 1: Data understanding Stage 2: Data Pre-Processing
Stage 3: Building logic and models implementation Stage 4: Evaluation of the outputs.

[Data understanding }

4,[Data Pre-processing }

Dataset (in .sqlite)

Accessed the
contents through
DB browser

/"~ Consists of data

in different
language.
Sample from
English language
is chosen. Data

_ ison “Mega” /

(‘ Load the sample ‘ \

dataset
1

‘ Drop unnecessary ‘
columns

‘ Null value check ‘
]
‘ EDA ‘

I

Removing special
characters and punctuation

|

‘ Feature Engineering ‘

—_

Logic and model
implementation
/ Fill in the Blanks

\

Evaluation

Testing on different

Syntactic

sentences from -
Analysis

Generating listof
paragraph

I

data and generating
} questions

spaCy Tokenization
Stop word removal

True or False

Success rate on

how many

C S

‘t\. Tokenizati
9 oKenization
Parser Tensor!

Data Cleaning
specific to True or

False Question

questions are
grammatically
and logically

correct

\J

Figure 2: Design flow

3.2 Data Collection

The wikibooks dataset which is available on Kaggle can be downloaded from ”
https://www.kaggle.com/dhruvildave/wikibooks-dataset” and a sample from that shall be selected. It has the

=~/

E—

dataset in 12 different languages Out of which English language dataset is to be selected. The available format
is in .sglite which should be converted into .csv format. After that the data should be loaded into the collab. The
step of loading data on to “mega” cloud storage can be eliminated and the path where
the data is stored can be used.

#TRAIN DATA DOWNLOAD
file = m.find('sample_en.csv')
m.download(file)

PosixPath('sample_en.csv')

#To avoid having data in one's local machine data is been uploaded onto Mega
from mega import Mega
mega = Mega()

m = mega.login('sujgure3ilpriya@gmail.com', 'Hello@123')

Figure 3: Loading the data

https://www.kaggle.com/dhruvildave/wikibooks-dataset

3.3 Data Cleaning

The basic cleaning steps performed consists of removing null values, duplicates, dropping unnecessary columns.

Data Cleaning

[1 sample_en_clean = English_data.drop(columns=['abstract’,’body_html'])
Check Null values
[1 sample_en_clean = sample_en_clean.copy(deep = True)

[1 sample_en_clean

title url body_text
[} Wikipooks: Radiation Oncology/NHL/CLL-SLL https:/jen.wikibooks.org/wild/Radiation_Oncole... Front Page: Radiation Oncology | RTCG Trials |
1 Wikibooks: Romanian/Lesson 8 hitps:ffen.wikibooks. esson_9 3 [edit | edit source]inTea - C
2 Wikibooks: Karrigell hiips:fien wikibooks.org/wikifKarrigell Karrigell is an open Source Pyinon web framewo
3 Wikibooks: The Pyrogenesis Engine/0 AD./GuiSe... hitps:/fen.wikibooks.org/wikiThe_Pyrogenesis_.. setupUnitPanei[edt | edit sourcejinHelper fun.

4 Wikibooks: LMis in ControlUpages/Exterior Coni hitps/fen wikibooks orgiwiki/LMIs_in_Control/._ Contents\nin1 The Conceptin2 The Systemin3 The.

95 Wikibooks: World War IlfAsian Theater/Major Ca https:/fen wikibooks org/wiki/World_War_IIfAsi... Contents\n\n1 Pearl Harbor\n2 Battle of Midway.
96 Wikibooks: English-Hanzillliness hitps:ifen wikibooks. i Hanzi/l Special preficEnglish-Hanzifn
7 Wikibooks: Historical Geology/Absolute dating:... hitps://en.wikibooks. orgfwikiHistorical_Geolo... In this article, we shall take a look back at
98 Wikibooks: Anarchist FAQMhy do anarchists opp... https-//en. wikibooks. org/wikitAnarchist_FAQ/MWh B.1.6 Can hierarchy be ended?[edit | edit sour
%9 Wikibooks: English-Hanzi/Hyperglycemia hitps://en. wikibooks. d Hanzi/Hy... ! s a condition in which an exces

100 rows = 3 columns

© sample_en_clean.isnull().sum()

& title 8
url 8
body_text @
dtype: inté4

Figure 4: Data Cleaning steps

[1 #drop duplicate
sample_en_clean = sample_en_clean.drop_duplicates(keep=False)

[1 sample_en_clean.describe()

title url body_text
count 100 100 100
unigue 100 100 100

top ‘Wikibooks: Pinyin/Yellowish https-//en wikibooks. org/wiki/Blended_Learning... Insects\in\n\nNatureGeneral ConferenceSee also ..

freq 1 1 1

Figure 5: Data Cleaning steps

4 Exploratory Data Analysis

The data needs to be understood before performing any of the transformations or pre-processing. So, from the
histogram performed using R studio it shows much of the data consists of garbage data.

Figure 6: Histogram plotted to understand the data

Frequency
2000 3000

1000

15

5 Data Transformation/Pre-processing and preparation

First the focus is on selecting correct data. For that the regex to select letters, numbers and punctuations is
written and executed.

[] import re
new_para = []
for 1 in sample_en_clean|['body_text']:
new_para.append(re.sub(' [*A-Za-z8-9\\.\\,\\-\[AIV T+, 0 tLA))

[1 new_para_df = pd.DataFrame(new_para)
new_para_df['para_cleaned'] = pd.DataFrame(new_para)

[1 new_para_df.para_cleaned

Front Page Radiation Oncology RTOG Trials Rand...
B uturi Beverages[edit edit source] Tea Ceai M...
Karrigell is an open Source Python web framewo...
setupUnitPanel[edit edit source] Helper functi...
Contents 1 The Concept 2 The System 3 The Data...

BwNR®

95 Contents 1 Pearl Harbor 2 Battle of Midway 3 B...
96 Special search illness prefix English-Hanzi Il...

Figure 7: Cleansing textual data

Data preparation

Next the data has been prepared "body text" column to use as per spacy. The paragraphs are trimmed to 10000 words to have a definite length.

Too short paragraphs do not have much information in it.

[1 para_data = []
for i1 in new_para_df.para_cleaned:
para_data.append(i[:1@@080])
para_data_sample = para_data.copy()

Figure 8: Data preparation

To implement the NLP pipeline the paragraphs are broken into sentences

[] from __future__ import unicode_literals, print_function
from spacy.lang.en import English # updated
nlp = English()
nlp.add_pipe('sentencizer')
list_doc = []
for i in para_data_sample:
list_doc.append(nlp(i))
#list_sentence.append([sent.string.strip() for sent in list_doc[i].sents])

Loading the pre-trained pipeline of spaCy

[1] npl = spacy.load("en_core_web_sm")

Figure 8: Breaking down the paragraphs into list of sentences

Deciding the length of output so as to not have a very lengthy question

Generally, you do not want the "Fill in the blanks" to be as long as a paragraph. It needs to be of a shorter length but not very short. So, the
sentences have been selected between a word limit of 50 to 200 words.

[] 1list_sentence_para = []
for i in range(len(list_doc)):

sentences = [sent.text.strip() for sent in list_doc[i].sents]

for j in range(len(sentences)):
#print(len(sentences[j]))
#print(3)
if len(sentences[j])>5@ and len(sentences[j])<2ee:

list_sentence_para.append(sentences[j])

Figure 8: Breaking down the paragraphs into list of sentences

5.1 Fill in the blank type of question

5.1.1. Cleaning with respect to specific question types

] 1list_sentence_cleaned = []

reg = re.compile(r'[\[\]]+")
reg2= re.compile(r'\s([B-HJ-Zb-hj-z@-9])\b")
for i in range(len(list_sentence_para)):
if reg.search(list_sentence_para[i]):
pass
elif reg2.search(list_sentence_para[i]):
pass
else:

list_sentence_cleaned.append(list_sentence_para[i])

Figure 9: Cleaning specific to generating fill in the blank question

5.1.2 Looking for pivotal answers from the sentences and then replacing it with a dash to generate output for fill
in the blank question (Tokenization) .

list_ques = []
for i in range(len(list_sentence_cleaned)):
dict_temp = npl(re.sub('["A-Za-z]+', ' ',list_sentence_cleaned[i]))
final_word = []
for token in dict_temp:
if not token.is_stop:
final_word.append(token)
fillup_word = (secrets.choice(final_word)).text
fill_up_ques = list_sentence_cleaned[i].replace(fillup_word, ' ', L)+"["+fillup_word+"]"
list_ques.append(fill_up_ques)

list_ques

'These fleeting phases of consciousness are ever on the wing they never pause in their restless flight and we must _ them as they go.[catch]
'This is not so easy as it appears for the we turn to look in upon the mind, that moment consciousness changes.[moment]',

'The thing we to examine is gone, and something else has taken its place.[meant]',

'All that is left us then is to view the mental while it is still fresh in the memory, or to catch it again when it returns.[object]’,
'Studying Mental of Others through Expression.[States]’,

'Although I can meet only my own mind face to face, I am, nevertheless, under the _ of judging your mental states and knowing what is taking
'For in to work successfully with you, in order to teach you, understand you, control you or obey you, be your friend or enemy, or associa
'But the real you that I must know is hidden behind the physical mask that we call the __ . [body]"',

'I must, therefore, be to understand your states of consciousness as they are reflected in your bodily expressions.[able]l’,

Figure 10: Searching for pivotal answer and then replacing it with a dash

5.2 True or False type question

[1

from string import punctuation

def

def

preprocess(sentences):

output = []

for sent in sentences:
single_quotes_present
double_quotes_present

len(re.findall(r"["I[\w\s.:;,!2\\-]+[']",sent))>0
len(re.findall(r'["][\w\s.:;,!2\\-]+["]",sent))>0

question_present = "?" in sent

if single_quotes_present or double_quotes_present or question_present :
continue

else:

output.append(sent.strip(punctuation))
return output

get_candidate_sents(resolved_text, ratio=e.3)

candidate_sents = summarize(resolved_text, ratio=ratio)

candidate_sents_list = tokenize.sent_tokenize(candidate_sents)

candidate_sents_list = [re.split(r'[:;]+',x)[@] for x in candidate_sents_list]

Remove very short sentences less than 30 characters and long sentences greater than 150 characters
filtered_list_short_sentences = [sent for sent in candidate_sents_list if len(sent)>3@ and len(sent)<158]
return filtered_list_short_sentences

Figure 11: Removing quotations and question marks for true or false question

L 1 filter_clean_data = []
for i in range(len(text)):
filtered_parts = []

filtered_parts.append(get_candidate_sents(text[i]))
#print(filtered_parts)
for j in range(len(filtered_parts)):

if len(filtered_parts[j])== @:
pass

else:
filter_clean_data.append(filtered_parts[j])
filter_quotes_and_questions = preprocess(filtered_parts[j])

for each_sentence in filter_quotes_and_questions:
print (each_sentence)
print ("\n")

Figure 12: Data filtering based on quotes and question marks

[1 preprocess_filtered_data = []
preprocess_filtered_data= preprocess(filter_cleaner_data)
for each_sentence in preprocess_filtered_data:

print (each_sentence)
print ("\n")

Figure 13: Displaying the cleaned data

5.2.1 Parsing

Parsing the sentence to split the sentences at the appropriate phrase to generate a different output than
the original one using OpenAl GPT-2.

Split sentence at appropriate place with Berkley Constituency parser.

Use Berkley Constituency parser to split a sentence at ending verb phrase or noun phrase. Eg : If the input sentence is "Divergent plate
boundaries also occur in the continental crust” we split it at the ending noun phrase to get "Divergent plate boundaries also occur in". Now we
give the partial sentence "Divergent plate boundaries also occur in" to OpenAl GPT-2 to generate sentences with different endings.

[1]
from IPython.display import Markdown, display
def printmd(string):
display(Markdown(string))

def get_flattened(t):
sent_str_final = None
if t is not None:
sent_str = [" ".join(x.leaves()) for x in list(t)]
sent_str_final = [" ".join(sent_str)]
sent_str_final = sent_str_final[e]
return sent_str_final

Figure 14: Parsing

def get_termination_portion(main_string,sub_string):

combined_sub_string = sub_string.replace(” ","")
main_string_list = main_string.split()
last_index = len(main_string_list)

for i in range(last_index):
check_string_li main_string_list[i:]

check_string = .join(check_string_list)

check_string = check_string.replace(” ","")

if check_string == combined_sub_string:
return " ".join(main_string_list[:i])

return None

def get_right_most_VP_or_NP(parse_tree,last_NP = None,last_VP = None):
if len(parse_tree.leaves()) == 1:
return get_flattened(last_NP),get_flattened(last_VP)
last_subtree = parse_tree[-1]
if last_subtree.label() == "NP":
last_NP = last_subtree
elif last_subtree.label() == "VP":
last_VP = last_subtree

return get_right_most_VP_or_NP(last_subtree,last_NP,last_VP)

Figure 15: Parsing cont.

if len(longest_phrase)>8:
sentence_completion_dict[sentence]=longest_phrase
return sentence_completion_dict

sent_completion_dict = get_sentence_completions(preprocess_filtered_data)

print (sent_completion_dict)

Figure 16: Parsing cont. (function to create the dictionary of the sentences)

def get_sentence_completions(key_sentences):
sentence_completion_dict = {}
for individual_sentence in preprocess_filtered_data:
sentence = individual_sentence.rstrip('?:!.,;")
tree = benepar_parser.parse(sentence)
last_nounphrase, last_verbphrase = get_right_most_VP_or_NP(tree)
phrases= []
if last_verbphrase is not None:
verbphrase_string = get_termination_portion(sentence,last_verbphrase)
phrases.append(verbphrase_string)
if last_nounphrase is not None:
nounphrase_string = get_termination_portion(sentence,last_nounphrase)
phrases.append(nounphrase_string)

longest_phrase = sorted(phrases, key=len,reverse= True)
if len(longest_phrase) ==
first_sent_len = len(longest_phrase[8].split())
second_sentence_len = len(longest_phrase[1].split())
if (first_sent_len - second_sentence_len) > 4:
del longest_phrase[1]

Figure 17: Function or logic on how to treat the sentence upon splitting

6 Logic or model implementation

Pre-trained BERT model is deployed to generate the true or false questions.

[1 # https://huggingface.co/transformers/main_classes/model.html?highlight=no_repeat_ngram_size

from transformers import GPT2LMHeadModel, GPT2Tokenizer
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")

add the EOS token as PAD token to avoid warnings
model = GPT2LMHeadModel.from_pretrained(“gpt2",pad_token_id=tokenizer.eos_token_id)

from sentence_transformers import SentenceTransformer
Load the BERT model. Various models trained on Natural Language Inference (NLI) https://github.com/UKPLab/sentence-transformers/blob/master/docs/pry
Semantic Textual Similarity are available https://github.com/UKPLab/sentence-transformers/blob/master/docs/pretrained-models/sts-models.md

model BERT = SentenceTransformer('bert-base-nli-mean-tokens')

Figure 18: Model implementation

Filter sentences and generate false sentences.

Generate multiple sentences (OpenAl GPT2) and among them filter (Sentence BERT) the ones that are similar, since we want to keep only

dissimilar ones as False sentences.

r1

torch.manual_seed(2028)
key_sentences=[]
false_statements=[]

def sort_by_similarity(original_sentence,generated_sentences_list):
Each sentence is encoded as a 1-D vector with 768 columns
sentence_embeddings = model_BERT.encode(generated_sentences_list)

queries = [original_sentence]

query_embeddings = model_BERT.encode(queries)

Find the top sentences of the corpus for each query sentence based on cosine similarity
number_top_matches = len(generated_sentences_list)

dissimilar_sentences = []

Figure 19: Definition or function to find out sentences different from the original sentences

for query, query_embedding in zip(queries, query_embeddings):
distances = scipy.spatial.distance.cdist([query_embedding], sentence_embeddings, "cosine")[@]

results = zip(range(len(distances)), distances)

results = sorted(results, key=lambda x: x[1])

for idx, distance in reversed(results[@:number_top_matches]):
score = 1l-distance
if score < ©.9:
dissimilar_sentences.append(generated_sentences_list[idx].strip())

sorted_dissimilar_sentences = sorted(dissimilar_sentences, key=len)

return sorted_dissimilar_sentences[:3]

Figure 20: The comparison to segregate the dissimilar sentences is done by cosine similarity test

def generate_sentences(partial_sentence,full_sentence):
input_ids = torch.tensor([tokenizer.encode(partial_sentence)])
maximum_length = len(partial_sentence.split())+8@

Actiavte top_k sampling and top_p sampling with only from 90% most likely words
sample_outputs = model.generate(
input_ids,
do_sample=True,
max_length=maximum_length,
top_p=0.90, # .85
top_k=50, #0.38
repetition_penalty = 18.89,
num_return_sequences=16
)
generated_sentences=[]
for i, sample_output in enumerate(sample_outputs):
decoded_sentences = tokenizer.decode(sample_output, skip_special_tokens=True)
decoded_sentences_list = tokenize.sent_tokenize(decoded_sentences)
generated_sentences.append(decoded_sentences_list[@])

top_3_sentences = sort_by_similarity(full_sentence,generated_sentences)

return top_3_sentences

Figure 21: Sampling of the top_k sentences

10

index = 1
choice_list = ["a)","b)","c)","d)","e)", "£)"]

for key_sentence in sent_completion_dict:

partial_sentences = sent_completion_dict[key_sentence]

false_sentences =[]

print_string = "**%s) True Sentence (from the story)

printmd(print_string)

new_sentence = key_sentence
key_sentences.append(new_sentence)
print (" ",key_sentence)

for partial_sent in partial_sentences:

false_sents = generate_sentences(partial_sent,key_sentence)
false_sentences.extend(false_sents)

*+*False Sentences (GPT-2 Generated)**")

for ind,false_sent in enumerate(false_sentences):

printmd("

print_string_choices = "**%s** %s"%(choice_list[ind],false_sent)
false_statements.append(false_sent)

printmd(print_string_choices)
index = index+1

print ("\n\n")

cHE"%(str(index))

Figure 22: Generating true and false sentences

7 Evaluation Results

For evaluation different data can be considered and the generated output can be evaluated.

Experiment 1 fill in the blank output

Sr.no Content Question Generated

1 “They must live their own lives, think their own | They must live their own lives, think their own thoughts, and
thoughts, and arrive at their own at their own destiny.
destiny.”

2 “In the language of the psychologist, we | Inthe language of the psychologist, we must
must introspeet.”

3 ‘But how are we to discover the nature of the mind | But how are we to discover the nature of the mind or come to
or come to know the processes by which Imow the processes by which works for mind is
consciousness works _for mind is intangible. intangible.

4 'Mind belongs not to the realm of matter, which is "Mind belongs not to the realm of matter, which is known to the
known to the senses, but to the realm of spirit, senses, but to the realm of , which the senses can
which the senses can never grasp. never grasp.

5 You and I may look into each other's face and ‘You and I may look inte each other's face and there guess the
there guess the meaning that lies back of the smile meaning that lies back of the smile or or flash of the
or frown or flash of the eye, and so read something | eve, and so read something of the mind's activity.’
of the mind's activity.’

6 'For one can never come to understand the nature 'For one can never come to understand the nature of
of mind and its laws of working by listening to and its laws of working by listening to lectures or reading
lectures or reading textbooks alone. textbools alone.

7 "The thing we meant to examine is gone, and The we meant to examine is gone, and something
something else has taken its place.’ else has taken its place.’

8 'The only way to know what mind is, is to look in "The only way to know what mind is, is to look in upon our own
upon our own consciousness and observe what is and observe what is transpiring there. ',
transpiring there.’

11

Experiment 1 True or false output

Sr.no Content Dissimilar Statements Generated
1 “/Consciousness is a process or | 'Consciousness is the key to true knowledge.
stream.” 'Consciousness is Means for Good and Morality.
2 “The mind can be known and studied | 'The mind can be known and studied as truly and as scientifically as
as truly and as scientifically as can | can the world of art or music.,
the world of matter.”
"The mind can be known and studied as truly and as scientifically as
can the world of literature. ',
3 “Studying Mental States of Others ‘Studying Mental States of Others through the Science of
through Expression is observation. “ | Consciousness.,
‘Studying Mental States of Others through Their Psychological
Effects on Us.
4 “The piling up of consciousness is 'The piling up of consciousness is a work in progress by the
attention.” Department.’,
"The piling up of consciousness is a fascinating and well researched
work. '
“The piling up of consciousness means the Coming in a Time of
Consequences.”
References
1. https://www.kaggle.com/dhruvildave/wikibooks-dataset

12

https://www.kaggle.com/dhruvildave/wikibooks-dataset

