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1 Hardware Requirements 
 

The machine specifications used for  this project execution are Windows 10 64-bit, and the 
processor is AMD Ryzen 5 4600HS, having Radeon Graphics 3.00 GHz, and 16 GB of RAM.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1: Hardware Configuration 
 

2 Software Requirement 
 

Python version 3.8 is used for all code areas in this research. We used Jupyter Notebook on 
Anaconda Navigator to build Python scripts and code. The Anaconda App must first be 
installed. The 64-bit version of the configuration file is downloaded as per the requirement and 
should be consistent  to 64 bit Windows Operating System. 
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Figure 2: Anaconda Specification 

 

After installation, select Start -> Anaconda Navigator. The Jupyter Lab is available directly 
from Anaconda Navigator.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3: Anaconda Navigator 
 

 

3 Python Library Package Requirement 
 

The list of python package are installed using pip command in the python environmental 
command prompt, 

 

• keras library 

• matplotlib 

• numpy 

• pandas 

• plotly 

• Scikit-learn 

• Statsmodels 

• Sarimax 

• sklearn 

• Seaborn 
 

2 



 

4 Dataset Description 
 

• The dataset for emission from different countries is obtained from Emissions 
Database for Global Atmospheric Research (EDGAR1) website. 

• The csv file is taken and transposed for achieving the visualization. 

• The dataset for carbon emission from different sector of power industry in United 

States is obtained from Energy Information Administration (EIA2) website.  
• The dataset is extracted in the form of csv. 

 

5 Data Preparation 

 
EDGAR - Emissions Database for Global Atmospheric Research identifies the emitting 
nation and sector. The second dataset utilized in this study is publicly accessible for 
download and reuse on the EIA website and has no ethical considerations. Monthly CO2 
emissions from 9 sectors from January 1973 to August 2021. (MtCO2). The data has 6 
columns and 5256 rows, with NA values. 
 
The first step is to import the libraries needed for data loading and preparation. 
 

 
 

Dataset 1 for visualizing the top emitter countries and sectors-  
 
The specified dataset is then imported into the data frame known as “df”. 
 

 
 

Due to the present dataframe's form, we will convert it to a vertical dataframe. This will make 

working with data and visualising pollution easier. 
 

 
 

The redundant country information is removed. 
 

 
1 https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions 
2 https://www.eia.gov/totalenergy/data/browser/?tbl=T11.06#/ 



 
 
Dataset 2 for predicting future emissions: This dataset contains monthly US atmospheric 
carbon dioxide (CO2) concentrations. 
 
The dataset is first imported in a dataframe. To read the dataset as a time series, we use the 

read_csv. Convert the index to datetime, coerce errors, and filter NaT. 

 

 
 

The dataset consists of data as shown below: 
 

 
 

First, let's transform the emission value to a number. 

 

 
 

Since 4872 observations include emissions values, we need to remove the empty rows. 
 

 
 

Then the sector with highest emission is visualized. 
 

 
 
 



Each sector emission data can be stored in separate files by the below process, this research 

stores the sectors information with highest emissions. 
 

 
 

The information for every sector can be stored using to_csv function. 
 

 

6 Model Preparation 

 
6.1  ARIMA: 

 
The data is initially put into Jupyter Notebook and parsed using the date parse function.  

Dickey Fuller test is used to test the stationarity of this time series. 

 

A mull hypothesis that the time series is stationary is made, and then if the test statistic value 

comes out to be less than critical value then the null hypothesis is rejected. 

 

 
Time series has a unit root, suggesting it is non-stationary. 

 

 
 
Now the dataset is transformed to stationary. And the trend and seasonality is modelled and 

removed using decompose method. 

 

 

 
The tuning parameters (p and q) of the model will be determined by looking at the 

autocorrelation and partial autocorrelation graphs. It shows how to read autocorrelation and 

partial autocorrelation graphs to pick parameters. 

 



 
 

Finding appropriate ARIMA model parameters via the graphical technique is difficult and time 

intensive. We will use grid search (hyperparameter optimization) to choose optimal parameter 

values. 

 

 
 

Hyperparameter optimization is performed for enhanced performance. 

 

 
 

Final model implementation of ARIMA is as below. 

 

 
 

6.2 SARIMA: 

 
Then the integration order I. (d). For series stabilization, d defines the lot of variations required. 

Finally, we include seasonality S(P, D, Q, s), where s is the season's duration. This component 

requires P and Q, which are the same as p and q except for the seasonal component. Use D to 

remove seasonality from a series. The seasonality and non stationarity behaviour has already 

been removed from this time series. Then the hyper parameter optimization is done for good 

performance. 

 

 
 

The evaluation metric values are lower for SARIMA and are as below. 



 

 
 

6.3  LSTM (Long short-term memory) 

 
First, MinMaxScaler is used to scale the data. 

 

 
 
Now, using keras library, the time series generator object is created since it will be required in 

lstm model. 

 

 
 

The model is implemented as below. 

 

 

 
 

Because we scaled our data, we must reverse it to see accurate forecasts. 

 

 
 

A new column is created in test_data and the lstm_predictions are saved in the newly created 

column for comparison of projected values with other models. 

 

 
 

The results are as follows. 



 
 

6.4  Prophet 

 
For Python, have used the fbprophet module. NA When the date parse() function changes the 

year column 'YYYMM' to datetime, the data is erased. Change the column names 

"YYYYMM" for years and "Value" for values so the Prophet model can forecast. In this case, 

the model forecasts monthly. Predict may be used to calculate emission values for future dates 

from a dataframe built using the.make future dataframe() function. 

 

 
 

Column names are given as ‘ds’ and ‘y’ 

 

 
 

Prophet is imported used fbprophet library. 

 

 
 

 

 
 

Making future projections by using the implemented prophet model. 

 

 
 

Setting other parameters for predicted values. 

 

 
 

Saving predictions for future comparison. 

 

 



The values of error metrics are as below. 

 

 
 

 

6.5  Exponential Smoothing 

 
For data with a systematic trend or seasonal component, exponential smoothing is a time series 

forecasting approach for univariate data. 

 

Other exponential smoothing model hyperparameters can also be automatically optimized, 

such as whether to model the trend and seasonal component, and if so, whether to model them 

additively or multiplicatively. 

 

Triple Exponential Smoothing approach uses level, trend, and seasonality to forecast. First, it 

is optimized as below. 

 

 
 

 
 

The values of MAE, RMSE and MAPE are as follow. 



 
 

After comparing all the models, it is evident that the Triple Exponential Model performed the 

best with projections being the closest to actual values as also seen from the graph below. 

The comparison is made between the top 3 performing models. 

 

 
 

 
 

As we can see here the Triple exponential model follows a trajectory very similar to actual 

values. The MAE is as low as 1.97 for this model. Hence the forecasting is done using this 

method in this research. 

 

 
 


