

Configuration Manual

MSc Research Project Data Analytics

Sumit Singh Student ID: x20135769

School of Computing National College of Ireland

Supervisor I: Dr Supervisor II: Dr

Dr. Paul Stynes Dr. Pramod Pathak

National College of Ireland Project Submission Sheet School of Computing

Student Name:	Sumit Singh
Student ID:	x20135769
Programme:	Data Analytics
Year:	2022
Module:	MSc Research Project
Supervisor:	Dr. Paul Stynes
Submission Due Date:	31/01/2022
Project Title:	Configuration Manual
Word Count:	814
Page Count:	13

I hereby certify that the information contained in this (my submission) is information pertaining to research I conducted for this project. All information other than my own contribution will be fully referenced and listed in the relevant bibliography section at the rear of the project.

<u>ALL</u> internet material must be referenced in the bibliography section. Students are required to use the Referencing Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature:	
Date:	31st January 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

 Attach a completed copy of this sheet to each project (including multiple copies).
 □

 Attach a Moodle submission receipt of the online project submission, to each project (including multiple copies).
 □

 You must ensure that you retain a HARD COPY of the project, both for
 □

your own reference and in case a project is lost or mislaid. It is not sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed into the assignment box located outside the office.

Office Use Only	
Signature:	
Date:	
Penalty Applied (if applicable):	

Configuration Manual

Sumit Singh x20135769

1 Introduction

The objective of the manual is to provide details of the system setup, software, hardware and network configurations for the research project, A Deep Learning Model for Irish English and Hindi Language Identification

2 Hardware Components

The implementation of the project was performed using a virtual machine created using google cloud platform(GCP). The configuration of the machine are as follows:

Machine Platform	Virtual machine on Google Cloud Platform(GCP)
Machine Type	N1-standard-2(2 vCPU, 7.5 GB Memory)
GPU	1 X NVIDIA Tesla T4
Operating System	Debian 10

Status	Name 🛧	Zone	Machine type	Internal IP	External IP	Labels	Connect	
0	languageidentificationmachine	us-central1-c	n1-standard-2	10.128.0.2 (nic0)	34.134.196.80 🗹		SSH 🔻	:

Figure 1: Virtual Machine Instance

Machine configuration	
Machine type	n1-standard-2
CPU platform	Unknown CPU Platform
vCPUs to core ratio	-
Display device	Enabled
	Enable to use screen capturing and recording tools
GPUs	1 x NVIDIA Tesla T4

Figure 2: GPU Confirguration of the Virtual Machine

Boot disk Name ↑	Image	Interface type	Size (GB)	Device name	Туре	Encryption	Mode
languageidentificationmachine	c1- deeplearning- tf-1-15- cu110- v20211118- debian-10	SCSI	50	languageidentificationmachine	SSD persistent disk	Google- managed	Boot, read/

Figure 3: Operating Image Details of the Virtual Machine

Network	interface	details						
Name	Network	Subnetwork	Primary inter	nal IP	Alias IP ranges	External IP	Network Service Tier	IP forwarding
nic0	default	default	10.128.0.2		_	34.134.196.80	Premium	Off
VM insta	ance detai	ls						
Name			Zone	Networ	k tags	Service account		
language	eidentification	machine	us-central1-c	http-se	rver, https-server	42867587035-co	mpute@developer.gservi	ceaccount.com

Figure 4: Network Configurations of the Virtual Machine

3 Software Components

Storage

Following software components were used for the development of the project:

Programming tool	Jupyter Notebook
Programming language	Python 3, VBScript
Office Applications	Microsoft Excel 365
Report Compilation	Overleaf
Browser	Google Chrome Version 96.0.4664.93

4 Python library package

Following libraries must be installed before running the code for the project implementation:

PyDub	!pip install pydub
ffmpeg	!pip install ffmpeg
Librosa	!pip install librosa
Numpy	!pip install numpy
Mathplotlib	!pip install matplotlib
Pandas	!pip install pandas
Keras	!pip install keras
Tenserflow	!pip install tensorflow $==1.15$
Tenserflow GPU	!pip install tensorflow-gpu= $=1.15$
Seaborn	!pip install seaborn
EfficientNet Model	!pip install -U efficientnet

5 Google Cloud Platform (GCP) Setup

5.1 Create a virtual machine instance

GCP is a cloud platform and to create a virtual machine on the cloud following steps must be followed:

- 1. Sign-up and create a login account with Google Cloud Platform.
- 2. On sign-up new users are provided with \$300 for free services.
- 3. Create a new instance in the compute engine console and select a region for and zone for machine. The machine used in the experiment was created in us-central1(Iowa) region under us-central1-c zone.
- 4. Select GPU type as NVIDIA Tesla T4 and number of GPU's as 1.

Machine family			
GENERAL-PURPOSE	COMPUTE-OPTIMIZED	MEMORY-OPTIMIZED	GPU
Optimized for machine lea	rning, high performance comp	outing, and visualization worl	doads
GPU type NVIDIA Tesla T4	▼	ber of GPUs	•
Enable Virtual Works	station (NVIDIA GRID)		
Series			
N1 Powered by Intel Skylake C	PU platform or one of its prec	lecessors	
Machine type n1-standard-2 (2 vCPU	7.5 GB memory)		•
	vCPU	Memory	
	2	7.5 GB	
CPU platform — Automatic			• 0

Figure 5: Configure Machine Image

5. Click on the change button in the boot disk section and increase the size of the selected disk to 50 GB.

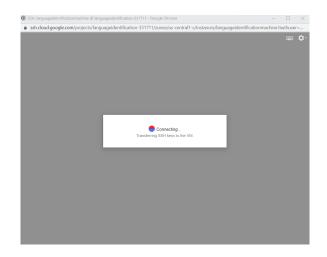
PUBLIC IMAGES	CUSTOM IMAGES	SNAPSHOTS	EXISTING DISKS
Operating system ——— Debian			•
/ersion *			
Debian GNU/Linux 10 (buster)		•
amd64 built on , supports	Shielded VM features		
Boot disk type *	Siz	e (GB) *	
Balanced persistent dis		- (/	
alanced persistent dis	ικ τ 50		

Figure 6: Configure Storage

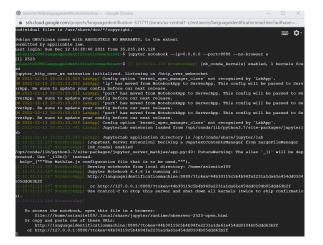
Service account Compute Engine default service account Access scopes Allow default access Allow full access to all Cloud APIs Set access for each API Firewall	Identity and API access 🛛	
Compute Engine default service account	Service accounts 🔞	
Access scopes ? Allow default access Allow full access to all Cloud APIs Set access for each API Firewall ? Add tags and firewall rules to allow specific network traffic from the Internet Allow HTTP traffic		
Allow default access Allow default access Allow full access to all Cloud APIs Set access for each API Firewall Add tags and firewall rules to allow specific network traffic from the Internet Allow HTTP traffic	Compute Engine default service account	•
Allow full access to all Cloud APIs Set access for each API Firewall Add tags and firewall rules to allow specific network traffic from the Internet Allow HTTP traffic	Access scopes 🕜	
Set access for each API Firewall Add tags and firewall rules to allow specific network traffic from the Internet Allow HTTP traffic	 Allow default access 	
Firewall @ Add tags and firewall rules to allow specific network traffic from the Internet Allow HTTP traffic	Allow full access to all Cloud APIs	
Add tags and firewall rules to allow specific network traffic from the Internet Allow HTTP traffic	Set access for each API	
Allow HTTP traffic	Firewall 🛛	
	Add tags and firewall rules to allow specific network traffic from the Internet	
Allow HTTPS traffic	Allow HTTP traffic	
	Allow HTTPS traffic	

Figure 7: Configure Network Traffic

- 6. Check the Allow HTTP and HTTPS check-boxes under the firewall section
- 7. Click on create instance button and the instance will be created with 2 to 3 minutes.


5.2 Open Jupyter notebook on GCP Debian Image

1. Created instance is displayed in the VM instances section of the Compute Engine tab


⊙ VI	M instances – Compute Engine 🗙	Home Pag	ge - Select or crea	ite a n 🗙 🕂								o ×
← -	→ C 🍵 console.cloud.goog	e.com/com	npute/instances	?project=languageidentificat	ion-331711					6	8 ★	🛪 🛞 E
Ap	ops 🔞 Udemy 📃 Data Science in	for 💿 V	/M instances – Co	<mark>,</mark> NCI <mark>,</mark> Language De	etection 🛛 M How to [Do Data Ex 📙 exams	👘 Moodle 💧	Library 🦲 Project 🔇	HCL 📙 DMML2 🧕	ULearn@MACE	39	E Reading list
=	Google Cloud Platform	🔹 Langi	uageldentificati	on 🗸 🔍 Q	Search products	and resources			~	>. (0 2	÷ 🛞
۲	Compute Engine	VM ins	stances	CREATE INSTANCE	🛓 IMPORT VM	C REFRESH	÷	© OPERATIONS →	HELP ASSISTANT	SHOW INFO	PANEL	S LEARN
Virtual	I machines	INCT	ANCES I	NSTANCE SCHEDULE								
A	VM instances	VM insta	nces are highly o	configurable virtual machines fo	or running workloads o	on Google						
i.	Instance templates	infrastruc	cture. <u>Learn mor</u>	<u>e</u>								
8	Sole-tenant nodes	∓ Fi	Iter Enter prop	erty name or value							0	
æ	Machine images		Status	Name 🕇	Zone	Machine type	Internal IP	External IP	Labels	Connect		
				languageidentificationmachi	ne us-central1-c	n1-standard-2	10.128.0.2 (nic0)	34.134.196.80 🖄		SSH 👻	:	

2. Start the instance and a notification is generated on the bottom of the page for confirmation.

	operty name or value	-			5 . UD		0
Status	Name	Zone us-central1-c	Machine type	Internal IP 10.128.0.2 (nic0)	External IP 34.134.196.80 🗹		nnect
						Stop Suspend Reset	
						Delete View network d Create new ma	

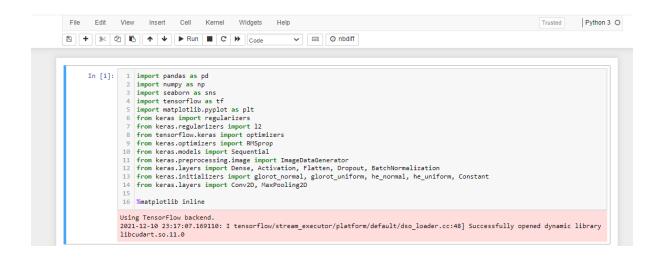
- 3. Once the machine is started, click on the SSH button on the main instance menu and wait for the connection to be established.
- 4. A black window pops up, type the following command to start the Jupyter notebook. jupyter notebook -ip=0.0.0.0 -port=8888 -no-browser

5. Use the external IP address of the instance followed by a colon sign along with the port number to open up the Jupyter notebook on the default browser. An example of the address used in the experiment is 34.134.196.80:8888/

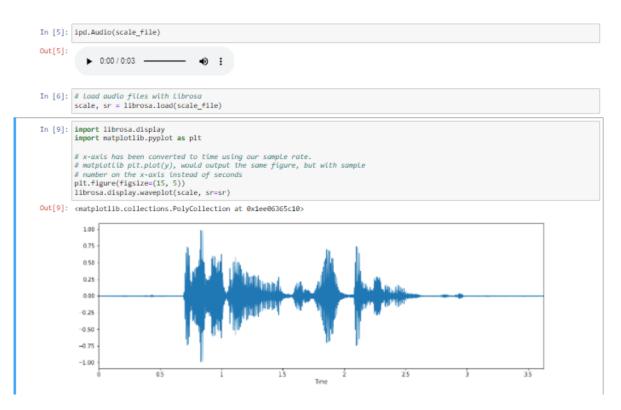
VM instances – Compute Engine 🗙 📿	Home Page - Select or create a n 🗙 🕂	
→ C A Not secure 34.134.19	96.80:8888/tree	
Apps 🔞 Udemy 📙 Data Science infor	💿 VM instances – Co 📒 NCI 📒 Language Detection 🗰 How to Do Data Ex 📒 exams 🎢 Mo	odle 🜰 Library 📙 Project 🔇 HCL 📒
	📁 Jupyter	Quit Logout
	Files Running Clusters Conda	
	Select items to perform actions on them.	Upload New - O
	□ 0 + ■ /	Name & Last Modified File size
	C Spec_Data_Train	a day ago
	C Spec_Dataset2_train	19 days ago
	A CNN_DS2_Final.pynb	3 days ago 52.1 kB
	# CNN_DS2_Final_CNN_LSTM loynb	11 days ago 60.5 kB
	A CNN_DS2_Final_CustomSeq.ipynb	2 days ago 168 kB
	CNN_DS2_Final_EfficientNet_Google.jpynb	4 days ago 34.6 kB
	R CNN_DS2_Final_Inception/3.jpynb	3 days ago 110 kB
	R CNN_DS2_Final_Resnet.jpynb	4 days ago 70.3 kB
	# CNN_DS2_Final_v2.isynb	2 deys apo 118 kB
	CNN_DS2_Final_VG019_updated.pyrb	a day ago 27.1 kB
	CNN DS2 large rab 224X224 jpvnb	19 days app 49.6 kB

5.3 Execution

1. Once the Notebook is open, upload the zip folder into the python notebook using the upload button on the top- right corner.. 2. Create a new python notebook and use the below code to unzip the file.

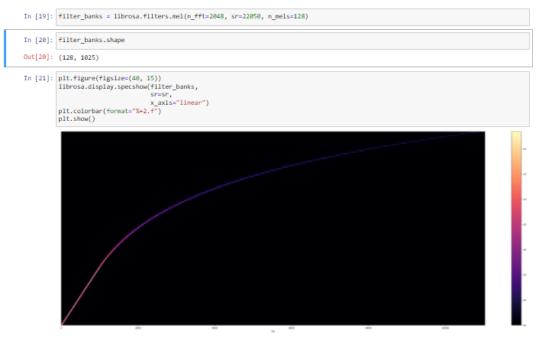

```
In [2]: 1 # importing unzip module
2 from zipfile import ZipFile
3
4 # specifying the zip file name
5 file_name = "Language_identification_Code_Artifacts.zip"
6
7 # opening the zip file in READ mode
8 with ZipFile(file_name, 'r') as zip:
9 # printing all the contents of the zip file
10 zip.printdir()
11
12 # extracting all the files
13 print('Extracting all the files now...')
14 zip.extractall()
15 print('Done')
```

- 3. The next step is to convert the provided audio files from .mp3 dataset into .wav dataset. However, the converted datasets are already provided in the unzipped folder. Refer to the "Convert_mp3_to_wav.ipynb" python file for execution and reference.
- 4. The .wav files are renamed using a Vbscript file attached in the folder. The files are renamed for easier tracking and processing.
- 5. The renamed files name are combined in an excel file and the three different languages are given a label for multi-label classification. The labels are 0 for English, 1 for Hindi and 2 for Irish. Refer to the file "train.csv" for reference.
- 6. The converted .wav audio files are then converted into mel-spectrograms. Librosa is used to import the audio files and based on research using literature survey, mel banks are defined and mel spectrograms are created for feature extraction. Refer to "Create_Spectrograms.ipynb" python file for reference.
- 7. The mel-spectrograms are stored in a folder "Spec_Data_Train" and upload using ImageDataGenerator function from the Keras library. The function is also used for preprocessing using augmentation techniques.
 - (a) Experiment 1: CNN model is initialized and and training is done on training and validation dataset using train_generators.fit_generator function is used to predict the languages for the test samples and are evaluated using classification report, confusion matrix, Accuracy and loss plots from the sklearn and Matplotlib libraries. Refer to "SLID_CustomSeq-CNN.ipynb" file for reference
 - (b) Experiment 2: Resnet50 model is initialized using keras library and training and testing is performed on the dataset. Refer to "SLID_Resnet.ipynb" file for reference
 - (c) Experiment 3: InveptionV3 model is initialized using keras library and training and testing is performed on the dataset. Refer to "SLID_InceptionV3.ipynb" file for reference
 - (d) Experiment 4: EfficientNet model is initialized using keras library and training and testing is performed on the dataset. Refer to "SLID_EfficientNet.ipynb" file for reference


6 Project Development

Different crucial sections of the code implementation have been highlighted below.

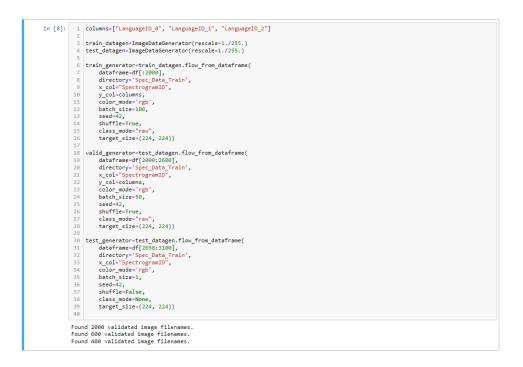
6.1 Import Libraries



6.2 Load Audio and Visual Sound

6.3 Define Mel Banks

Mel Banks


6.4 Extract Spectrograms

6.5 Data Precrocessing

In [3]:	1 0	lataset=pd.rea	ad_csv('tra	in.csv')		
In [4]:	2		{v: k for	:0, 'Hindi':1, k, v in dict_g)}
	{0: '	English', 1:	'Hindi', 2	'Irish'}		
In [5]:	1 :	<pre>shuffled_df =</pre>	dataset.sa	mple(frac=1)		
In [6]:	2 0	<pre>if = shuffled if['Spectrogra if.head()</pre>		['Spectrogram]	[D'].astype(s	tr) + '.png'
Out[6]:		SpectrogramID	LanguageID			
	2897	Irish 0900.png	2			
	1442		- 1			
	2929	Irish_0932.png	2			
	2186		2			
		Irish_0189.png				
	2693	Irish_0696.png	2			
In [7]:	2 (et_dummies(df axis = 1, inp]], prefix = 'LanguageID')],axis=1)
Out[7]:		SpectrogramID	LanguageID	0 LanguageID_1	LanguageID 2	
	2897	Irish_0900.png		0 0	Lunguugero_2	
	1442	Hindi_0445.png		o o 0 1	0	
	2929	Irish_0932.png		o 0	1	
	2186	Irish 0189.png		o o	1	
	2693	Irish 0696.png		o o	1	

6.6 Import Spectrograms to Jupyter Notebook and Preprocessing

6.7 CNN Model

ayer (type)	Output		Param #
conv2d_9 (Conv2D)		224, 224, 128)	3584
activation_10 (Activation)	(None,	224, 224, 128)	0
conv2d_10 (Conv2D)	(None,	224, 224, 128)	147584
activation_11 (Activation)	(None,	224, 224, 128)	0
max_pooling2d_5 (MaxPooling2	(None,	112, 112, 128)	0
iropout_6 (Dropout)	(None,	112, 112, 128)	0
conv2d_11 (Conv2D)	(None,	112, 112, 64)	73792
activation_12 (Activation)	(None,	112, 112, 64)	0
conv2d_12 (Conv2D)	(None,	112, 112, 64)	36928
activation_13 (Activation)	(None,	112, 112, 64)	0
max_pooling2d_6 (MaxPooling2	(None,	56, 56, 64)	0
iropout_7 (Dropout)	(None,	56, 56, 64)	0
conv2d_13 (Conv2D)	(None,	56, 56, 64)	36928
activation_14 (Activation)	(None,	56, 56, 64)	0
conv2d_14 (Conv2D)	(None,	54, 54, 64)	36928
activation_15 (Activation)	(None,	54, 54, 64)	0
max_pooling2d_7 (MaxPooling2	(None,	27, 27, 64)	0
iropout_8 (Dropout)	(None,	27, 27, 64)	0
conv2d_15 (Conv2D)	(None,	27, 27, 32)	18464
activation_16 (Activation)	(None,	27, 27, 32)	0
conv2d_16 (Conv2D)	(None,	25, 25, 32)	9248
activation_17 (Activation)	(None,	25, 25, 32)	0
max_pooling2d_8 (MaxPooling2	(None,	12, 12, 32)	0
dropout_9 (Dropout)	(None,	12, 12, 32)	0
Flatten_2 (Flatten)	(None,	4608)	0
dense_3 (Dense)	(None,	512)	2359808
activation_18 (Activation)	(None,	512)	0
dropout_10 (Dropout)	(None,	512)	0
dense_4 (Dense)	(None,		1539

6.8 Model Training

6.9 Testing Spectrograms and Probability of Each Language

Load the test generator for predictions

6.10 Evaluations

Evaluation and Results

4 Hindi_0830.png 3.543124e-02 0.988198 0.000034 1

```
In [62]:
1  # Evaluation and Results# Evaluate classifier
2  from sklearn metrics
3  from sklearn metrics import metrics
4
4
5  print('Classifier Metrics:')
6  y_test = shuffled_df[2608:3108].LanguageID
7  target_names = ditt_genres.keys()
8  print(y_test.shape, results.lang.shape)
9  print(metrics.classification.report(y_test, results.lang,target_names-target_names))
10  print("\n Confusion Matrix:")
11  2  print("\n Confusion Matrix:")
13  cm = confusion_matrix(y_test, results.lang)
14  print("n)
15  df_cm = pd.DataFrame(cm, range(3),range(3))
16  df_tfigure(figsize = (10,7))
17  fors.set(font_scale=1.4)#for label size
18
18
10
11
11
11
11
12  print("\n 0 + 0.88 0.91 137
11
137  Hind 0.92 0.96 0.96 128
14
15
15  Irish 0.95 0.96 0.96 128
15
16  accuracy Score: 93.50%
15  Confusion Matrix:
[[121 10 6]
[ 3 12 123]]
16  cfigure size 720x504 with 0 Axes>
```


Figure 8: Confusion Matrix for CNN Model

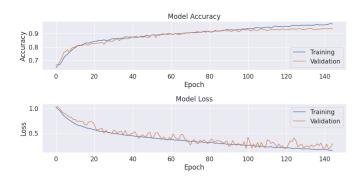


Figure 9: Accuracy and Loss Plot for CNN Model

6.11 Resnet Model Training

In [24]:	1 STEP_SIZE_TRAIN=train_generator.n//train_generator.batch_size 2 STEP_SIZE_VALID=valid_generator.n/valid_generator.batch_size 3 STEP_SIZE_TEST=test generator.n/test_generator.batch_size
	4
	5 hist = model_resnet.fit_generator(generator=train_generator,
	6 steps_per_epoch=STEP_SIZE_TRAIN,
	7 validation_data=valid_generator,
	8 validation_steps=STEP_SIZE_VALID,
	9 epochs=50)
	(v): 0.9289
	Cy: 0.9239 Epoch 45/50
	100/100 [===================================
	cv: 0.8656
	Epoch 46/50
	100/100 [
	cy: 0.8967
	Epoch 47/50
	100/100 [===================================
	cy: 0.9256
	Epoch 48/50
	100/100 [===================================
	cy: 0.9272
	Epoch 49/50
	100/100 [===================================
	cy: 0.9211
	Epoch 50/50 100/100 [===================================

Inception Model Training 6.12

Model Training and Validation In [9]: 1 STEP_SIZE_TRAIN=train_generator.n//train_generator.batch_size STEP_SIZE_VALID=valid_generator.n//valid_generator.batch_size STEP_SIZE_TEST=test_generator.n//test_generator.batch_size R cy: 0.9567 Epoch 45/50 100/100 [==: cy: 0.9483 Epoch 46/50 100/100 [==: ======] - 22s 224ms/step - loss: 0.0178 - accuracy: 0.9957 - val_loss: 0.3250 - val_accura cy: 0.9328 Epoch 47/50 100/100 [=== ------] - 23s 225ms/step - loss: 0.0067 - accuracy: 0.9980 - val_loss: 0.2219 - val_accura cy: 0.9444 Epoch 48/50 100/100 [=== ------] - 23s 225ms/step - loss: 0.0126 - accuracy: 0.9967 - val_loss: 0.4115 - val_accura cy: 0.9289 Epoch 49/50 100/100 [=== cy: 0.9422 Epoch 50/50 ------] - 22s 224ms/step - loss: 0.0118 - accuracy: 0.9973 - val_loss: 0.4610 - val_accura 100/100 [== cy: 0.9306 -----] - 23s 226ms/step - loss: 0.0182 - accuracy: 0.9962 - val_loss: 0.5069 - val_accura -

6.13 EfficientNet Model Training

In [10]:	<pre>STEP_SIZE_TRAIN=train_generator.n//train_generator.batch_size STEP_SIZE_VALID=valid_generator.n//valid_generator.batch_size STEP_SIZE_TEST=test_generator.n//train_generator.batch_size hist = model_EfficientNet.fit_generator(generator=train_generator,</pre>
	cy: 0.9717
	Epoch 45/50 100/100 [=======] - 25s 251ms/step - loss: 0.0219 - accuracy: 0.9963 - val_loss: 2.6032 - val_accura cv: 0.99661
	Epoch 46/50 100/100 [] - 25s 248ms/step - loss: 0.0065 - accuracy: 0.9988 - val_loss: 0.0060 - val_accura cy: 0.9689
	Epoch 47/50 100/100 [=======] - 25s 249ms/step - loss: 0.0216 - accuracy: 0.9973 - val_loss: 0.2639 - val_accura cy: 0.9667
	Epoch 48/50 100/100 [=======] - 25s 253ms/step - loss: 0.0313 - accuracy: 0.9963 - val_loss: 1.0887 - val_accura cy: 0.9778
	Epoch 49/50 100/100 [===================================
	cy: 0.9683 Epoch 50/50 100/100 [