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AppleCaps: A Capsule Model for Classification of
Foliar Diseases in Apple Leaves

Rakhi Ashok Sonkusare
x20122314

Abstract

Foliar diseases in apple leaves are characterized by distinct spots on the leaves
that appear in different shapes and colours. Frog Eye Leaf spot, Scab, Rust and
Powdery Mildew are the most common Foliar diseases affecting the productivity of
apple orchards. This research proposes a novel deep learning network AppleCaps
for accurate classification of multi-class disease classes and overcoming the limita-
tion of spatial invariance in CNNs. Two baseline CNN models EfficientNet-B3 and
ResNet152 are implemented, and their performances are compared and evaluated
with the AppleCaps model when exposed to the augmented dataset. Experimental
results showed that Capsule Networks provided better performance with an ac-
curacy of 87.06% in classifying the disease type in apple leaves. Hyperparameter
tuning with Random Search optimization is used to optimize the model perform-
ance, and the results are compared based on accuracy, precision, recall, F1l-score
and validation loss. Data augmentation techniques helped improve the performance
of AppleCaps and CNN models. This research will help farmers identify apple leaf
diseases at an early stage of diagnosis and prevent losses to agricultural fields.

Keywords— Foliar Leaf Disease Detection, Deep Learning, Capsule Network, EfficientNet-
B3, ResNet152, Data Augmentation, HyperParameter Tuning, Image Processing

1 Introduction

Apples are amongst the most consumed temperate fruit crop grown at a large scale in
many parts of the world. They are a rich source of essential Vitamins and nutrients that
make them a healthy food option. Apple leaves have polyphenol antioxidants that can
fight against chronic diseases. (El-Hawary et al.; 2021) investigated a domesticated apple
tree known as Malus Domestica Borkh that is an apple tree with medicinal properties.
Empirical results showed that the metabolite phlorizin extracts obtained from this apple
tree proved to be neuroprotective agents that can be used for the treatment of Alzheimer
disease and other recognition impairment disabilities. Due to its high antioxidant poten-
tial, a large number of apple fruits, as well as healthy leaves, are harvested during the
summer season to enhance the fruit production quality. Through the harvesting activit-
ies, various by-products of these apple leaves are being produced and used in medicinal
and cosmetic applications (Ben-Othman et al.; 2021)).



1.1 Background and Motivation

The increasing number of apple leaf diseases are making the apples rot. The consumption
of these rotten apples can affect human health and lead to a loss of productivity in the
apple fields. This, in turn, impacts the economic value of the country and causes damage
to agricultural sectors. Disease detection in plants is still an ongoing challenging task for
farmers. The farmers can’t identify these diseases by looking through the human eye and
hence, assistance from the industry experts is needed. Manual detection of apple diseases
is a time-consuming task for the experts. By the time, the disease could be classified,
the apple tree is already affected by the disease. There is a need for an automated model
that can identify these diseases at an early stage of infection through diagnosis.

The concern of the farmers related to the extensive damage of apple orchards and
loss of productivity in apple fruits has inspired many researchers to develop and learn
different machine learning and deep learning techniques to solve the problem of disease
detection. This research is motivated towards diagnosing and classifying different Foliar
diseases in apple leaves using a novel deep learning model. Taking into account the
major challenges of capturing leaf images at different stages of the disease and different
times of the week using digital camera, we focus on comparing the efficiency of the two
baseline CNN models with the novel Capsule Network architecture. The visual apple leaf
images in Figure [l] are taken from the 8th Plant Pathology FGCV (Fine Grained Visual
Categorization) Kaggle Competition. [l

(b) Complex (multiple diseases) (c) Apple Scab
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(d) Apple Rust (e) Frog Eye Leaf Spot (f) Powdery Mildew

Figure 1: Apple Leaf Images infected by Foliar Diseases

1.2 Research Question and Objectives

To summarize the purpose of this research, I intend to answer the following research
questions:

1. How effectively can a Capsule Network model as a feature extractor and classifier
improve the identification of Foliar leaf diseases in Apple trees?

2. To what extent does the Capsule model overcome the limitations of two baseline
CNN models (EfficientNet-B3, ResNet152)?

Thttps://www.kaggle.com/c/plant-pathology-2021-fgvc8/data


https://www.kaggle.com/c/plant-pathology-2021-fgvc8/data

3. How does the fine-tuning of Hyperparameters impact the performance evaluation
of the baseline CNN models?

With the intend to solve the mentioned research questions, the research objectives are
set as below:

Table 1: Research Objectives

Obj. | Description Evaluation Met-
rics

1 Literature Review and Understanding of Implemented
Deep learning methodologies for plant leaf disease de-
tection (2019-2021)

2 Data Collection, Pre-processing of Leaf Images, Resiz-
ing, Data Augmentation with Horizontal Flipping, Ro-
tation, Zooming, Train and Validation Split

3 Implementation of baseline Efficient-B3 and ResNet152 | Accuracy, Loss,
CNN models on the Apple leaf dataset Precision, Recall,
F1-Score

4 Implementation of baseline Efficient-B3 and ResNet152 | Accuracy, Loss,
CNN models with hyper parameter tuning using Ran- | Precision, Recall,

dom Search method F1-Score
5 Implementation of AppleCaps Capsule model using | Accuracy, Loss,
Gaussian Blur on Apple leaf dataset Precision, Recall,
F1-Score
6 Performance Evaluation and Comparison of results for

each model implementation

The research is organised into different sections as follows: Section [2 discusses the
literature review on the previous researches carried out on the classification of plant dis-
ease detection and advancement of Capsule Networks in other applications. In Section
BBl the methodology of the research is discussed including the steps taken to perform the
proposed methodologies. Section 4| includes the design specifications and the architecture
taken to attain the outcomes. Section 5] discusses the final steps for models implement-
ation. Section [6] indicates the key findings of the research and comparison of models
based on evaluation metrics to answer the research questions. Section [7] summarizes the
research and defines the scope for future work.

2 Related Work

The literature review for this research can be broadly classified into three subsections. We
will discuss how the image classification tasks have evolved from using machine learning
techniques to switching onto deep learning methods for better image classification by
addressing the pros and cons of the applicable techniques in the first two sections. In the
third section, we will discuss the use of the proposed methodology Capsule Networks in
image recognition tasks across multiple fields of research.



2.1 Overview of Machine Learning Techniques in Image Classi-
fication

The agricultural field has suffered a great loss in the past few years due to the increasing
number of plant diseases in different agricultural crop species. Over 42% of the loss has
been incurred due to these diseases. With the advent of new technologies, it was possible
to diagnose the occurrence of these diseases at initial stage. The use of machine learning
algorithms helped detect multiple disease categories in various plants. The experiment
by (Tulshan and Raul; 2019)) involved disease detection in apple leaves using K Nearest
Neighbours (KNN) classification model. The dataset consisted of 75 images with seven
different disease classes: Down Mildew, Early Blight, Mosaic Virus, Leaf Miner, White
Fly. The leaf images were captured in their RGB format through a digital camera and
then converted to grayscale using MATLAB picture creating a library. Image Segmenta-
tion methods were employed on the input images to select the region of interest from the
leaves. Also, feature extraction techniques like Gray Level Co-occurrence Matrix (GLCM)
were used to extract 13 discriminative properties to enhance the classification of a par-
ticular disease type. Experimental results indicated that the KNN classifier showed the
exact disease name along with the amount of area affected due to the disease with an
accuracy of 98.56%. Other important observations indicated the sensitivity of the model
and the elapsed time of the disease.

India’s economy is majorly dependent on agricultural production as it contributes to
17% of the country’s GDP and provides employment to around 60% of the population.
The increasing disease types in fruit plants are causing huge losses to the farmers. Manual
detection of diseases is a tedious task for the experts and time consuming, hence automatic
detection of disease in the real world is the need of the hour. A multi-class Support Vector
Machine (SVM) was implemented in research (Agarwal et al.; 2019) to identify the extent
of the disease and control the loss of yield. Gray Level Co-occurrence Matrix (GLCM)
algorithm is a feature extraction technique that extracts 13 distinct features from the
segmented leaf images obtained by K-means clustering. Following the pre-processing
stages, the disease classification task was performed by the SVM model that achieved an
accuracy of 98.387% in the identification of disease types in fruit trees.

A study by (Singh et al} [2021) implemented a novel image segmentation technique
to extract the diseased part of the apple leaves. For the images captured under complex
backgrounds, segmentation plays an important role to separate the region of interest from
the background noise. The leaf images were enhanced using the Brightness-Preserving
Dynamic Fuzzy Histogram Equalization technique, and the diseased leaf part was ex-
tracted for the further classification task. Two different disease classes like Marsonina
Coronaria or apple scab were detected from the extracted features, including colour and
texture, classified by the KNN classifier. The novel segmentation method improved the
performance of the KNN classifier with an accuracy of 96.4% when compared to other
segmentation techniques. Future work suggests applying this improved model on a large
dataset with more disease classes and leaf images captured at different times of the day.

2.2 Overview of Deep Learning Techniques in Image Classific-
ation

Machine learning techniques have been used widely in the detection of plant diseases,
although after the advancement of a subset in the ML methods, Deep learning meth-



ods evolved with great potential and showed promising results in better accuracy. The
research by (Saleem et al.; 2019a)) created an improved version of the state-of-the-art
methods using visualization techniques. For a better understanding of plant diseases,
visualization activation filters were applied in the initial layers of AlexNet and Google-
Net models which enhanced the diseased spot on the tomato leaf images. With the help
of the saliency map created by the visualizations, GoogleNet was able to identify the
disease type and outperformed AlexNet. The segmentation and edge visual maps in the
LeNet model provided good results in detecting diseases in olive plants. Other CNN
models like ResNet-50, ResNet-101, VGG were implemented using Faster-RCNN and
SSD (Single Shot Multibox Detector) detectors that created a bounding box to detect
spots on banana leaves. Heat maps were introduced as an input to the diseased images
and feature maps were evaluated to detect rice diseases. A method based on the hotspot
technique was used to extract the spots from the diseased leaves, which described two
features i.e.color information and texture of the spot. Gaussian noise and Jittering tech-
niques were also performed on the entire dataset. A comparative study was carried out
using different visualization, data augmentation and feature extraction methods on the
PlantVillage dataset containing different plant species and the individual performances
were evaluated based on accuracy and ROC curve. The study focuses on using hyper-
spectral imaging as an emerging technology in the detection of plant diseases before the
symptoms are visible.

The research by (Jiang et al.; 2019) implemented an improved CNN model that in-
volved a combination of GoogleNet Inception framework and Rainbow Concatenation to
detect five different apple leaf diseases like Brown spot, Mosaic, Grey spot, Rust, Altern-
aria in a real-time environment. The initial dataset consisted of a total of 2,029 diseased
images that had the following characteristics: multiple diseases infused into a single leaf
and complex backgrounds of the captured images. The leaf images were converted to
a total of 26,377 leaf images using data augmentation techniques to balance the disease
classes and avoid overfitting. The model was developed for the faster detection of apple
diseases. Each of the diseased classes has a discriminative feature that enables the model
to distinguish multiple disease types on the apple leaves. The experiment resulted in a
78.80% mean average precision with a detection speed of 23.13 FPS. The proposed novel
methodology was capable of extracting the distinct features from the diseased leaf images
in real-time to enhance multi-class disease detection tasks.

The research by (Kumar et al.; 2020) implemented a Residual Network with 34-layers
(ResNet-34) on the New Plant Disease dataset containing 15200 images with multiple
crop types and 38 disease classes. ResNet architecture contains a residual block that
skips the degradation problem occurring while increasing the number of layers in the
network. Also, it is a pre-trained model on the ImageNet dataset that tends to provide
higher accuracy on a small training dataset. The performance of the ResNet model was
evaluated on two parameters: Average Weighted Precision (AVP) of 96.51% and accuracy
of 99.40% was achieved. Future work aims at capturing images in panorama view and
aerial images. The dataset can be extended to more disease classes by adding more
images.

Traditional CNN models consist of extensive pooling layers to increase the accuracy of
the model and reduce the number of parameters, although it leads to the loss of spatial fea-
tures. A novel Deep Neural Network (DNN) architecture with EfficientNet and DenseNet
was implemented in a study by (Srinidhi et al.; [2021) to detect apple leaf diseases. Both



the DNN models can preserve spatial information and can overcome the shortcomings
of the CNN models. EfficientNet provides better computational performance even in a
smaller training dataset. The experiment was performed on a public dataset of the Fine-
Grained Visual Categorization (FGCV) workshop with 3600 real-time images. Image
Augmentation techniques like Blurring, Flipping, Canny Edge detection were employed
on the original dataset to increase the number of images split into training and validation
datasets. The model was evaluated on its performance accuracy with over 40 epochs and
resulted in an accuracy of 99.8% by EfficientNet-B7 and 99.75% by DenseNet. These
models with less number of parameters outperformed other CNN models like AlexNet,
GoogleNet, VGG, consisting high number of parameters and more pooling layers.

2.3 Capsule Network : A Novel Deep Learning Technique for
Image Classification

The world faced a novel life-threatening pandemic called the Coronavirus (COVID-19)
disease at the end of the second decade of the 21st century. Due to the increasing spread
of this virus, early diagnosis of COVID-19 was required to break the chain spread and
reduce the growing cases. CNNs were capable of facilitating the detection of positive
Covid-19 cases, but are prone to loss of spatial information and requires more training
data. The research by (Afshar et al.; [2020) used an alternative deep learning framework
Capsule Networks since it can handle smaller datasets consisting of X-ray images. The
novel COVID-CAPS model showcased advantages over traditional methods with 95.7%
accuracy, Area under Curve of 0.97, Sensitivity 90% with less trainable parameters. Pre-
trained modelling and transfer learning were employed to enhance the diagnosis abilities
of the COVID-CAPS architecture. Model pre-training enhanced the accuracy by 98.3%.
With the increasing number of cases all around the world, the research aims at building
a more robust model to facilitate larger training data and improve the diagnosis of the
Covid-19 virus.

Disease detection of plant leaves has been successful in the past years due to the
invention of Convolutional Neural networks. Although, there are a few drawbacks of
CNN models like the inability of the max-pooling layer which cannot capture the pose,
orientation and view of leaf images. Other drawbacks involve huge training data required
for classification and failure to evaluate the spatial relationship of features. The research
by (Oladejo and Ademola; 2020) implemented an optimized Capsule network for the
detection of banana leaf diseases. The leaf dataset consists of 1000 images collected
from a field with two classes of diseased leaves: Banana Bacterial Wilt and Banana
Black Sigatoka along with healthy leaves. The images were used in the RGB colour
format without grayscale and resized to the appropriate image size. Additional feature
extraction and data augmentation techniques are used to balance the data amongst the
two classes. The capsule network obtained an accuracy of 95.36% and was compared
to the CNN model, LeNet5 and ResNetb0 implemented from scratch to compare the
performance. Leaky ReLu activation function was used to fine-tune the hyperparameters
of the model. Future research aims at implementing a more robust model for disease
classification and increasing the number of disease classes in the dataset.

The paper (Kwabena et al.; [2020)) introduced Gabor filters in the Capsule network to
enhance the disease detection in tomato and citrus plants. These Gabor filters are used
for feature extraction, edge detection or texture analysis. The use of data augmentation



techniques like rotation, deformation and Gaussian blur was employed on the training
data to create an improved dataset and avoid the overfitting issue. Two baseline CNN
models GoogleNet and AlexNet were implemented to compare the performance with
the proposed framework. Hyperparameter tuning to change the batch size, learning
rate, the dropout rate was used but it did not affect the performance of the Capsule
model. Although, the number of routing iterations set to three gave significantly the best
performance with an accuracy of 98.12%. Experimental results showed that CapsNet
outperformed the baseline CNN models in terms of robustness, accuracy, complexity, etc.
The proposed model can detect unhealthy and diseased leaves from the healthy leaves in
challenging lighting conditions and images captured in diverse angles. Future work aims
at reducing the number of trainable parameters for implementation on mobile devices for
convenient use.

2.4 Summary of the key findings

After reviewing the literature and related work on the implementation of various machine
learning and deep learning models, we have observed that deep learning methods have
outperformed the traditional state-of-the-art machine learning models. Capsule Networks
have emerged as a promising deep learning technique that is capable of preserving spatial
information and overcoming the shortcomings of CNN models. They have shown excep-
tional results in the agricultural field by enhancing the early diagnosis of diseases in plant
leaves as well as in medical applications by tackling the ongoing COVID-19 pandemic.
Different data augmentation techniques help create an enhanced dataset that can improve
the classification accuracy. The use of optimizers and hyperparameter tuning also play a
significant role in the performance of Capsule networks.

3 Methodology

3.1 Understanding the application domain

Despite various researches conducted on plant disease detection using machine learning
and deep learning techniques, an automated model that can detect the occurrence of a
disease at an early stage of diagnosis with accurate prediction is still lacking. CNN models
have been implemented in the past few years to detect Foliar diseases in apple leaves in
real-time situations. With the advancement in technology and ongoing challenges related
to the background of leaf images captured, lighting conditions, pose and orientation
of the leaf images, CNNs fail to capture this information (Patrick et al.; 2019). The
increasing number of foliar diseases in apple trees are hampering the productivity of the
apple orchards. Hence, I will be developing a model that can deal with the challenges
addressed and help in the accurate prediction of diseases in apple leaves.

3.2 Dataset Collection

The dataset for this research is taken from two sources: 8th FGCV Plant Pathology
Kaggle Competition with labeled apple leaf images and manual capturing of unlabelled
apple tree leaf images. The dataset derived from online competition contains 18,632 apple
leaf images infected with different foliar disease categories: Apple Scab, Apple Rust, Frog
Eye Leaf Spot, Powdery Mildew, Complex class with leaf images having multiple diseases,
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as well as leaves with a combination of one or more diseases. The labeled dataset consists
of 12 different disease classes including healthy leaves. The unlabeled healthy and diseased
leaf images are captured manually from the apple trees in a nearby locality at different
times of the day and week with the help of mobile camera. A few sample leaf images
taken manually are shown in Figure [2]

Figure 2: Manually Captured Unlabeled Apple Leaf images

The labeled leaf image dataset is used for training the baseline CNN models and the
novel Capsule Network, whereas the images taken using a mobile camera are used to
make predictions as testing images. The labeled data is further divided into training and
validation data using a split-ratio of 80:20.

3.3 Image Pre-processing Methods

Certain issues related to complex image backgrounds, lighting conditions, class imbalance
or leaf images with one disease superimposed on another disease symptoms can cause
the model to make inaccurate predictions and complicate the model-building task. To
simplify the model-building steps, pre-processing the input raw and inconsistent data into
reliable and clean images is a good practice. In this research, I performed the following
image pre-processing steps:

e Resizing of images: The input images were resized into a dimension of 512 * 512
for the baseline CNN models and 224 * 224 for the Capsule network model.

e Noise Reduction: Gaussian Blur is performed on the input images for Capsule
network to remove noise from the images.

e Image Augmentation: The process of enhancing and creating new images into
the existing dataset using techniques such as Flipping, Rotation, Shifting, Blurring,
etc is referred to as Image Augmentation. It helps in improving the model’s per-
formance (Bansal et al.; 2021). Most of the images belong to Apple scab, Healthy
and Frog eye leaf spot symptoms, whereas there are fewer leaf images in Rust,
Powdery mildew, Complex and multiple disease symptoms (Arsenovic et al.; 2019).
In this research, the following augmentation techniques are performed:

1. Horizontal Flipping: The images are flipped or upturned by the number of
rows. This is especially relevant in real-time disease detection tasks.

2. Rotation_range: The images are rotated by an angle of 20 degrees.



3. Zoom_range: The images are zoomed out by a value of 0.2. When the value
of the zoom range exceeds by 1, the images get magnified.

Figure 3: Image Augmentation on Apple Leaf Images

4. Shear_range: This applies a shearing transformation on the images by an angle
of 20 degrees.

5. width_shift_range and height_shift range: The images are shifted vertically and
horizontally along X-axis and Y-axis by 20%.

3.4 Model Selection and Hyper Parameter Tuning

Convolutional Neural Networks have shown impressive results in various image classific-
ation tasks. They act as a backbone for most of the deep learning models and are used
commonly in plant disease detection. The max-pooling layer in CNNs helps to extract
features from the input image, although they cannot capture the orientation and pose
of the images referred to as spatial information (Oladejo and Ademola; |2020). CNNs
require huge annotated or labeled data to train the model which is a challenging task.
To overcome these limitations, Capsule networks have originated as a challenging model
for the image classification task. CapsuleNet can preserve spatial information of the im-
ages such as hue, pose, orientation and view. In this research, I have implemented and
performed a comparative study amongst the underlying models:

e [ implemented a novel architecture of Capsule Networks as a feature extractor
and classifier for the classification of foliar diseases in apple leaves referred to as
"AppleCaps’. Adam optimizer is used with a learning rate of 0.001 to improve the
accuracy of the model that results in a lesser training time with more efficiency
(Melinte and Vladareanu} 2020).

e To answer the research question on the advantages of Capsule Networks over CNNs,
I perform a comparative study by implementing two of the baseline CNN networks
EfficientNet-B3 and ResNet152 with the use of Adam optimizer.



Data Augmentation:
4| Rotation, Zooming,
”| Horizontal Flipping,

Image Pre-processing | — Splitting of data

Y | a7 Shifting, Shearing
N ;
Apple Leaves

Validation

Test set Train set set
v ! v
AppleCaps -
EfficientNet-B3 ResNet152 Capsule

Apple Scab
Apple Rust
Frog Eye Leaf Spot
Powdery Mildew
Complex diseases
Combination of one or more
diseases

Network

Validation Accuracy
improved?

| Evaluation Metrics ~€— Model Classification €— \nﬂi\&d:;wt\gndel

Figure 4: Framework of Proposed Methodology

The performance of the proposed CNN methodologies can be further enhanced by choos-
ing optimum parameters for the best results. The batch size is set to 32 in our models.
The parameters like number of epochs, learning rate, number of units in the Dense layer
can be fine-tuned using optimization. The fine-tuning of hyperparameters is performed
with random test runs to obtain respective model accuracies by training and validating
the models (Bansal and Kumar} 2021). In this research, I have used Random Search op-
timization that finds a random combination of tuning parameters based on the objective
defined in the model. Random Search takes lesser time to find the optimal combination
of parameters and is proved to be faster than other optimization methods such as Grid
Search and Bayesian Optimization (Firdaus et al.; 2021). In our experiments, I imple-
mented the baseline CNN models with and without hyperparameter tuning to evaluate
the performance of the models.

3.5 Model Evaluation Metrics

The implemented models are evaluated using various evaluation metrics like Accuracy,
Precision, Validation loss, Recall, Fl1-score. These metrics are compared for each of the
methodologies and the results are evident in the Evaluation section [6]

4 Design Specification

4.1 Capsule Network

A capsule consists of several neurons that differentiate information specific to a feature or
an object of interest to be classified based on its texture, width, height and orientation and
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stores it in a high-dimensional 8 or 16 dimension vector. Capsule Networks have a distinct
functionality of inverse graphics approach wherein it deconstructs an object into different
sub-parts and develops an interconnection between the sub-parts. The architectural
design of Capsule Network involves primary capsule layer, secondary capsules and loss
calculation.

4.1.1 Primary Capsule Layer

There are 3 processes involved in the Primary Caps Layer: Convolutional, Reshaping and
Squashing function as shown in Figure In the convolutional layer, grayscale images
are used, hence dimension of the image will be (28,28,1) where 1 represents the number
of channels. For RGB images, the value is 3. The input image is convoluted with the
filter kernel which is of dimension (9,9,1,256) where 256 refers to the convolutional filters.
After the convolution is done, the resultant block is of size (20,20,256) with 256 channels.

ORIGINAL IMAGE

APPLYING

o S |
| [

I

18 FEATURE MAPS

SQUASHING FUNCTION H RESHAPE FUNGTION I

\\"f « *p M
N g

/\T'\f i

Figure 5: Primary Capsule Layer

The number of parameters that will be trained equals 20,992 which is obtained from the
calculation 256 * (9 * 9 + 1). The resultant block is further convoluted with a filter
block of dimension (9,9,256,256) to obtain a resultant block of (6,6,256) size. So, now
the number of trainable parameters is equal to 256 * (256 * (9 * 9 + 1)) = 5,308,672.
The reshaping process will reshape the final block of the (6,6,256) dimension into 32
blocks with the dimension of (6,6,8). These 6 * 6 blocks contain all the vector outputs
that define the position, orientation, texture and height of the object in an 8-dimensional
vector. The total 8D vectors will be equal to 6 * 6 * 32 = 1152 vectors. The length of
each vector refers to the probability of an object if it is present or not in an image and
should not exceed the value 1. The squashing function then comes into the picture which
squashes all the vectors with a value more than 1 to a probability range between 0 to 1.

4.1.2 AppleCaps Layer

In this layer, each (1,1,8) vectors are converted to (1,1,16) dimension vectors and create
10 vectors amongst 1152 8D vectors. The transformation from 8-dimensional to 16-
dimensional vectors will take place in the AppleCaps layer using the coefficients (C,W).
These co-efficient parameters need to be trained equivalent to 8 * 16 * 1152 * 10 + 1152
* 10 = 1,486,080 parameters. The number of trainable parameters is calculated using a
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simple illustration. Suppose the input layer has 5 neurons and the output layer consists of
4 neurons connected in a feed-forward network, then the total trainable parameters will
be 5 * 4 = 20. Now, suppose the input has 2 layers each with 5 neurons and output has 3
layers each with 4 neurons. The weights required to interconnect the neurons will be equal
to5 * 4 * 3% 2 The 5 and 4 in this equation represent 1152 and 10 vectors. Similarly,
the 3 and 2 in the calculation indicates 8 and 16-dimensional vectors respectively.
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Figure 6: Routing by Agreement in AppleCaps

The C is the routing co-efficient that represents the interconnection between the input
capsule and the output capsule. The building block of Capsule Network is the process
referred to as routing by agreement. In this process, when a primary capsule agrees to
interconnect with a secondary capsule, the signal is agreed upon making it easier for the
network to make a prediction. Suppose there are 3 input capsules with output vectors
as u,up and ug as shown in Figure [ff When the ul vector routes towards the parent
capsule, let’s say, S, the vector generated will be a product of C * Wy, * u; where W
indicates the first capsule in one layer connected to the first capsule in another layer. The
S vector will be calculated as the summation of all the input vectors. The final vector
derived from the parent capsule will be a summation of all the vectors. The value of
the C co-efficient is generated using the similarity between the resultant vector S and
each of the input vectors. The similarity between the two vectors can be indicated by
the dot product which will let us know about the vector that contributes highest to the
vector generated by S. Based upon this agreed-upon routing, the classification task will
be performed.

4.1.3 Margin loss and Reconstruction Loss

Multiclass classification is referred to as a task that involves the classification of two or
more classes. In this research, 12 disease classes are classified. Margin loss is used to
calculate the probability of each disease class, which means if an object of that class
is present in the input, then the square of the length of the corresponding vector of the
respective capsule should not be lesser than 0.9, while in the reverse case, it should not be
more than 0.1. Along with the margin loss, another component in the network i.e Decoder
is connected to the AppleCaps layer with 3 fully connected layers where one is the sigmoid
activation function and the other two are ReLu activation units. The decoder helps to
reconstruct the input image by minimizing the squared difference between recreated image
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and the input image known as the reconstruction loss and preserves the features for the
image to be recreated and behaves as a regularizer by avoiding overfitting problems while
training the model. E]

4.2 Baseline CNN Models - EfficientNet-B3 and ResNet152

The baseline CNN models EfficientNet-B3 and ResNet152 are implemented in this re-
search to perform a comparative study with the Capsule network. EfficientNet-B3 per-
forms uniform scaling of the number of layers, channels and size of the image, and thus,
provides good performance by maintaining the model structure with lesser training para-
meters. EfficientNet performs the dimension scaling with a defined set of scale coefficients.
The architecture of EfficientNet comprises of Mobile Inverted Convolution (MBConv)
that follows the narrow to wide and back to narrow approach indicated by widening with
1 * 1 convolution, then 3 * 3 depth convolution to decrease the number of parameters
and again 1 * 1 convolution to reduce the number of channels. This dimension scaling
is performed with a high parameter accuracy making it a compact architecture (Srinidhi
et al.; 2021)).

ResNet-152 is a convolutional neural network that consists of residual blocks for train-
ing the model with 152 convolutional layers. The number of parameters in this model is
around 60.2 million. It learns from its residual functions by skipping a few of the layers
and thus, gains higher accuracy and are easy to optimize with depth. To perform down-
sampling, 7 * 7 convolutional layer is used and the layers contain 3 * 3 filters, followed by
a global pooling layer and an FC layer along with the softmax activation function. For
a specific feature map size, there will be an equivalent number of filters in the network
(Hossain et al.; 2020).

5 Implementation

5.1 Experimental Setup

The implementation of deep learning models highly depends upon the system configura-
tions. The code for the models was built and run using Python3.7. I made use of various
frameworks and libraries for the implementation like TensorFlow, Keras that provide
functions like ImageDataGenerator for image pre-processing, Dense, Flatten, Dropout
functions for adding layers to the network and pre-defined functions like ResNet152 and
EfficientNet-B3 for model building. Numpy and Pandas were utilised to deal with a data
frame and NumPy arrays. Kaggle notebooks are used that provide a high processing
GPU accelerator for up to 40 hours per week to run the code. Although, due to the
limited run hours, I used Google Colab IDE which is a cloud-based publicly accessible
platform to train our model and perform the execution as it provides a dedicated GPU
for running deep learning models. The dataset size is around 16GB and was uploaded
to Drive to make it accessible for the code run. Google Colab allows saving the outputs
of the trained model in a CSV file that can be used as a reference. Matplotlib library
was used to create interactive visualizations. The prime factors that are directly propor-
tional to the computational time of the model are the number of epochs, batch size, steps

?https://www.intel.com/content/wuw/us/en/developer/articles/technical/
understanding-capsule-network-architecture.html
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per epoch and learning rate. This is handled using hyperparameter tuning of models to
provide better results.

5.2 Implementation of AppleCaps: Capsule Network

For the implementation of Capsule Network, the dataset is fetched from the FGCV8 Plant
Pathology Competition and a seaborn barplot is generated to check for the number of
disease classes present in the training data. There are 12 disease categories of Foliar dis-
eases. The input images are resized to a dimension of 224 * 224 and image augmentation
methods like Horizontal Flipping, Rotation, Contrasting, Zooming, Shifting and Shearing
are applied on 1000 training images to create an enhanced dataset as seen in Figure [3]
Gaussian Blurring is used to reduce extra noise from the images. The images in their
RGB format are converted to grayscale images to select distinct features from the leaf
images. Since there is no pre-defined architecture present in the Tensorflow for Capsule
networks, the model is built from scratch that involves building the convolutional layer
with 256 filter kernels. The reshaping function will reshape the 32 features into two vec-
tors of 9 dimensions each. The squashing function is created to squash the probabilities
of the output vectors to a value between 0 to 1 if the vectors exceed more than 1. The
routing by agreement block is created that will output the vector of the input capsule
with the highest probability relevance corresponding to the target disease class to the
decoder and the other vectors will be masked out. The decoder will calculate the margin
loss and reconstruction loss for each round of the dynamic routing. The reconstruction
layer will reconstruct the leaf image from the features extracted from the input image.
The input dataset is split into training and validation set with a split ratio of 80:20. The
model is trained with a batch size of 32 and the number of epochs as 8 and the accuracy
and validation loss is generated and displayed at each epoch. Capsule Network requires
high computational GPU for model training. The model testing was performed on the
manually captured images from the apple trees in a nearby locality and the corresponding
plots for Training Vs Validation accuracy and Training Vs Validation loss are displayed
using ggplot library.

5.3 Implementation of Efficient-B3 and ResNet152 models

The architecture for EfficientNet and ResNet152 are available in the Tensorflow library.
Keras is a high-level interface that provides functions to build deep learning models.
Using the ImageDataGenerator, I performed various image pre-processing methods like
resizing the input images to a dimension of 512 * 512 and data augmentation techniques
like Horizontal Flipping, Zooming, Rotation, Shifting and Shearing are mapped to 32
training images. I have loaded both the models with the Sequential class of Keras and
assigned weights as ImageNet. The model is run with 466 steps per epoch for a batch
size of 32 and number of epochs as 8. The learning rate of the model is 0.001 obtained
from Adam Optimizer. Early Stopping is a method in Keras that enables to specify a
parameter, in our experiment, val_loss and mode value is set as min to minimize the
validation loss and maximize accuracy. The model training will stop when the chosen
metric stops improving. The results are derived from the history of the model run and
visualizations are created using the ggplot library. The model prediction is performed
on the manually captured apple leaf images and the predicted disease class index and
category are displayed. Hyperparameter tuning using the Random search optimization
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technique is incorporated to find the optimal combination of the learning rate, number
of epochs and batch size to evaluate the model’s performance as compared to without
parameter tuning of the model.

6 Evaluation

The key findings and performance evaluation of the proposed methodologies are explained
in this section that answers the listed research questions. To understand and analyze the
outcomes of the model implementation, several evaluation metrics are critically evaluated.
For this research, the model evaluation is performed based on the metrics like Accuracy,
F1-score, validation loss, validation accuracy, precision and recall (Saleem et al.; [2019b)).

6.1 Evaluation 1 : Baseline EfficientNet-B3 and ResNet152
CNN models without Hyper Parameter Tuning

The baseline EfficientNet-B3 and ResNet 152 models are implemented on the training
data of 8th FGCV Plant Pathology with a batch size of 32 and number of epochs as
8. The model is compiled using Adam optimizer with a learning rate of 0.001 and the
accuracy is calculated. The loss calculation is done through Categorical Cross Entropy.
Early stopping and Reduce Learning Rate on Plateau callbacks are used to stop the
model training if the validation loss and the learning rate stops improving. EfficientNet-
B3 model gave an accuracy of 74.26% with a validation accuracy of 75.88% whereas the
ResNet152 model obtained an accuracy of 76.50% and a validation accuracy of 78.23%.

Training and Validation Accuracy Training and Validation Loss
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- Yaining Accuracy 16 —
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Figure 7: Plots for Accuracy and Loss using EfficientNet-B3 model
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Figure 8: Plots for Accuracy and Loss using ResNet152 model

From Figure[7] it is observed from the Accuracy plot of EfficientNet model that with the
increase in epoch, the training and validation accuracy also increased. Similarly, in the
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Loss plot, it is observed that the loss has reduced at the 6th epoch and improved further
in the last epoch for the validation data.

From Figure [§] it is observed from the Accuracy plot of ResNet152 model that the
training and validation accuracy increases as the number of epochs increases. Similarly,
the validation loss has decreased gradually in the Loss plot after the 5th epoch and
remained constant till the last epoch.

6.2 Evaluation 2 : Baseline EfficientNet-B3 and ResNet152
CNN models with Hyper Parameter Tuning

The baseline CNN models are implemented using the Random Search fine-tuning method.
The objective in the tuner is set as val_loss to minimize the validation loss and increase
accuracy. Random Search tuner predicted the optimal parameter values for ResNet152
with learning rate as 0.0001 and number of units in the Dense Layer as 512 in 12 trial
runs, whereas for EfficientNet-B3, the predicted learning rate is 0.001 and number of
units in the Dense Layer as 768. The models are built using the tuned parameters and
executed. EfficientNet-B3 provided an accuracy of 85.84% with a validation accuracy of
87.17% whereas ResNet152 provided an accuracy of 84.32% with a validation accuracy
of 85.99%.
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Figure 9: Plots for Accuracy and Loss using EfficientNet-B3 model

From Figure[J] it is observed from the Accuracy plot of EfficientNet model that with the
increase in epoch, the training and validation accuracy also increased. Similarly, in the
Loss plot, it is observed that the loss has reduced at the 6th epoch and remained constant
till the last epoch for the validation data.
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Figure 10: Plots for Accuracy and Loss using ResNet152 model

From Figure [10] it is observed from the Accuracy plot of ResNet152 model that the
training and validation accuracy increases as the number of epochs increases. Similarly,

16



Table 2: EfficientNet-B3 Classification report

Disease Class Precision | Recall F1-Score Support
complex 0.07 0.05 0.06 307
frog_eye_leaf _spot 0.15 0.15 0.15 554
frog_eye_leaf spot 0.00 0.00 0.00 18
complex
healthy 0.20 0.23 0.21 814
powdery_mildew 0.12 0.14 0.13 337
powdery_mildew com- | 0.00 0.00 0.00 20
plex
rust 0.10 0.11 0.10 399
rust complex 0.00 0.00 0.00 12
rust frog_eye_leaf_spot | 0.00 0.00 0.00 24
scab 0.30 0.31 0.31 1108
scab frog_eye_leaf_spot | 0.00 0.00 0.00 105
scab frog_eye leaf spot | 0.00 0.00 0.00 28
complex

Table 3: ResNet152 Classification report
Disease Class Precision Recall F1-Score Support
complex 0.07 0.08 0.07 307
frog_eye_leaf_spot 0.15 0.16 0.15 554
frog_eye_leaf_spot 0.00 0.00 0.00 18
complex
healthy 0.23 0.23 0.23 814
powdery_mildew 0.10 0.11 0.10 337
powdery_mildew com- | 0.00 0.00 0.00 20
plex
rust 0.10 0.11 0.10 399
rust complex 0.00 0.00 0.00 12
rust frog_eye leaf spot | 0.00 0.00 0.00 24
scab 0.30 0.29 0.30 1108
scab frog_eye_leaf_spot | 0.04 0.02 0.03 105
scab frog_eye_leaf_spot | 0.00 0.00 0.00 28
complex

the validation loss has decreased gradually in the Loss plot after the 5th epoch and reduced
further until the last epoch. Along with the model accuracy, I have calculated precision,
recall, F1-Score and support for each of the Foliar disease classes in a classification report
as shown in Table [2| for EfficientNet-B3 and Table [3| for ResNet152. Accuracy is an
important measure, but it may lead to incorrect conclusions when the class distribution
amongst the disease categories is not balanced. Thus, precision, F1-score and recall play a
vital role in the performance evaluation of a model. Due to the class imbalance problem,
both the CNN models are biased towards scab, healthy and frog_eye_leaf_spot disease
classes.

6.3 Evaluation 3 : AppleCaps - Capsule Network Model

The CapsNet model is implemented on the training data of the 8th FGCV dataset with a
batch size of 32 and number of epochs equal to 8. The model is compiled using the Adam
optimizer to minimize the validation loss. There is no pre-defined function for Capsule
in the Keras architecture, hence the model is built from scratch. With each epoch run,
the corresponding loss and accuracy are displayed. The AppleCaps model obtained an
accuracy of 87.06% with a validation accuracy of 88.85%.
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Figure 11: Plots for Accuracy and Loss using AppleCaps model

From Figure |11, we can see in the Accuracy plot that as the number of epochs increases,
the accuracy also increases whereas in the loss plot, the loss initially reduced at epoch 1
and later increased but gradually started improving and was minimum at the 8th epoch.
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Figure 12: Confusion Matrix of AppleCaps model

The confusion matrix in Figure[12|shows that 323 images belonging to rust frog_eye_leaf_spot
diseases are more accurately classified denoted by dark blue colour. 282 images belonging
to rust frog_eye_leaf_spot are predicted as rust and inversely 253 images belonging to rust
are classified as rust frog_eye_leaf spot category.

6.4 Discussion

This research proposed and implemented a Novel Capsule Network Architecture Apple-
Caps to detect different categories of Foliar Leaf diseases in Apple trees. After a critical
review of past researches and literature, many experiments have shown that Capsule Net-
works have a better performance in terms of preserving spatial information as compared
to CNN models. The implementation of Capsule Networks in this research shows that it
provides better performance in terms of Accuracy, Precision, Recall, F1-score and Val-
idation loss when exposed to the augmented dataset. Accuracy of 87.06% was achieved
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for the Capsule model whereas the baseline CNN models EfficientNet-B3 and ResNet152
achieved an accuracy of 74.26% and 76.50% respectively. It is evident from the model
evaluation that CapsuleNet outperforms the baseline CNN models and provide better
classification results as proposed in[I.2] Table [d] shows the comparison of results between
the proposed methodologies.

Table 4: Comparison of Accuracy for Baseline CNN and AppleCaps Model

Model Accuracy
EfficientNet-B3 without Hyper Parameter Tuning 74.26%
EfficientNet-B3 with Hyper Parameter Tuning 85.84%
ResNet152 without Hyper Parameter Tuning 76.50%
ResNet152 with Hyper Parameter Tuning 84.32%
AppleCaps (Caspule Network) 87.06%

In our experiment in [6.2] I tuned the learning rate and number of units in the
Dense layer using Random Search optimization in both the baseline CNN models. The
accuracy of CNN models obtained using parameter tuning can be seen in Table @ From
the results, we can see that baseline CNN models with parameter tuning perform better
as compared to model implementation without tuning as proposed in [I.2] For Capsule
network, I have not implemented fine-tuning of parameters since the standard approach
of implementation is used, rather the model is trained again and again and the loss
is calculated and minimized with each epoch. The above models were tested for their
performance by passing an unexposed and unlabeled testing set consisting of manually
captured diseased and healthy apple leaf images from a nearby locality. The Capsule
model was able to classify the disease categories of the apple leaves more accurately. The
models were saved and then retrieved with the help of checkpoints to make predictions
on an unexposed dataset.

from IPython.display import Image
Image(filename="D:\\EfficentMet_Apple\\plant-pathology-|

b

print("Predicted class:", predictions[e])

Predicted class: rust frog_eye leaf spot

Figure 13: Prediction result by AppleCaps model
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In Figure [13], the AppleCaps model classifies the leaf as 'rust frog_eye_leaf spot’ which
is a multiple disease type. In terms of computational time, Capsule Network took lesser
time to run as compared to baseline CNN models EfficientNet-B3 and ResNet152 which
takes more time with 466 steps per epoch.

7 Conclusion and Future Work

The research aims at solving a Multiclass classification problem for the detection of Fo-
liar diseases in apple tree leaves. Taking major challenges under consideration related
to image capturing backgrounds, pose and orientation of leaf images and lighting con-
ditions, the 8th FGCV Plant Pathology dataset was enhanced using data augmentation
techniques and exposed to Capsule Network and two baseline CNN models EfficientNet-
B3 and ResNet152 and the corresponding results were evaluated. Experimental results
indicated that AppleCaps outperformed the CNN models with an accuracy of 87.06% and
in terms of Precision, Recall and F1-score, since CNNs have a limitation of preserving
spatial information also known as spatial invariance. Although, fine-tuning of CNN mod-
els provided better performance for EfficientNet-B3 and ResNet152 with an accuracy
of 85.84% and 84.32% respectively as compared to the models without hyperparameter
tuning. Capsule network also outperformed the baseline CNN models implemented with
hyperparameter tuning. Hence, this implementation will be useful for farmers and agri-
cultural experts to detect the diseases in apple trees at an early diagnosis stage and avoid
losses to the productivity of apple orchards. The entire implementation can be integrated
into any service and used for the detection of plant diseases for other crop species.

Future work involves capturing more diverse images from different apple orchards
and enhancing the model for the detection of pest symptoms in apple leaves. Data
augmentation techniques can be implemented in the model to balance the disease class
distribution.
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