
Configuration Manual

MSc Research Project

Data Analytics

Christopher Signorelli
Student ID: 19181027

School of Computing

National College of Ireland

Supervisor: Dr. Vladimir Milosavljevic

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Christopher Signorelli

Student ID: 19181027

Programme: Data Analytics

Year: 2022

Module: MSc Research Project

Supervisor: Dr. Vladimir Milosavljevic

Submission Due Date: 19/9/2022

Project Title: Configuration Manual

Word Count: 2715

Page Count: 39

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 18th September 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Configuration Manual

Christopher Signorelli
19181027

1 Introduction

This configuration manual describes the hardware/software platforms, data sources, code,
figures, and files associated with the research project described in (Signorelli; 2022).

• OBJ-1: Create a sufficiently large training dataset that combines gene-expression
data, drug chemical properties, and cardiotoxicity outcome labels.

• OBJ-2: Perform feature selection for dimension reduction, and minimal model per-
formance degradation.

• OBJ-3: Implement a MLC to match the state-of-the-art, capable of predicting
multiple cardiotoxicity outcomes.

• OBJ-4: Automate the hyperparameter search for optimising the MLC, for training
a robust MLC using the optimised hyperparameters.

• OBJ-5: Demonstrate the efficacy of the robust MLC and automation process, rel-
ative to other models.

• OBJ-6: Benchmark the computation times of the training experiments.

Hardware, Software and Installation: All code was implemented and run on a
standard home laptop, with the main hardware and software specifications shown in Table
1. Before installing the required Anaconda virtual environment, Anaconda needs to be
installed on the local machine (ideally the version in Table 1). A Windows batch script,
install signorelli env.bat, has been written to automate this process, and is included in
the artefacts zip file. The script creates a new environment, installs the dependencies
defined in requirements signorelli.txt, then starts up Jupyter Notebook.

Notebook Files: The code has been modularised into logically separated Notebook
files that need to be run sequentially, as shown in Figure 1, and detailed in README.pdf.
Two of these Notebook files need to (optionally) have a small number of constants mod-
ified prior to execution, and are clearly marked at the top of the relevant Notebooks.
These control whether the code runs a short demo mode that can complete in approxim-
ately 20 min, OR the full set of training experiments that takes approximately 1 week.
By default it is set to short demo. The step-by-step instructions for using the installa-
tion script and running the project code are provided in the README.pdf file, in the
artefacts zip file.

1



Standalone Machine HP Pavilion laptop

Operating System Windows 10 Home

Processor 6-core AMD Ryzen 5, 4500U, 2.375 GHz

Graphics Card Radeon

RAM 8 GB

Hard Drive (HDD) 500 GB

Minimum Free HDD Space 20 GB

Anaconda 4.10.1

Jupyter 1.0.0

Python 3.8.13

Python Module: scikit-learn1 1.1.1

Python Module: cmappy2 4.0.1

Installation Script install signorelli env.bat

Table 1: Hardware and Software Specifications.

Figure 1: Notebook Execution Order.

2



The functionality of each Notebook is summarised as follows:

1. Curation and Exploratory Data Analysis: This Notebook downloads the re-
quired data from the public NCBI database3, and loads the Mamoshina data from
the project execution path. EDA is performed on the data which are merged,
cleaned, and standardised.

2. Feature Selection: Recursive Feature Elimination (RFE) is performed on the
data from the previous step to decrease feature dimensionality and produce as
parsimonious a model as possible.

3. Modelling and Training: The selected features from the previous step are used
to train several individual classifier chains, using random forest classifiers as the
base model.

4. Post-Processing: The individual chains are imported, and analysed to determine
the best possible hyperparameter values to train the Best Means Chain, which is
then trained. Performance is compared with an Ensemble chain, and all individual
chains. Various performance metrics are compared, with analyses conducted for
ensemble size and computation times.

3https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE92742

3



2 Curation and Exploratory Data Analysis Note-

book

The main steps in this Notebook are:

1. Download CMap gene-expression data (Figure 2). Due to the large size of
the CMap dataset, the code downloads it from the NCBI FTP server. It usually
takes less than 3 min to download, and less than that to unzip it, which is also
implemented in the code. Note that the perturbation (sig-info) and gene (gene-
info) meta data are also downloaded and unzipped in the same manner.

Figure 2: CMap Data Download.

2. Load Mamoshina data. Figure 3 shows the a snippet of the imported Mamoshina
gene features and labels. These data were obtained directly from the Authors of
(Mamoshina et al.; 2020) via an email-provided link. Note that the Mamoshina
gene features are discarded, as discussed in (Signorelli; 2022).

4



Figure 3: Imported Mamoshina Data.

5



3. Extract the genes and drugs from the Mamoshina data. From the loaded
Mamoshina data, the set of genes are extracted from the header columns, as well as
the molecular descriptors, fingerprints, and labels. The drug ID codes are extracted
from the ID column. Figure 4 shows a snippet of the extracted information.

Figure 4: Dataset Column Types.

4. Find the corresponding CMap indexes in the meta data, using the
Mamoshina genes and drugs. Figure 5 shows the structure of the CMap data,
where the columns represent the drug perturbations (signatures), the rows repres-
ent the genes, and the cells in the center are the gene-expression values. Using the
gene and drugs information obtained in the previous step, the CMap ID numbers
are extracted, which can then be used to parse only the desired data from the large
CMap dataset. Figure 6 shows a snippet of the data in the sig-info meta data.

6



Figure 5: CMap Data Structure.

Figure 6: CMap Signature Meta Data.

7



5. Parse the CMap gene-expression data using the indexes. Figure 7 shows a
snippet of the extracted (parsed) CMap data using the Mamoshina subsets of genes
and drug IDs. The cid values are the CMap indexes for the drug perturbation
signatures, which are found using the pert id values shown in Figure 6.

Figure 7: Parsed CMap Data.

6. Join the gene-expression data with the perturbation meta data. This is
done to add potential features such as dose time, dosage amount, and cell lines.

7. Join the features and labels from the Mamoshina dataset. Figure 8 and
Figure 9 partially show the resulting data frames after performing this and the last
step.

8



Figure 8: Joined Dataset with Molecular Descriptor and Fingerprint Data.

Figure 9: Standardised Dataset.

9



8. Conduct EDA to get feature and label distributions.

9. Filter the data based on EDA. This is done to extract approximately 10k rows
of training data. From the EDA, Figure 10 and Figure 11 show the distribution of
cell lines in extracted CMap data. An important aspect of this project is increasing
the size of the Mamoshina training set, which only had approximately 1000 rows.
By including extra cell lines the row count increased to over 9000. The criterion
for including extra cell lines was arbitrarily that they were associated with at least
100 rows.

Figure 10: Cell Line Counts.

10



Figure 11: Cell Line Counts.

11



Figure 12 shows the distribution of the perturbation (dose) times, which has values
of 6, 24, and 48 hours. While the counts for 6 and 24 are evenly balanced, the count
for 48 is very low. For this reason, all rows with 48 hour dose times are removed.
Figure 13 shows only 4 of the 254 gene-expression values in the dataset. A small
amount of right-skew can be seen, however the distributions looks near-normal.
The vast majority of genes show similar distributions. Figure 14 shows the level of
imbalance in the label data, and high variability between each label. A proportion
value of 0.5 indicates perfect balance between the positive and negative cases.

Figure 12: Imbalance in Perturbation (Dose) Time.

10. Standardise the data to help the machine learning algorithm’s optimisation pro-
cess. A snippet of this can be seen in Figure 9.

12



Figure 13: Gene-Expression Distributions.

Figure 14: Variation in Proportion of Positive / Total Label Cases.

13



Input and Output Data Files: Table 2 summarises the data files related to the
Curation and EDA Notebook. The work completed in the Curation and Exploratory Data
Analysis Notebook satisfies the objective OBJ-1.

File Type

GSE92742 Broad LINCS Level2 GEX epsilon n1269922x978.gctx.gz Input

GSE92742 Broad LINCS sig info.txt.gz Input

GSE92742 Broad LINCS gene info.txt.gz Input

m x train.txt Input

m y train.txt Input

m x test.txt Input

m y test.txt Input

train v2 2.pkl Output

test v2 2.pkl Output

scaler.pkl Output

Table 2: Input and Output Data Files for Curation and EDA Notebook.

3 Feature Selection Notebook

The main steps in this Notebook are:

1. Set run mode. Figure 15 shows the code where it is possible to switch into Short
Demo Mode, such that the whole process can execute relatively quickly (in about
20 min), as opposed to roughly 1 week for the full experiment run. This is located
in the second Notebook cell from the top. Figure 16 shows the section of code,
about halfway down the Notebook where the dataset is shortened. This propagates
through all Notebooks, via intermediate file sets that are written and read between
Notebooks.

Figure 15: Switch for Short Demo Mode.

2. Reshape Data. To suit the random forest models, the data needs to be reshaped.
Figure 17 shows the code that performs this before the recursive feature elimination
(RFE) process. It also shows the dimensions of the short demo datasets.

14



Figure 16: Code for Shortening the Training Data.

Figure 17: Reshaped Data for Random Forest Classifier.

15



3. Run RFE for each label. Recursive feature elimination was performed using the
RFECV() function from the scikit-learn module in tandem with a random forest
classifier, within a Pipeline object. For the full experiment runs, execution takes
about 45 min for each of the 7 labels. For the short demo it takes less than 15 sec
per label. Figure 18 and Figure 19 show the code for the pipeline definition and
the algorithm execution respectively.

Figure 18: Recursive Feature Elimination Definition.

4. Evaluate metrics and choose feature subset. The RFE process outputs a set
of model artefact files for each label, which can be interrogated to assess the model
performance on single random forest classifiers when using the selected features.
Since, single label classifiers are used, a ROC curve and AUC score can be obtained,
in addition to a confusion matrix and classification report. These are shown in
Figure 20 and Figure 21, with the code used to create them in Figure 22. The ROC
curve shown corresponds to label Cardiac.arrhythmias, and is chosen due to having
the best AUC, where at least one of the F1 scores was well above 0.5. Another
label also has the same AUC score, however both of the F1 scores are close to 0.5.

16



Figure 19: RFE Iterations.

Figure 20: ROC Curve and AUC Score.

17



Figure 21: RFE Performance Metrics.

5. Finalise datasets for subsequent classifier chain experiment runs. The
final dataset is created by simply using the 221 selected features from previously
created dataset.

Input and Output Data Files: Table 3 summarises the data files related to the
Feature Selection Notebook. The work completed in the Feature Selection Notebook
satisfies the objective OBJ-2.

File Type

train v2 2.pkl Input

test v2 2.pkl Input

v22 train x cc.pkl Output

v22 train y cc.pkl Output

v22 test x cc.pkl Output

v22 test y cc.pkl Output

Table 3: Input and Output Data Files for Feature Selection Notebook.

18



Figure 22: Function for Extracting RFE Results and Selected Features.

19



4 Modelling and Training Notebook

The main steps in this Notebook are:

1. Set run mode. In this Notebook there are two constants to adjust based on the
run mode (Figure 23), although it is not a binary selection process, as they can be
set to any integer value. For short demo mode, the best values are shown in Table
4.

Figure 23: Constants for Changing between Run and Full Experiment Modes.

Mode: Short Demo Full Experiment

TIMEOUT SEC 10 3600

NUM LIMIT 10 1000

Table 4: Recommended Constant Values for each Run Mode.

2. Create a large hyperparameter search space to be randomly sampled. As
described in (Signorelli; 2022), the hyperparameter space are chosen to be randomly
distributed with predefined ranges (Figure 24). The n estimators values are chosen
to match those used by Mamoshina et al. (2020). The remaining hyperparameter
ranges, taken from (Koehrsen; 2018), are considered to be a reasonable starting
point in the absence of prior knowledge of optimal ranges.

20



Figure 24: Large Hyperparameter Set Generation.

21



3. Create the base model for the classifier chains to be trained. Each classifier
chain needs a base model, which in this case is a random forest classifier. Figure
25 shows the function created to instantiate a new base classifier, for each new
classifier to be trained. The test num value is the chain ID, which is used to index
the hyperparameter arrays.

Figure 25: Base Model Definition.

4. Wrap the model training process within a timeout interrupt class. Given
the long training time (1 week) of the full set of experiments, a robust approach
for completing a sufficiently high number of experiments has been developed. A
timeout interrupt framework (thread-based class), adapted from this stackoverflow
solution4, is wrapped around the classifier training steps. The timeout period,
defined by the TIMEOUT SEC constant, is set to 1 hour. This means that any
training experiments will be aborted after 1 hour if they do not converge. The next
model in the sequence is then trained until enough experiments are successfully
completed. Figure 26 shows the training steps inside the timeout wrapper.

4https://stackoverflow.com/questions/56315296/provide-a-timeout-in-python-program

22



Figure 26: Timeout Interrupt Class.

23



5. Train all individual classifier chains. The code in Figure 27 shows how the ex-
periment thread with exception class is iteratively used, with the first few chain
output messages displayed. Note that where there is no line saying “Saving:
rfc chain ⟨ID⟩ v22.pkl”, this corresponds to where an experiment is aborted.

Figure 27: Training each Individual Classifier Chain.

24



Input and Output Data Files: Table 5 summarises the data files related to the
Modelling and Training Notebook. The work completed in the Modelling and Training
Notebook satisfies the objectives OBJ-3 and OBJ-4.

File Type

v22 train x cc.pkl Input

v22 train y cc.pkl Input

v22 test x cc.pkl Input

v22 test y cc.pkl Input

hyperparams large set.pkl Output

rfc chain ⟨ID⟩ v22.pkl Output

Table 5: Input and Output Data Files for Modelling and Training Notebook. Note: ID
ranges from 0 to the last experiment number.

5 Post-Processing Notebook

1. Extract the hyperparameters used for each experiment. During the post-
processing ingestion process, the code loads training experiment results into the
Python dictionary rfc chains. This facilitates searching for training experiments
by name rather than index, ensuring that correct metrics and hyperparameters are
linked correctly. Figure 28 shows the code that extracts the hyperparameters from
this dictionary. The first set of hyperparameters are shown in the cell output.

2. Calculate various performance metrics for each experiment. For compar-
ative purposes, the code calculates various performance metrics (precision, recall,
F1 score, MCC, Jaccard score) for the experiment runs, linking them with the
experiment hyperparameters. Correlation analysis, and identification of the Best
Means hyperparameters are carried out from the data, loaded into the all results
data frame. Throughout this project, Pandas data frames are used, due to their
ease of applying the necessary analysis functions, for example corr() and groupby().
Note that these performance metrics (including Jaccard score) are at the level of
single-label classifiers. Figure 29 shows the code used to calculate the performance
metrics, and Figure 30 shows the code used to load the data into the data frame.
A snippet of the data frame is shown in Figure 31.

25



Figure 28: Code to Extract Hyperparameters from Trained Chains.

26



Figure 29: Code to Extract SLC Performance Metrics.

27



Figure 30: Code to Build All Results into Data Frame for Analysis.

28



Figure 31: Snippet of All Results Data Frame.

3. Identify the Best Means hyperparameters. To identify the Best Means hyper-
parameters, the all results data frame is grouped by each hyperparameter, and the
Jaccard score averaged for each group. The hyperparameter value with the largest
score is selected as the Best Means Hyperparameter. Figure 32 shows the identified
Best Means Hyperparameters for the full experiment run, and Figure 33 shows the
code used to determine them. Figure 34 shows the averaged Jaccard scores for each
hyperparameter.

Figure 32: Identified Best Means Hyperparameters.

29



Figure 33: Code to Group and get Aggregate Performance Scores.

30



Figure 34: Grouped Hyperparameter Jaccard Scores (Full Set of Experiments).

4. Train a new single classifier chain. Using the Best Means hyperparameters, the
final Best Means Chain is trained. Figure 35 shows the code for this. Note that
this classifier chain is not wrapped within an interrupt class, as it is only one chain.
Also, the −999 constant is used to represent auto and default values for max depth
and min samples split respectively.

31



Figure 35: Code to Train the Best Means Chain.

5. Create the Ensemble chain and calculate all chain scores. Adopting a
similar approach to this example5, the Ensemble chain is created from the 100
individual chains, using the code in Figure 36. The code also calculates, and stores
the multi-label Jaccard scores for all chains into the model scores data frame.

6. Compare all chain performances. The ranked chain performances for the indi-
vidual chains, Ensemble chain, and Best Means Chain are shown in Figure 37 (full
set of experiments), and Figure 38 (short demo runs). It can be seen how the Best
Means Chain performs relatively well, even for the short demo run, demonstrating
the robustness of the Best Means approach. Figure 39 shows the code used to
produce the plots.

5https://www.typeerror.org/docs/scikit learn/auto examples/multioutput/plot classifier chain yeast

32



Figure 36: Code to Calculate Ensemble Chain and Build Comparison Data Frame.

Figure 37: Chain Rankings (Full Experiment Set).

33



Figure 38: Chain Rankings (Short Demo).

7. Identify correlations between the various performance metrics. Correla-
tion coefficients are calculated directly from the all results data frame using the
Pandas corr() function. The results are shown in (Signorelli; 2022).

8. Analyse the execution times of the experiment runs. Experiment computa-
tion times (training + file saving) are obtained, using the glob module to interrogate
the file statistics. Capturing the combined training and file write times is preferred
over just the training time, since the combination significantly affects the total
experiment run time for all chains. Note that the file sizes for each experiment
vary dramatically. The computation times are calculated from the time differences
between each of the individual chain timestamps, and file sizes are also captured.
Using the chain ID numbers in the model artefact file names, the Jaccard scores are
joined to obtain correlation coefficients. From these results, a diminishing return
curve is plotted (Figure 40), with the results presented in (Signorelli; 2022). Figure
41 shows the code.

34



Figure 39: Code to Plot Best Means, Ensemble and Individual Chain Performances.

Figure 40: Diminishing Return Curve for Computation Time.

35



Figure 41: Code to Extract RFC Chain Artefact File Statistics.

36



9. Create diminishing return curve for Ensemble size. Figure 42 shows the
diminishing return curve for varying ensemble sizes, that is, where varying numbers
of individual chains are used in its calculation. Figure 43 shows the code used to
calculate each ensemble run.

Figure 42: Diminishing Return Curve for Ensemble Size.

Figure 43: Code to Calculate Performance for Different Ensemble Chain Sizes.

37



Input and Output Data Files: Table 6 summarises the data files related to the
Post-Processing Notebook. The work completed in the Post-Processing Notebook satisfies
the objectives OBJ-5 and OBJ-6.

File Type

v22 train x cc.pkl Input

v22 train y cc.pkl Input

v22 test x cc.pkl Input

v22 test y cc.pkl Input

rfc chain ⟨ID⟩ v22.pkl Input

all results.pkl Output

rfc best mean chain.pkl Output

Table 6: Input and Output Data Files for Post-Processing Notebook. Note: ID ranges
from 0 to the last experiment number.

Acknowledgements

Deep gratitude is expressed to Dr. Vladimir Milosavljevic whose supervision was clear,
concise, and very helpful in maintaining an efficient research path. The same gratitude is
expressed to the authors of Mamoshina et al. (2020) for providing the ‘Mamoshina’ data
referred to in this configuration manual and (Signorelli; 2022). This project could not
have been been achieved in its current form without that data. Dr. Polina Mamoshina
was very helpful with her email correspondence.

References

Koehrsen, W. (2018). Hyperparameter tuning the random forest in python.
URL: https://towardsdatascience.com/hyperparameter-tuning-the-random-forest-in-
python-using-scikit-learn-28d2aa77dd74

Mamoshina, P., Bueno-Orovio, A. and Rodriguez, B. (2020). Dual transcriptomic and
molecular machine learning predicts all major clinical forms of drug cardiotoxicity,
Frontiers in Pharmacology 11.

Signorelli, C. (2022). Sub-optimal hyperparameter selection for multi-label classifier chains
predicting cardiotoxicity from gene-expression data, Master’s thesis, NCI, Dublin.

38



Appendix

Installation Batch Script: Figure 44 shows the commands in the installation script
(install signorelli env.bat) to run after the project artefacts .zip file has been extracted.
The script sets up a new anaconda environment called SIGNORELLI, installs all Python
dependencies, then opens up Jupyter Notebook, ready to open and run the project code.

Figure 44: Installation Batch Script.

Anaconda Requirements.txt File: Figure 45 shows the requirements file (require-
ments signorelli.txt) that the installation script uses when setting up the SIGNORELLI
anaconda environment.

Figure 45: Requirements.txt File.

39


	Introduction
	Curation and Exploratory Data Analysis Notebook
	Feature Selection Notebook
	Modelling and Training Notebook
	Post-Processing Notebook

