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Identifying Emotions for Code Mixed Hindi-English
Tweets

Sanket Sonu
x19206071

Abstract

Social media is getting bigger day by day. Billions of people use social media on
daily basis. Billions of posts are posted every day on Twitter, Facebook, Instagram,
etc. which have billions of comments on them. These posts and comments show
the emotion of the user. Many companies use these data to find hidden insights
about their products by analysing the emotions of the user. Detecting emotions
out of monolingual texts such as English texts is easy to process because of a wide
variety of pre-trained models introduced by Google, Facebook, etc. However, when
trying to detect emotions for Code Mixed Hindi-English texts are complex, and not
much research has been proposed. These bilingual Code Mixed Hindi-English texts
are a mixture of 2 languages such as English and Hindi, nowadays user also uses
English alphabets to write Hindi words. There is no spelling checker or supported
library for processing transliterate Hindi words, which results in less accuracy by
any machine or deep learning models. This project is using Twitter’s data that has
been extracted using the official Tweepy API released by Twitter. The research
paper will use the different supervised machine and deep learning models for pre-
dicting 7 emotions which are "Happy’, ‘Sad’, 'Angry’, ’Fear’, ’Disgust’, ‘Surprise’,
or ’No emotions’. This research will use the various supervised machine and deep
learning models such as SVC, Multinomial Naive Bayes, Logistic Regression, Ran-
dom Forest, CNN, and LSTM. This study will also propose a few easy and effective
methods to clean, and pre-process Code Mixed Hindi-English texts for corpus cre-
ation which will provide the effective result when machine and deep learning models
are trained using this corpus. The SVC model performed best by providing 73.75%
accuracy.

Key Words: SVM, Logistic Regression, Naive Bayes, Random Forest, Convo-
lutional Neural Network (CNN), Long Short-Term Memory (LSTM).

1 Introduction

1.1 Background and Motivation

The world is transforming their living style and people love to share their daily day-to-day
lifestyles using social media posts and status. Micro-blogging websites like Twitter and
Facebook are famous platforms where normal user and celebrities post their thoughts by
posting Tweets and commenting on someone’s posts. These posts and comments show
the emotion of the user. Nowadays, people are more tend to use Twitter and Facebook for
daily news and updates rather than watching television or reading newspapers. People



use Twitter to directly give reviews, feedback, or complaint against any products on
Twitter. Also, the current ruling government keeps track of tweets posted about them,
which shows normal public emotions for the current government, which can be used in
a positive way to improve and overcome current problems which are faced by normal
people in daily life. This can help the current ruling government to win the next election
and can also give opponents an opportunity to tackle the problem and create new rules
which can make a majority of the population happy, safe and comfortable. This was
not possible before social media because the majority of the population cannot interact
with the government one by one and share the problem. People also tweet about their
favourite celebrities, sportsperson, politicians, etc. These tweets show emotions such as
"Happy’, ‘Sad’, "Angry’, 'Fear’, 'Disqust’, ‘Surprise’, or 'No emotions’.

There is much research that shows good results when detecting emotions out of mono-
lingual texts such as English. [Salam and Gupta|(2018) and Tiwari and Sinha| (2020)) shows
how they performed emotion detection from monolingual texts. Users posts tweets which
has words with spelling mistakes or shorthands or acronyms. There are a few python lib-
raries that detect all these words and correct them in proper English words for example
‘gout’ can be corrected as ‘government’, ‘happyy’ can be corrected as 'happy’. All those
words are in English vocabulary, which makes the pre-processing and model training
easy and smooth. There are many pre-trained models such as BERT and ALBERT from
Google, fastText and RoBERTa from Facebook, codeBERT from Microsoft, GPT from
OpenAl, and many more, which are pre-trained using English newspaper data, Wikipedia
data, and many English articles available on the internet. These famous models support
many other famous languages as well such as Spanish, German, French, and a few more.
However, Hindi is not supported by any of these famous pre-trained models.

India is the 2nd largest country in terms of population, i.e, 1.35 billion and there are
more than 1600 native languages, where more than 50% of the population have Hindi
as their native language. Most Indian use Code Mixed Hindi-English texts for their so-
cial media. Hindi native speakers use transliterate words for social media such as Hindi
texts can be written using English alphabets. India has a very huge crowd who use
social media and simple common Hindi words can be written in multiple ways such as
'No’ which is an English word that means 'Ni’ in Hindi, and this Hindi words can be
written in multiple ways such as 'nahi’, 'ny’, 'nehi’, 'nae’, 'nhi’, 'nahy’, etc. However,
there are no libraries and models to detect these words which can correct them into 1
word. This makes the pre-processing and training of the model very complex because of
manual interaction with the data. Below are a few examples of tweets used in this project:

Tweet 1: yaar india kahi t20 world cup se bahr na ho jae mjhe bht darr lag rha hai
Translation: Man India should not be out of the t20 World Cup I am very scared

Tweet 2: agle mahine se ipl start hone wala hai mast maaza aaega
Translation: IPL is going to start from next month it will be fun

Tweet 3: kya faltu government hai sharam v ni aati
Translation: what a useless government shame on them

These 3 tweets show how users transliterate Hindi texts using English words. Tweet
1 shows the "Fear’ emotion, tweet 2 shows the 'Happy’ emotion and tweet 3 shows the
'Disgusting’” emotion. This research uses more than 9165 Code Mixed Hindi-English



tweets. All these tweets are annotated manually during corpus creation. All tweets are
divided into 7 emotions as 'Happy’, ‘Sad’, 'Angry’, 'Fear’, 'Disqust’, ‘Surprise’, or 'No
emotions’(confusing tweets or tweets which don’t show any emotions).

1.2 Research Question and Objectives

"There is no publicly good quality data and pre-trained models for Code Mixed Hindi—
English data, also it is expensive to collect, pre-process and run various machine and deep
learning models. How efficiently can machine and deep learning models predict emotions
from Code Mizxed Hindi—English tweets?’

The main objective of this research is to find a good supervised machine or deep
learning models, which can predict emotions for Code Mixed Hindi-English data and
classify them into 7 emotions such as "Happy’, ’Sad’, "Angry’, 'Fear’, ’Disqust’, "Surprise’,
or 'No emotions’. Along with this, the paper will also discuss a few easy and necessary
pre-processing steps which can be done using code and by manual interaction to the
dataset. This will help in corpus creation which can be used by machine and deep
learning models to predict emotions, these manual interaction and pre-processing will
increase the performance of the model.

1.3 Structure of the paper

This research paper is divided into a few sections. Section 2 deals with the Related
Work part which demonstrates the research performed by other researchers on the same
or related topic. Section 3 will deal with Research Methodologies and implementation,
which will demonstrate all the technical aspects of the research. Section 4 will deal
with the Results evaluation which demonstrates how accurately the models performed in
detecting emotions. Section 5 will demonstrate conclusions and future work. Section 6
demonstrates the acknowledgment part and Section 7 shows the list of all the references
used in this research project.

2 Related Work

There are many scholars who have worked on this problem domain. This section will
show a few related works already performed by scholars. This section will be divided
into 3 sub-parts. The first subsection will show how few research papers used machine
learning to solve the problem. The second subsection will deal with research papers that
only used deep learning models to solve the problem. The third subsection will deal with
research papers that used both machine and deep learning models to solve the problem.
There are few papers that worked on the monolingual text and the rest papers worked
on bilingual code mixed texts.

2.1 Emotion detection using Machine Learning models

The emotion detection problem can be solved using various supervised machine learning
models. Vijay et al.| (2018)) worked on bilingual Code Mixed Hindi-English tweets. They
used Twitter’s API and collected 350K tweets. During pre-processing, they cleaned the
data by removing tweets that are completely in English or Hindi texts. They filtered
out 5.5K tweets which are only bilingual Hinglish code mixed tweets and later created



a corpus that includes 2866 tweets. The annotated each of 2866 tweets manually and
used emotion classes such as Happy, Sad, Angry, Fear, Disgust, or Surprise. They have
used Word N-Grams, Character N-Grams, Emoticons, Punctuation’s, Repetitive words,
Uppercase words, and Intensifiers to convert text data into feature vectors. They used
these vectors and trained the SVM model. By using char n-grams feature extraction,
they were able to boost the accuracy by 16%. This paper is a very good example of
how text classification needs to be performed as they have used basic steps to predict
emotions from bilingual code mixed texts.

Micro-blogging websites such as Facebook and Twitter data can be classified as posit-
ive, neutral, or negative as well. [Sulthana et al.|(2018) used monolingual English Twitter’s
data for their research project. They used official Twitter’s API for data collection and
annotated each tweet as positive, neutral, or negative using keywords, i.e., they used
specific #tags example "happy’ to search tweets using Twitter API and labeled all those
tweets as 'positive’. Like that they annotated 14K tweets. They have used 3 supervised
machine learning models as SVM, Naive Bayes, and Linear Regression. They have also
used 10 fold cross-validation for their models. The authors used Linear Regression to
predict the polarity of the tweets, which outperformed SVM, and Naive Bayes models.
The Linear Regression approach provided 85% accuracy which is more than SVM and
Naive Bayes. However, there is a limitation in this research that is annotating tweets
using keywords, as there are many words that show different sentiment based on the line
context, example - "happy’ keywords can be used like this "Why are you happy? You are
ugly and looks like a chimpanzee’. Tweets like this can be annotated as "Positive’ because
of ’happy’ keywords, which is actually a 'Negative’ tweet. This annotation technique is
the one limitation that can not be 100% sure about labeling the tweets.

Comments of micro-blogging websites such as Twitter, Facebook, and YouTube for the
agriculture domain have been collected by Singh et al.| (2019). They collected bilingual
Code Mixed English-Punjabi comments. They created a corpus of 11K comments. The
authors used a regular expression to clean the data by removing punctuation, #tags,
links. Authors used an abbreviation list to change the spelling of a few words such
as ‘myc’ can be corrected as 'nice’. They collected a list of words from the sentiment
repository and used them for annotating comments and labeled them as positive, neutral,
or negative. The authors used SVM and Naive Bayes for predicting sentiments. They
used both uni-grams and n-grams feature extraction techniques and they were able to
achieve a better result for the n-grams technique. However, the annotation part is a
limitation that can be improved as they have used a list of words to annotate data into
positive, neutral, or negative sentiments, which can falsely annotate data because some
positive words can be used in negative comments and vice versa.

Facebook data is used by [Tiwari and Sinha (2020)); Srividya and Sowjanya (2019)
for sentiment analysis. In both papers, authors collected monolingual English Facebook
data using Facebook’s GraphAPI and annotated them as positive, neutral, or negative.
Tiwari and Sinha/(2020) have performed pre-processing using Java programming language
and further used the corpus for training supervised machine learning models. Srividya
and Sowjanya (2019)) used python for pre-processing and they used supervised machine
learning models for sentiment analysis. Both papers have used SVM and Naive Bayes as
classification models and both papers were able to achieve 70% accuracy for Naive Bayes
and 90% accuracy for the SVM model.

Twitter data has been used by Mandal et al| (2018)). Authors have collected 89K
tweets and after further pre-processing, they used 5K Code Mixed English-Bengali tweets



for their research purpose. They have used a very unique method to annotate data.
They created two annotation systems, the first system was for language labeling, and the
second system was for sentiment labeling. These systems labeled tweets automatically
into positive, neutral, or negative classes. Further, they used manual evaluation of both
the system’s output. The authors created a few rules for tagging and were able to achieve
a 0.90 kappa value. The authors used Naive Bayes, Linear regression, and stochastic
gradient descent. The authors were able to achieve good results using this unique polarity
tagging system.

2.2 Emotion detection using Deep Learning models

Code Mixed Hindi-English tweets are used by Wadhawan and Aggarwal (2021). They
have collected 150K tweets using Twitter’s API. After pre-processing they have annotated
tweets as happy, sad, angry, fear, disgust, or surprise. They have used #tags to search
tweets and used those #tags to label the data, example ’happy’ keywords are used to
extract tweets which are having a ’happy’ word in them and annotate all those tweets
as "happy’ emotion. They have created their own word embedding system to convert
text data into vector representation which can be understood by deep learning models.
They have also used Word2Vec and Facebook’s FastText for embedding. Further, they
used these vectors to train deep learning models such as CNN, LSTM, and Bi-LSTM.
They have also used transformer-based models such as BERT, RoBERTa, and ALBERT.
BERT model performed best among all of these and they were able to achieve an accuracy
of 71%. They have used a good amount of data to train the model, however, they have
annotated them based on keywords, which will be a problem because keywords when
used with different words can result in different contexts, example ’happy’ keyword can
be used in a 'sad’ emotion tweet as well.

Twitter data has been used by Younas et al.[(2020) and authors collected 20,700 tweets
using Twitter’'s API. After pre-processing, they labeled tweets and divided them into
positive, neutral, or negative sentiments. They have used both multilingual and bilingual
tweets for their dataset. Further, they used transformers to predict the sentiments. The
authors used mBERT and XLM-R transformers. mBert is built with a BERT base with 12
layers of transformers and 768 hidden layers. Authors were able to achieve 71% accuracy
for code-mixed English and Roman Urdu texts. The authors used 16 batch sizes, epochs
as 3 for both mBERT and XLM-R models. They have used 2e-5 learning rate for the
mBERT transformer model and 2e-6 learning rate for the XLM-R transformer model.
These hyper-parameter tuning boosted the accuracy and F-score to 71%.

Authors have tried some best deep learning models to detect emotions out of Code
Mixed Hindi-English texts. Author [Sasidhar et al.| (2020) have used data of |Vijay et al.
(2018) and collected their own data and made a total count of 12K text data, which
include 3 emotions such as happy, sad, or angry. Authors have used Word2Vec to generate
word vectors from text data. They used both the continuous bag of words and skip-gram
methods of Word2Vec for creating word vectors. Authors have used CNN and RNN for
text classification. For CNN they used 1-D CNN and for RNN they used LSTM and
BiLSTM for text classification. LSTM and BiLSTM performed better than the CNN
model and they were able to achieve 81% accuracy on RNN models. They have used
a combination of CNN-LSTM and CNN-BiLSTM models, which outperformed normal
CNN and RNN models. CNN-LSTM performed well and gave 82% accuracy and CNN-
BiLSTM outperformed all the 4 models and they were able to achieve 83% accuracy on



the CNN-BiLSTM model. The authors used hyper-parameters for CNN-BiLSTM models
like 0.3 dropouts, ReLLU activation for 1D-CNN, Tanh for Bi-LSTM, and Softmax for
dense layer, optimizer as RMSprop, Loss function as Categorical Cross-Entropy, and
batch size as 50.

Sentiment analysis of code mixed text (SACMT) has been experimented by |Choud-
hary et al.| (2018)). They have collected data from open source, which already has an-
notation as positive, neutral, or negative. Authors have used 3 datasets for the research
purpose such as English tweets, Code Mixed Hindi-English tweets, and Semeval dataset.
Authors have used pre-processing using a clustering-based approach to detect the vari-
ation of transliterated words. The authors have used the Bi-LSTM model for sentiment
analysis. Authors were able to achieve 80% accuracy for the English tweets dataset and
77% accuracy for the code mixed dataset. However, the Semeval dataset was not good
with the RNN model and they achieved only 71% accuracy on this dataset. This cluster-
ing pre-processing approach used in SACMT outperformed the state-of-the-art technique
of sentiment analysis by around 7-8% accuracy and 10% F-score.

Facebook comments are used by [Mukherjee| (2019)) for sentiment analysis with 3 po-
larity levels, i.e., positive, neutral, or negative. They used 2 famous people’s public
accounts, i.e., Narendra Modi and Salman Khan as wide varieties of comments are there
from various parts of India. They have used LSTM deep learning model for sentiment
analysis. This LSTM model used joint-learning from both character and word features.
They have pre-processed and corrected some common spelling mistakes using python re
library. The LSTM model was trained with a different combination of parameters. They
used a combination of hyper-parameters are RMSprop with Categorical Cross-Entropy,
RMSprop with Focal Loss, RMSprop with MSE, adamx with MSE, adamx with Focal
Loss, and adamx with Categorical Cross Entropy. The last combination of adamx with
Categorical Cross Entropy performed best among all other variations and was authors
were able to achieve 70% accuracy and 66% Fl-score by using RNN’s LSTM model for
text classification.

The authors have used the same deep learning models for 2 datasets. K. et al.| (2018)
collected Code Mixed English-Bengali texts dataset from NLP tool contest and they cre-
ated Tamil movie review dataset manually. The authors tried to compare the performance
of the same CNN model on both datasets. The polarity has 3 levels which are positive,
neutral, or negative. They have used CNN model for text classification. They have used
activation functions such as ReLU, Tanh, and Sigmoid. They used 0.5 dropouts with a
batch size of 64, no of filters as 128, and epochs as 200. This performed well for Code
Mixed English-Bengali texts, and they achieved 73% accuracy on this dataset, however,
the monolingual Tamil movie dataset was not able to perform well on the same CNN
model with the same hyper-parameters, which gave only 51% accuracy on Tamil dataset.
However, the word vector was generated using word indexing which was the reason for
low performance. Using other feature generation methods like Word2Vec can improve
the performance for both datasets and they have mentioned this in future work.

2.3 Emotion detection using both Machine and Deep Learning
models
Both supervised machine and deep learning models can be used to predict the emotions

from a Code Mixed Hindi-English texts. Singh! (2021)) has used both supervised machine
and deep learning models for their dataset, which they have collected from Twitter’s



API and comment section of video streaming platforms. They have used 4 labels for
their research purpose, i.e., happy, sad, angry, or fear. The authors have annotated
the dataset manually. They are using 1600 data for their research. They have performed
pre-processing and changed a few Hindi words’ spelling. They solved this issue using clus-
tering of skip-grams vectors. The authors used Naive Bayes, LSTM, Sub-words LSTM,
and SVM models. The authors used char n-grams and word n-grams for feature extrac-
tion. Authors were able to achieve 75% accuracy for the Naive Bayes word-grams model
and 77% accuracy for Sub-word LSTM. The only limitation here is less amount data.
Less amount of data may be the reason for over-fitting deep learning models, like LSTM
and Sub-word LSTM.

In this research, paper Kastrati et al.| (2021)) authors have used multiple models to
predict monolingual Albanian language text. They scrapped data from the Facebook
comment section of the COVID-19 topic. Authors manually annotated 10,700 data into
3 polarity levels, i.e., positive, negative, or neutral. After pre-processing, they used
both Contextualized and Static word embedding. Authors used SVM, Naive Bayes,
Random Forest, and Decision Tree for supervised machine learning models and were able
to achieve 70 to 71% accuracy for all the machine learning models. However, when using
deep learning models like CNN, BiLSTM, and BERT, they were able to achieve 71-72%
accuracy. This 1-2% difference in accuracy is mostly because of different embedding used
for different models.

These authors have worked and created their own pre-processing methods. [Yadav
et al.| (2020)) collected 6400 data and annotated them as positive, neutral, or negative. For
pre-processing they have created their own list of stop-words. Authors have also created
their own lemmatization corpus. The authors used text blob to decide the polarity of
the texts. Further, authors have used SVM, Naive Bayes, SGD, and XGB for supervised
machine learning models and the Bi-LSTM model for supervised deep learning model.
They have used TF-IDF vectorizer to extract features from textual data. Further, they
used an ensemble model for all 4 machine learning models, to find the best model with
the best parameters. The authors were able to achieve 74% accuracy for the ensemble
model and 73% accuracy for the Bi-LSTM model. The F-score of the ensemble machine
learning model is 0.69, however, F-score for the Bi-LSTM model is only 0.59

Authors Tho et al.| (2020)) reviewed 230 journal papers from the internet. They men-
tioned that most of the research papers are using supervised machine learning models
than supervised deep learning models. The most popular machine learning models are
SVM, Naive Bayes, and Logistic Regression, these models perform best for Code Mixed
sentiment analysis. Among all 3 SVM performed best, however, they also tested a few
deep learning models like CNN and LSTM but that was not able to give better accuracy
and performance than machine learning models.

Authors Ahmad et al.|(2019) gave a review on sentiment analysis of Code Mixed texts,
especially for Indian languages. They have mentioned that apart from the machine and
deep learning models, Lexicon-based sentiment analysis is another approach to solve the
problem. The lexicon approach can be used at the document and sentence level. They
have mentioned that dictionary or corpus-based methods are followed for Lexicon based
approach. They have concluded that lack of lexicon tools, stop-words, spell checkers,
grammar checkers are unavailable for Indian languages, which makes the research complex
and result in low or average performance on the machine and deep learning models.

In this research paper Mishra et al. (2018), authors have used both machine learning
and neural networks for sentiment analysis. They have collected around 24K data and



annotated it as positive, neutral, or negative. The authors have created 2 datasets, the
first, is Code Mixed Hindi-English data and the second is Code Mixed English-Bengali
data. After pre-processing, they have used a TF-IDF vectorizer with character n-grams in
the range from 2 to 6 to extract the features. They have used an ensemble voting classifier
of three machine learning models SVM, Logistic Regression, and Random Forest. For
Runl they used voting classifier and for RUN2 they used the SVM model, out of which
the Run2 SVM model outperformed the Runl ensemble model. They have used MLP
(multi-layer perceptron) and Bi-LSTM models for neural networks. The authors were
able to achieve a 0.69 F1-score for the SVM model. However, Bi-LSTM was able to give
only 0.54 Fl-score and the MLP model showed lesser performance than Bi-LSTM, i.e.,
0.53 F1-score.

This research paper [Wehrmann et al.| (2017)) is using Twitter data for sentiment ana-
lysis. Authors are using a monolingual and multi-lingual dataset for their research. They
have used "Word-Level Embedding’ and ’Character-Level Embedding’. These embedding
techniques are used to extract features from tweets. They have used the SVM and LSTM
models for sentiment analysis. Authors, mentioned that machine translation is one of the
approaches for sentiment analysis, where tweets of different languages can be translated
to the English language, and then can be used for sentiment analysis, however, authors
said traditional based SVM approach outperforms machine translation technique and
hence they are able to get good results without using machine translation approach for
their SVM model.

3 Methodology

The research topic is in the domain of data science. Domain knowledge is the key to per-
forming this research. Knowledge Discovery in Databases (KDD) is one of the dominant
approaches in the field of data science. This project is based on Knowledge Discov-
ery in Databases (KDD) approach rather than Cross-Industry Standard Data Mining
method (CRISP-DM) because CRISP-DM is for an industry-based approach which is
required for deployment of the project for business applications. This research project’s
main objective is to focus on Knowledge gain while working on different data selection,
pre-processing, feature extraction, and model selection with accurate result evaluation.
There are no fixed algorithms or implementation to Identifying Emotions for Code Mized
Hindi—FEnglish Tweets’, all the processes are selected based on the requirement, and the
knowledge will be used to incorporate into another complex system for further action.

3.1 Data Collection

This research project required Code Mixed Hindi-English tweets, which have to be labeled
with 7 emotions, such as 'Happy’, ‘Sad’, 'Angry’, ’Fear’, ’Disqust’, ‘Surprise’, or 'No
emotions’. However, there are many datasets available online for sentiment analysis but
those are monolingual English texts, and they have limited labels of sentiments such
as positive, negative, or neutral. The unique combination of emotions requires a good
amount of data to train the supervised machine and deep learning models. Data has been
collected from Twitter’s database using the official API "Tweepy’ released by Twitter.
In order to extract data from the Twitter database, first, it is necessary to sign-up on
‘hitps://developer.twitter.com’ account. After account creation, there is an option to
create an app, which will allow us to interact with Twitter’s database. This app will
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provide 'Consumer Key’, ’Consumer Secret’, Access Token’, and ’Access Token Secret’.
In order to use "Tweepy’ API to extract data, we need to have 'Keys and Tokens’. Along
with this few unique parameters, like language, and #tags were used to search for good
quality data, which will be explained briefly in the implementation section.

3.2 Data Pre-processing

Data collection from any website or database required a good cleaning and pre-processing
to utilise and get the best result out of it, as normally there are many noises present in
Twitter’s tweets such as #tags, @, RT, links, photos, videos, emojis, etc. All these noises
can lead to the undesirable output. Also, this project requires Code Mixed Hindi-English
tweets. While collecting data, there were many tweets which was blank or just 1-2 words,
or tweets just in the English language, or tweets in complete Hindi language. All those
unnecessary tweets were removed from the dataset. There were many Hindi or English
words, which was written with different spellings for example 'mujhe’ which means 'me’
in English, can be written as ‘mugh’, ‘mujhee’, 'mghe’, ‘muje’, ‘muy’, all these words
sounds same and have the same meaning. These words are filtered out and changed to 1
specific word using Python’s 'Regular Ezpression - re library’.

3.3 Feature Extraction

Data is in the form of words or sentences and machine learning models are not able to
understand words, these models require data in the numerical form. It is important to
convert words and sentences into numerical vectors, this process is known as vectorization
or word embedding in Natural Language Processing (NLP). Tweets are required to be
divided into smaller parts or words, this process is known as Tokenization. Tokens help
in developing the model by understanding the context of the sentence by analysing the



word sequence. During vectorization, the size of the vector will be equal to the number
of unique words in the corpus. The vectors will be assigned to each word based on
the word frequency in every sentence. These numerical vectors are understandable by
machine learning and deep learning models. Also, feature extraction will help and improve
the training time by reducing the amount of redundant data. This project uses various
vectorizers for machine learning models such as TF-IDF and CountVectorizer. Supervised
deep learning model will use word embeddings such as Word2Vec and Doc2Vec.

3.4 Data Transformation

Deep learning models accept input of the same shape and size, which requires padding.
All the tweets present in the dataset are of different lengths, some are short sentences
and some are long sentences, in order to use these data as an input, padding is required.
This project is using CNN and LSTM models, which will accept input of the same shape
and size. Since all sentences are not of the same size, a maximum number of words
or sentence length can be defined and during the padding process, at the end of each
sentence, 0 will be added for each number of words to make the each input tweet of
the same size. Example: max number of words assigned for a sentence = 100, and if a
sentence is having only 25 words, then the rest of 75 words will be padded with 0, i.e., 75
zeroes will be added at the end of the sentence, this will make all short sentence size equal
to 100 words, which will eventually make input shape and size equal. The data need to
be divided into train and test sets, this was achieved using scikit-learn’s train_test_split().
The data is divided into an 80:20 ratio, i.e., 80% for a train set and 20% for the test set.
This is a necessary step to evaluate the performance of the machine and deep learning
models on new data, i.e, not used in the training process by the model.

3.5 Models Selection

After all the above steps, it is required to use the good machine and deep learning models
for training. This research has used both supervised machine and deep learning models.
This is a classification problem, which will have 7 classes. [Tho et al.| (2020) has reviewed
230 research journals, authors mentioned that few of the machine and deep learning
models work best and give a better result when compared with other models. Below are
the models used in this research project:

1. Support Vector Machine: Support Vector Machine is one of the best text clas-
sification algorithm, which determines the best decision boundary which perfectly
divides the vectors that belong to a given category and rest vectors which does not
belong to that category. SVM accepts text in the form of numerical vectors, which
makes the feature extraction process compulsory. SVM algorithm decides where to
draw perfect ’hyperplane’ between a group of 2 vectors categories, which will divide
the space using ’hyperplane’ into 2 sub-spaces, i.e., one for the group of vectors
that belong to that category and one for the group of vectors that do not belong
to that category. Moreover, the SVM algorithm works very well with a small or
medium amount of training data. SVM tries to eliminate the over-fitting problem
by penalizing some data points, which allows entering the group of vectors inten-
tionally, this can be achieved using ‘gamma’ parameter. SVM also accepts wide
range of ’kernels’ as a parameter such as rof’, ‘linear’, ‘poly’, 'sigmoid’. These 2
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parameters along with the math behind it, makes this algorithm powerful which
perform well for text classification problem.

. Multinomial Naive Bayes: The Naive Bayes algorithm is very simple, yet power-
ful and fast in the prediction of a classification problem. Naive Bayes works using
Bayes’ Theorem, which uses the probability of the events. This algorithm assumes
all variables independently, which means the presence of one variable will not affect
the presence of another one. Naive Bayes is simple and can work well with low to
a large amounts of training data, also it is very fast and can be used for real-time
predictions, which makes it cheap and can perform well even on low configuration
systems. Naive Bayes is highly scalable with a number of data points and predict-
ors. Naive Bayes is not sensitive and can work well with irrelevant features and
mislabeled data.

. Logistic Regression: Logistic Regression is a simple classification algorithm,
which can be used to find the probability of an event, i.e., whether the event is
a success or failure. Logistic Regression can be used for both binary and multi-
nomial problems. This algorithm has no assumptions about class distribution in
feature space. Logistic Regression can also be used to classify unknown records, also
it explains model coefficients for feature importance. Logistic Regression prevents
over-fitting for low dimensional datasets, however high dimensional datasets can
overfit, over-fitting can be avoided by using ‘L1 and L2 Regularisation’ techniques

. Random Forest: Random Forest is based on a bagging algorithm, which uses
an ensemble learning technique. Random Forest creates many trees based on the
subsets of the dataset, which combines the output of all the trees. This can prevent
over-fitting problems automatically and also improves the accuracy by reducing the
variance. Random can handle missing values and feature scaling such as ’‘stand-
ardization and normalization’ are not required. Random Forest performs well with
outliers and can handle them automatically, also this algorithm is less affected by
noise. Random Forest is a very stable algorithm, which can handle a new data
point easily, as it can only impact a single tree, and the rest of the other trees are
unaffected.

. Convolutional Neural Network (CINN): CNN is a feed-forward neural network.
CNN shows a great performance for various NLP tasks, such as sentiment analysis.
CNN can detect patterns of multiple sizes example - 2,3,5 words by varying the size
of the kernel and adding their outputs. Patterns can be expressions such as I like’,
'[ hate’ and regardless of their position, CNN will identify them in the sentence.
This approach makes CNN very suitable for NLP tasks, such as sentiment analysis.
CNN is very fast and because it uses GPU computational power.

. Long short-term memory (LSTM): One of the limitations of the neural net-
work is that there is no memory associated with it, which can be problematic for
sequential data, such as text. RNN overcomes this limitation, which has a feedback
look that works as a memory. This results in a footprint that is left by past inputs.
LSTM overcomes this as well by having both long-term and short-term compon-
ents. This makes LSTM very good for data that has sequence such as text because
the meaning of a word depends on the previous words or can have some relation
with previous words.
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3.6 Model Evaluation:

Model evaluation is very necessary, as the performance of a model needs to be evaluated
to improve the model for the next run with some changes if required. Since this research
project is using a multi-class classification problem, the results are evaluated using a
multi-class Confusion Matrix. The confusion matrix with the classification report will
explain everything such as accuracy, F1-score, precision, and recall. Even just by looking
at the confusion matrix, it can be easily understood that model is performing well if all
the values in ’‘diagonal’ are very high compared to other rows and columns, this will
explain that model is good at detecting classes that it belongs to. There is a problem in
just showing overall accuracy, because, for multi-class classification, there may be chances
that the model is good at predicting a few classes because of good training data, however,
few classes are not showing good accuracy because of less training data or noise, which
may result in decreasing overall accuracy of the model. This can be eliminated by looking
at particular class accuracy in the classification report.

4 Design Specification

Figure [2| shows the design specification of this research project. Following the data
collection, the dataset is cleaned and pre-processed for further use. Later, the dataset is
partitioned into 80% train set and 20% test set. After splitting the data, it is necessary to
extract features using vectorizer or word embedding, which will create a numerical vector
that is understandable by machine and deep learning models. Data has been visualized
using Python’s "Matplotlib and Seaborn’. Extracted data will be used to train machine
learning models such as SVM, Naive Bayes, Logistic Regression, and Random Forest.
However, for deep learning models, the extracted features need to be tokenized and
padded to make the shape and size of the input equal. These tokenized and pad_sequenced
data will be used to train deep learning models, such as CNN and LSTM. In the end,
all the results will be evaluated and compared to find the best machine or deep learning
models for identifying emotions from Code Mixed Hindi-English tweets.

5 Implementation

5.1 Data Collection using Twitter’s API

Twitter’s official API "Tweepy’ has been used to scrap data from twitter’s database.
During data extraction, few of the parameters are used to collect Code Mixed Hindi—
English tweets, such as lang="hi’, tweet_mode="extended’. Language parameter was used
to collect data that is in Hindi language, this include both Code Mixed texts and tweets
that are completely in Hindi language. Tweet_mode is set to extended to provide full
tweets. Various #tags are used to collect specific data, this research project has tried to
collect data from famous topics, such as ’cricket’, “ipl’, "bollywood’, ’politics’, 'congress’,
byp’, ‘happy’, sad’, ‘angry’, fear’, ’disqust’, ‘surprise’, ‘darr lag rha’, ‘mughe bachao’,
‘haha’, "hearbreak’, 'love’, ‘fail’, ’amazing’, 'unbelievable’, demonetization’, "COVID-19’,
‘dhokha’, ‘gqussa’, 'mughe gqussa aa rha’, ‘cheat’, ‘shahid’, ‘lost’, dil tootna’, ‘chup reh’,
shut up’, ’aukaat me reh’, ‘aukaat’, ’‘celebrate’, ‘laugh’, ‘win’, 'vacation’, ‘good result’,
‘mughe mat maaro’, ‘birthday surprise’, ‘anniversary surprise’, ‘dimag kharab mat kr’,

‘bhoot’, ‘ghost’. More than 100K data was collected using Twitter’s API. Along with
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Figure 2: Design Specification

that, this research paper is also using a dataset of 2866 Code Mixed Hindi—English tweets
annotated by authors of |Vijay et al. (2018) which was available on their public GitHub
repository. This dataset was used in Language Technologies Research Centre (LTRC) -
IIIT Hyderabad. This dataset is of 2866 annotated tweets and has 6 classes of emotions
such as 'Happy’, ‘Sad’, "Angry’, 'Fear’, 'Disqust’, or 'Surprise’.

5.2 Data Cleaning:

The dataset has much noise and unwanted tweets, such as tweets that are completely in
Hindi or English, few tweets are too small, such as 1 or 2 words tweets. Dataset had tweets
which had links’,’RT’,’@’, 'photos’, '#’, ’emojis’, flags’, ’symbols’, tweets in Hindi script’,
‘extra white spaces before after and in between sentences’. All tweets were converted into
lower case. All those unwanted noises need to be removed. Using Python’s ’Pandas’ and
‘regular expression - re’ libraries, all those unwanted noises were removed. There were
many Hindi or English words, which was written many times using different spellings,
such as ‘tmhara’ which means "your’ in English, can be written as tmharaa’, ‘tumhara’,
tumara’, tmhare’ all these words sounds the same and have the same meaning. These
words are filtered out and changed to 1 specific word using Python’s ’Regular Expression
- re library’. This simple trick improved the accuracy of almost all the machine and
deep learning models by around 15%. This was possible because all these 1 words had
many instances, which cause the vectorizer to use those instances as a unique word, and
hence when the dataset was vectorized, these single instances got assigned as a new word,
which increased the overall unique words in the dataset. There were many tweets that had
missing space such as ’bhthua’ can be corrected as 'bht hua’. These words were manually
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cleaned by putting missing white space between 2 such words.

5.3 Annotation:

After cleaning the data, the dataset was left with 6299 Code Mixed Hindi—-English tweets.
Annotation is the most important part of any sentiment or emotion analysis problem.
This Mozetic et al.| (2016) shows the importance of annotation for sentiment analysis
problem. Authors also mentioned inter agreement, which will demonstrate the similarity
of annotated data between 2 or more annotators. The dataset was annotated manually
by the author(me), who is a native Hindi speaker. This research project uses 7 emotions,
which are "Happy’, ‘Sad’, "Angry’, 'Fear’, 'Disqust’, ‘Surprise’, or 'No emotions’. It is
important to check 'Cohen’s Kappa and inter-rater agreement’, for this purpose 2 more
native Hindi speakers annotated data, and Kappa values were 0.79 and 0.90.

5.4 Data Pre-processing:

After creating dataset of 9165 (6299 + 2866) Code Mixed Hindi-English tweets with 7
classes, few more noises were cleaned such as punctuation’s, numbers, and stop words.
There is one open source Rana, (faccessed on 1st Oct 2021) repository, where author has
created list of more than 1036 stop words, which includes both Hindi and English stop
words.

5.5 Data Exploration:

Data exploration is needed to explore and find the crucial information’s from the data.
Figure [3| shows the count of each label in the dataset and the name of the emotion/class
associated with the label. Figure[4|shows the length of the tweets and the most frequency
of words used in the dataset.

Emotions Labels
Dataset shape: (9165, 2) 0 Na emaotion
@ 1582
1 Ha
3 17632 PRy
2 1529 2 Sad
1 1226 3 Angry
> 1147 4 Fear
b le4% R
4 559 3 Disgust
Mame: labels, dtype: intg4 6 Surprise
(A} Labels Count (B) Emotions & Labels

Figure 3: Data Counts and Labels name

5.6 Model Implementation:

After data cleaning, pre-processing, and feature extraction using vectorizers or word
embedding, the next step is to train supervised machine and deep learning models to
compare the performance of the model for Code Mixed Hindi—English tweets. All machine
learning models have been hyper-parameter tuned using GridSearchCV, where value of
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cross-validation was set to cv = 5. ’Jupyter notebook’ and ’Google Colab’ has been
used to perform all the implementations. Python has been used with many libraries to
perform all the tasks.

1. Support Vector Machine: First machine learning model is Support Vector Clas-
sifier. For this model, the feature has been extracted using 2 vectorizers, i.e.,
"TF-IDF Vectorizer - unigrams and bigrams’ and 'Count Vectorizer - unigrams’,
also Word Embedding Doc2Vec’s DBOW (Distributed bag of words), DM (Dis-
tributed Memory), and combination of both (DBOW + DM) have been used to
extract the features. The model is hyper-tuned with parameters such as kernel
= [’rbf’, linear’, 'poly’, 'sigmoid’], gamma = [1, 0.1, 0.01, 0.001], and C = [0.1, 1,
10, 100, 1000]. SVM is able to achieve maximum of 73.75% accuracy for "TF-IDF
Vectorizer’ when 'C”: 100, 'gamma’: 0.01, ’kernel’: ‘rbf’.

2. Multinomial Naive Bayes: For this model, the feature has been extracted using 2
vectorizers, i.e., "TF-IDF Vectorizer - unigrams and bigrams’ and ’Count Vectorizer
- unigrams’. The model is hyper-tuned with parameters such as clf alpha = [0,
0.1, 0.2, 0.5, 0.7, 0.9, 1, 1.1, 1.5, 1.5] and fit_prior = [True, False]. The model
is achieved accuracy of 69.06% for 'Count Vectorizer’ when ’alpha’: 1.5, ’fit_prior’:
True.

3. Logistic Regression: Logistic Regression has been trained with data which is
extracted using 2 vectorizers, i.e., "TF-IDF Vectorizer - unigrams and bigrams’ and
"Count Vectorizer - unigrams’, also Word Embedding Doc2Vec’s DBOW (Distrib-
uted bag of words), DM (Distributed Memory), and combination of both (DBOW -+
DM). This model is hyper-tuned using parameters such as C' = [0.001,0.01,0.1,0.5,1.0),
multi_class = "multinomial’. This model is able to achieve maximum of 73.70% ac-
curacy for ’Count Vectorizer’ when 'C’: 0.5.

4. Random Forest: Random Forest Classifier is the last machine learning model
used, this model is trained using data which is extracted using 2 vectorizers, i.e.,
"TF-IDF Vectorizer - unigrams and bigrams’ and "Count Vectorizer - unigrams’, also
Word Embedding Doc2Vec’s DBOW (Distributed bag of words), DM (Distributed
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Memory), and combination of both (DBOW + DM). This model is hyper-tuned
using parameter such as n_estimators = [1, 5, 10, 20, 50, 100]. The model is able to

achieve maximum accuracy of 72.66% for "TF-IDF Vectorizer’ when 'n_estimators’:
100.

5. Convolutional Neural Network (CNN): CNN is the first deep learning models
used in this research. First the data is tokenized using NLTK’s 'word_tokenize’ and
then the data-frame is used by Word2Vec word embedding to extract the features.
The parameters used are batch size = 64, epochs = 5, embedding_dim = 300, fil-
ter_sizes = [2,3,4,5,6], dropout of 0.1 € 0.5, activation function = ’relu’, Dense
layer activation = ’softmax’, loss = ’categorical_crossentropy’, optimizer="adam’,
and validation_split = 0.1. CNN model is able to achieve 68.24% accuracy on test
set. Figure 5[ shows the CNN model’s summary.

Model: "model”

Layer (type) Qutput Shape Param # Connected to

input_1 (Inputlayer) [(none, 5@)] 2] 1

embedding (Embedding) (MNons, 5@, 32@) 5556380 ["input_1[@][@]"]

convld (ConviD) (MNons, 4%, 258) 150258 ['embedding[@][@]"]

convld_1 (ConvlD) (MNons, 48, 258) 225258 ['embedding[@][@]"]

convld_2 (ConvlD) (Nons, 47, 258) 200258 ['embedding[@][@]"]

convld 3 (ConviD) (None, 46, 258) 375250 ["embedding[@][8]" ]

convld 4 (ConviD) (Mone, 45, 25@) 458250 ["embedding[@][8]" ]

global_max_poolingld (GlobalMa (None, 25@) 2] ['convid[@][@]"]

xPoolinglD)

global max_poolingld 1 (Global (None, 25@) ) ['convid_1[8][a]"]

MaxPoolinglD)

global_max_poolingld_2 (Global (Nonme, 25@) -] ["convid_2[@][@]"]

MaxPoolinglD)

global_max_poolingld_3 (Global (None, 25@) -] ['convld_3[@][@]"]

MaxPoolinglD)

global max_poolingld 4 (Global (None, 25@) ) ['convid 4[8][a]"]

MaxPoolinglD)

concatenate (Concatenate) (Mons, 125@) -] ['global_max_poolingld[a][@]",
'global_max_poolingld_1[@][@]",
*global _max poolingld 2[@][@]’,
'global_max_poolingld_3[e][@]",
*global max poolingld 4[a][@]"]

dropout (Dropout) (None, 1258) ] ['concatenate[@][@]"]

dense (Dense) (Mons, 128) 160128 ['dropout[@][@]']

dropout_1 (Dropout) (Mons, 128) -] ['dense[@][2] "]

dense_1 (Dense) (Mone, 7) 903 ['dropout_1[@][@]"]

Total params: 7,218,581
Trainable params: 1,662,281
Non-trainable params: 5,556,380

Figure 5: CNN model’s summary

6. Long short-term memory (LSTM): LSTM is the last deep learning model
used in this research project. The data was tokenized and pad sequenced to make
shape and size of input equal. The parameters used for this model are epochs
= 2, batch_size = 64, embedding_dim = 100, SpatialDropoutlD = 0.4, Memory
unit = 250, LSTM layer dropout = 0.2 and recurrent_dropout = 0.2, Dense layer
actiwation = ’‘softmax’, loss=’categorical_crossentropy’, and optimizer = ’adam’,
and validation_split = 0.1. LSTM model is able to achieve 72.40% accuracy on test
set. Figure [6] shows the LSTM model’s summary.
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Model: "sequential”

Layer (type) Output Shape Param #
embedding (Embedding) (None, 25@, 168) taeeasa
spatial_dropoutld (SpatialD (None, 258, 188) 2
ropoutilD)

Istm (LSTM) (None, 258) 351000
dense (Dense) (None, 7) 1757

Total params: 5,352,757
Trainable params: 5,352,757
Mon-trainable params: @

Figure 6: LSTM model’s summary

6 Evaluation

After training and finding accuracy for all the machine and deep learning models, it is
observed from Figure [7] that the SVM model performed best for Code Mixed Hindi-
English tweets, which gave an accuracy of 73.75% while using TF-IDF as vectorizer for
feature extraction. Figure |8 shows the classification report and confusion matrix of the
SVM model, which outperformed all the models.

Models Feature Extraction Best Hyper-parameter| Accuracy

{'C': 100, 'gamma’: 0.01,
TF-IDF 73.75%
'kernel”; 'rbf'}

{'C": 10, 'gamma': 0.01,
'kernel": 'sigmoid'}
{'C': 100, 'gamma": 1,
SVM Doc2Vec - DBOW , = 40.75%
kernel': 'linear'}
'C": 100, 'gamma': 1
Doc2Vec- DM t = " 32.73%
'kernel": 'rbf'}
{'C': 1000, 'gamma': 0.1,
Doc2Vec- (DBOW +DM) , A 45.82%
kernel": 'rbf'}

{'alpha': 1.5, 'fit_prior":

Count Vectorizer 72.66%

TF-IDF 68.30%
. . . False}
Multinomial Naive Bayes 5 3
) {'alpha': 1.5, "fit_prior"
Count Vectorizer 69.06%
True}
TF-IDF {'ch 1.0} 72.88%
Count Vectorizer 1'C': 0.5} 73.70%
Logistic Regression Doc2Vec- DBOW {'C': 1.0} 40.42%
Doc2Vec- DM {'ch 1.0} 20.84%
Doc2Vec - (DBOW + DM} {'ch 1.0} 43.48%
TF-IDF {'n_estimators": 100} 72.66%
Count Vectorizer {'n_estimators": 100} 71.90%
Random Forest Doc2Vec- DBOW {'n_estimators: 100} | 40.04%
Doc2Vec- DM {'n_estimators": 100} | 30.49%
Doc2VWec- (DBOW +DM) | {'n_estimators': 100} | 45.66%

{'num_epochs": 5
'batch_size ": 64}
{'num_epochs": 2
'batch_size ": 64}

CMN Word2Vec 68.24%

LSTM Tokenizer 72.40%

Figure 7: Results of all the models.
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Figure 8: Results of the SVM model.

7 Conclusion and Future Work

The main purpose of this research project is to find the best-supervised machine and deep
learning models, which can identify emotions from Code Mixed Hindi-English tweets.
This research is using 6 machine and deep learning algorithms such as 'SVM’, "Multi-
nomial Naive Bayes’, 'Logistic Regression’, 'Random Forest’, 'CNN’, and 'LSTM’. The
dataset was extracted using Twitter’s official API - "Tweepy’. After data cleaning, the
data was manually annotated into 7 classes of emotions, i.e., "Happy’, 'Sad’, Angry’,
"Fear’, 'Disqust’, 'Surprise’, or 'No emotions’. Next, the dataset was pre-processed by
removing all noises. This research project has used 5 feature extraction techniques for
creating numerical vectors from the data. It can be observed from Figure[7] that "TF-IDF
- unigrams and bigrams’ is the best Vectorizer for Code Mixed Hindi-FEnglish tweets, how-
ever 'Count Vectorizer’s - unigrams’ performance is also very impressive and is very close
to "TF-IDF Vectorizer - unigrams and bigrams’. It can be observed that 'Doc2Vec” word
embedding is not a recommended word embedding technique for Code Mixed Hindi-
English tweets, as the performance of models when trained with data extracted using
'Doc2Vec’ is very low, i.e., between 20% to 45%. The supervised deep learning models
such as CNN and LSTM were able to achieve an accuracy of 68.24% to 72.40% respect-
ively. The supervised machine learning models such as SVM, Logistic Regression, and
Random Forest performed very well with both "TF-IDF Vectorizer’ and ’Count Vector-
izer’. However, the SVM model along with "TF-IDF Vectorizer - unigrams and bigrams’
outperformed all the models and was able to achieve 73.75% accuracy and hence it can
be concluded that the SVM model with "TF-IDF Vectorizer - unigrams and bigrams’ is
the best and recommended supervised machine learning model for identifying emotions
from bilingual Code Mixed Hindi-English tweets.

Future work on this Code Mixed Hindi-English tweets is very necessary to achieve
higher accuracy. Some pre-trained models such as BERT, ALBERT, ROBERT, etc can
be used with deep learning models such as CNN, LSTM, and Bi-LSTM. Also, feature
extraction technique can be done by creating a word embedding manually, rather than
using pre-trained word embeddings like Word2Vec, Doc2Vec, fastText, etc, because these
word embeddings are pre-trained using English, German, French, Spanish, etc languages
data, which is the result of low performance when used with bilingual Code Mixed Hindi—
English tweets. [

"https://github.com/SanketSonu/NLP-Identifying-Emotions-for-Code-Mixed-Hindi-English-Tweets
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