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Sub-Optimal Hyperparameter Selection for
Multi-Label Classifier Chains Predicting

Cardiotoxicity from Gene-Expression Data

Christopher Signorelli
19181027

Abstract

Robust multi-label classifier chains are difficult to optimise, due to the large
search space of base model types and hyperparameters. This project demonstrates
how robust MLC models can be trained within a subspace, using a pragmatic ap-
proach. A solution is proposed for training a robust multi-label classifier chain
that predicts cardiotoxicity forms from known gene-expression data and drug prop-
erties. Empirical gene-expression data from the LINCS L1000 project have been
joined with drug compound properties, curated by other researchers to create the
model training set. The training set includes features for gene-expression responses
to drug perturbation of cancerous cells, molecular descriptors, 79-bit estate finger-
prints, and perturbation times. The multiple binary labels represent various car-
diotoxicity outcomes for each of the drugs. An automated hyperparameter search
was conducted on a relatively small search space, and led to the creation of a robust
MLC chain, called Best Means Chain, with its performance ranking in the top-3
of 100 other chains. The main finding is that for this cardiotoxicity application,
training a robust MLC chain can be achieved in a relatively straightforward man-
ner in reasonable time, albeit with the trade-off of being sub-optimal compared to
searching the full hyperparameter search space.

1 Introduction

This research project is primarily focused on developing a robust multi-label classifier
(MLC) in the field of cardiotoxicity prediction, using empirical pharmacogenomics (PGx)
data. Application of MLC models to cardiotoxicity forms is a relatively new area, and
automated hyperparameter searching for MLC models is still an open issue (Wever et al.;
2021). The proposed solution builds on state-of-the-art research by Mamoshina et al.
(2020) in developing a robust model, and exploits the gap regarding automated hyper-
parameter searching within a time-constrained framework (Wever et al.; 2021).
Cardiotoxicity refers to heart damage caused by cancer treatment. This makes em-
pirical datasets, such as the LINCS L1000 (Subramanian et al.; 2017) increasingly im-
portant. With the recent growth of PGx experiments, now is a fertile time for discovery
in this area. There are several inter-dependent cardiotoxicity forms, making MLC chains
theoretically well-suited for their prediction. However, creating robust MLC models is
challenging due to the complex hierarchy in the hyperparameter space (Wever et al.;
2021). Robustness of MLC models is important, especially when the hyperparameter



space has to be limited for computational feasibility. Given the large search space and
resource demand for training classifier chains, automation is crucial, since many days or
weeks of continuous training may be involved. Also, randomly generated hyperparameter
sets can easily lead to model training divergence, which needs to be interrupted to allow
the remaining experiments to run. Therefore, robustness needs to be introduced into the
hyperparameter search logic.

Research Question: How can the hyperparameter search of a multi-label classifier,
used to predict multiple cardiotoxicity outcomes from gene-expression data, be automated
to train a robust model in reasonable time, given only a small search space?

Research Objectives:

e OBJ-1: Create a sufficiently large training dataset that combines gene-expression
data, drug chemical properties, and cardiotoxicity outcome labels.

e OBJ-2: Perform feature selection for dimension reduction, and minimal model per-
formance degradation.

e OBJ-3: Implement a MLC to match the state-of-the-art, capable of predicting
multiple cardiotoxicity outcomes.

e OBJ-4: Automate the hyperparameter search for optimising the MLC, for training
a robust MLC using the optimised hyperparameters.

e OBJ-5: Demonstrate the efficacy of the robust MLC and automation process, rel-
ative to other models.

e OBJ-6: Benchmark the computation times of the training experiments.
Contribution to the Scientific Literature:

e CONTR-1: A simple and pragmatic approach has been developed for automating
the hyperparameter selection process for cardiotoxicity MLC, extending the prior
art in (Mamoshina et al.; 2020).

e CONTR-2: This work contributes to the area of Auto-ML in MLC, where the
proposed solution could serve as a starting point for machine learning practitioners,
before attempting more complex approaches, which are still open issues (Wever
et al.; 2021).

e CONTR-3: The proposed solution is expected to be generalisable beyond the scope
of this project, and useful for applications where complex Auto-ML solutions are
unnecessary, or not yet fully developed.

2 Related Work

2.1 Pharmacogenomics Overview

Pharmacogenomics (PGx) is a field of precision medicine that links genomics and drugs,
with the aim of minimising adverse events in tailored drug therapy, while also maximising
efficacy. PGx has experienced huge growth following the success of the Human Genome
Project, and given the abundance of emerging data, modern advances in genomics and
machine learning (ML) are stimulating new research (Pandi et al.; 2021). Before the era
of precision medicine there were many adverse side-effects and ineffective drug responses,
where variability of drug efficacy and toxicity was a significant challenge (Arbitrio et al.;



2021). While PGx has made it possible to identify predictive biomarkers, the validation
process must be robust, and clinical-grade assays need to comply with strict regulations
(Arbitrio et al.; 2021). Some studies (Sharifi-Noghabi et al.; 2021) have even begun to
propose guidelines for the development of ML predictors of drug sensitivity. PGx covers
a wide range of areas and applications, a small fraction of which are presented below.

2.2 Pharmacogenomics Research Areas

Oncology: Tran et al. (2021) investigated how deep learning (DL) has been applied in
the field of oncology, for example cancer diagnosis, prognosis and treatment management.
The authors stated that deep neural networks are well matched to oncology based mod-
els, where input data of different types can be combined, such as, clinical data, medical
images, and genomic profiles. However data variability is a major challenge, for example
where different laboratories have differently calibrated measuring devices. Other barriers
include the cost of acquiring high-quality data with omic (genomic, methylation and tran-
scriptomic) profiling, and the need for Al explainability in clinical settings, noting that
advances in this area have been recently accelerated (Tran et al.; 2021). For DL models,
a large amount of robust, well phenotyped data is needed for good model generalisability,
and the typical data sources that satisfy this constraint are not publicly available (Tran
et al.; 2021). This highlights the need for ML models to be made as robust as possible.

Antidepressant Treatments: Lin et al. (2021) reviewed ML and DL techniques
used in PGx for major depressive disorder (MDD) antidepressant treatments, using
neuroimaging and multi-omics data. Lin et al. (2021) stated that while research in this
field has encountered challenges, ML and DL techniques are uncovering genomic variants
and biomarkers linked to antidepressant treatments for MDD. They also suggested that
future research should investigate multi-layer feedforward neural networks (MFNN) and
generative adversarial networks (GAN) for predicting antidepressant treatment response
and remission.

Single-Nucleotide Polymorphism Prediction: Poplin et al. (2018) implemented
supervised deep learning using convolutional neural networks (CNN) to perform variant
calling of single-nucleotide polymorphisms (SNP) from next-generation-sequencing (NGS)
data. Variant calling is the process of detecting gene variants in DNA sequences. The
DL model (called DeepVariant) was trained with no specialist genomics knowledge, and
had high sensitivity, but low specificity (Poplin et al.; 2018). While the approach was
very successful in predicting positive cases, there is potential to improve the prediction
of negative cases.

DNA/RNA Protein Binding Site Prediction: Shadab et al. (2020) used two
DL models to identify DNA-binding proteins (DBP), using only protein sequences. One
of these (DeepDBP-ANN) was a traditional neural network and the other was a CNN
(DeepDBP-CNN). The DeepDBP models seemed to have a noticeable difference between
the training and test performance scores (in the order of 10%). This suggests that over-
fitting of the training set may have been an issue, with a potential lack of robustness in
the model. Shadab et al. (2020) also reported that in similar ML studies, overfitting was
very common.



Drug-Target Interaction: The prediction of drug-target interaction can help screen
new potential drugs for market, prior to full clinical trials, where many side-effects could
be predicted at early stages of the drug discovery process (Vaz and Balaji; 2021). Tsubaki
et al. (2018) combined a graph neural network (GNN) and CNN for predicting drug-
target interaction, using a single-label modelling approach, where the GNN was used for
the drugs, and the CNN was used for the targets. Also, in contrast to other research,
such as (Mamoshina et al.; 2020), their proposed GNN and CNN models did not rely
on any chemical or biological features, such as fingerprint data. Also, the data was not
empirical, where an assumption was made that similar known drug-target interactions
are valid for labelling unknown interactions. The results were compared to those from
traditional ML models, such as random forest, k-NN, SVM, and L2-logistic regression.
It was reported that using a low-dimensional, shallow neural network has the potential
to perform better than prior methods for both balanced and unbalanced datasets. While
the results in Tsubaki et al. (2018) were positive, and the approach rigorous, potential
restructuring of the single-label classifier (SLC) into a multi-label classifier (MLC), such
as the classifier chain in (Mamoshina et al.; 2020) may allow correlations between different
drug interactions to further increase the model performance and / or robustness.

2.3 Experimental Gene-Expression Studies

The National Institutes of Health (NIH)! established a gene-expression platform, called
LINCS L1000 that led to the enhancement of a large public dataset called Connectivity
Map (CMap), linking genes, drugs, and disease states (Subramanian et al.; 2017). The
CMap dataset has been used by many researchers, and referenced 1,053 times. In simple
terms, the L1000 assay platform has provided gene-expression measurements for a range
of cell lines in response to over 42,000 chemical perturbagens. The current CMap data
has over 1.3 million gene-expression profiles, where a profile refers to the identification of
genes in a cell that make messenger RNA. Messenger RNA are the molecules that carry
the genetic information to create proteins from DNA.

The data includes the gene-expression values and meta data describing how each
sample in the assay was perturbed, in terms of chemical compound used, dosage amounts,
dose times, and cell lines. Due to the large size of the dataset, the meta data is usually first
queried to extract ID numbers for the desired chemicals and genes. The gene-expression
data is then extracted using those IDs. The data is provided in 5 levels, each differing
by the amount of post-processing involved. Level-1 is the expression data in their rawest
form, and the level-5 is fully cleaned and processed. All levels are publicly available.
The CMap data is one of the key datasets used in this project, based on the work by
Mamoshina et al. (2020), discussed in Section 2.5.

Various other research has been performed with this data, including: 1) Application of
deep learning for gene-expression inference (Chen et al.; 2016). 2) Building graph neural
networks for identifying which approved drugs may be repurposed for breast cancer (Cui
et al.; 2021). 3) Building binary classifiers to detect molecular initiating events (Bundy
et al.; 2022).

thttp://commonfund.nih.gov /lincs/



2.4 Classifier Chains

(Classifier chains are highly regarded multi-label classifiers, and have been investigated
with keen interest over the last decade (Read et al.; 2021). They are structured such that
multiple binary classifiers are chained together in series, where each classifier predicts
a single label. Each classifier appends the predicted label from the preceding classifier
to its feature set. This allows inter-dependencies between labels to be captured by the
model. Any binary classifier can be used as a base model in the chain, such as support
vector machines, decision trees, logistic regression, and random forests) (Read et al.; 2021;
Wever et al.; 2020).

Classifier chains have often shown to outperform individual classifiers when the labels
are independently evaluated (Read et al.; 2021), and if necessary, chain ensembles can
be used to reduce the error variance, albeit at the cost of average performance (Read
et al.; 2021). Classifier chains are at risk of performing poorly when the labels are highly
imbalanced (Read et al.; 2021), which is an issue for some of the labels in this project.
Another challenge with classifier chains is their quadratic complexity with feature space
expansion, however this is not a problem when the number of labels is less than ten (Read
et al.; 2021).

In contrast to Auto-ML efforts for SLC models (Probst et al.; 2019; Bergstra et al.;
2015), research into Auto-ML for MLC models, such as classifier chains, is still in early
stages, with recent work being done by Wever et al. (2020, 2021). So far, Auto-ML
has only been applied to MLC models with genetic algorithms, grammar-based genetic
programming, hierarchical task network planning, and a classifier specific approach with
neural networks (Wever et al.; 2021). Wever et al. (2021) found that all methods struggled
with the search space, and also that replacing these complex search methods with simpler
ones, such as random searching, comes at the cost of not finding the globally optimal
hyperparameters. Wever et al. (2021) note that currently, complex methods are still
mostly infeasible out of the box. As such, simpler approaches still offer a reasonable
tradeoft.

2.5 Cardiotoxicity Prediction from Gene-Expression Data

Concept: Mamoshina et al. (2020) focused on multi-label prediction of cardiotoxicity
outcomes, using the L1000 gene-expression data, joined with drug properties. They com-
prehensively tackled the problem, devising a novel multi-label classifier, expanding the
group of cardiotoxicity outcomes being predicted. This project builds on that research,
proposing a complementary approach for increasing model robustness. The salient details
of Mamoshina et al. (2020) are discussed below.

Datasets: To link gene-expression data with cardiotoxicity outcomes, Mamoshina
et al. (2020) sourced and curated the various data from public databases including:
Connectivity Map (CMap)?, Medical Subject Headings (MESH)?, Side Effect Resource
(SIDER)?*, Chemical Translation Service (CTS)5, Medical Dictionary for Regulatory

Zhttps://clue.io/
3https://www.ncbi.nlm.nih.gov/mesh
4http://sideeffects.embl.de/
®http://cts.fiehnlab.ucdavis.edu/



Activities Terminology (MedDRA)S, DrugBank’, and ‘R’ CDK library®. These data-
sets allowed the L1000 experiments to be linked through the Broad Institute drug IDs
to side-effects, cardiotoxicity drug states, chemical interaction compound identifiers, mo-
lecular descriptors, compound fingerprints, and cardiac / vascular disorders. The theory
behind the fingerprints is described in (Hall and Kier; 1995).

The drug dataset curated by Mamoshina et al. (2020) consisted of 9,933 samples, split
into training (291 drugs, 8,237 samples) and test sets (66 drugs, 1,696 samples). These
were collapsed into matrices of size 340 x 1,154 and 340 x 746 respectively, where each
row corresponded to gene-expression values for individual cell lines, dosage amounts, and
dose times. The final ‘Mamoshina’ training set, made available for this project, consisted
of 340 features, 7 labels, and 1,154 rows. The test set consisted of 746 rows with drugs
not present in the training set. The features consisted of 254 CMap gene-expression
values, 7 molecular descriptors, and a 79-bit estate fingerprints. The molecular descriptors
were molecular weight (MW), partition coefficient (XLogP), atomic polarisabilities (apol),
topological polar surface area (TopoPSA), polar surface area expressed as a ratio to
molecular size (tpsaEfficiency), Ghose-Crippen LogKow (ALogP) and molar refractivity
(AMR) (Mamoshina et al.; 2020).

Modelling Approach: Due to observed correlation between the multiple cardiotox-
icity labels, Mamoshina et al. (2020) selected a classifier chain as the model framework,
within which they implemented various base classifiers, including elastic net logistic re-
gression (ELNET), random forest (RF), gradient boosting (GBM), and categorical boost-
ing (CATBOOST). They also compared the classifier chain results with single binary
classifiers. The MLC performance was evaluated using Matthews correlation coefficient
(MCC), averaged across each label. Note that the MCC is mostly intended for SLC
models, rather than MLC ones. In constrast, the Jaccard score is suited to both SLC
and MLC models. Cohen’s Kappa score was also used to estimate the accuracy of each
label, and also between transcriptional features. With regards to hyperparameter selec-
tion, Mamoshina et al. (2020) described that they selected optimal values, and provided
these in the supplementary material, however a discussion on the selection process was
not presented. This gap can be addressed with automated hyperparameter searching.

Feature Selection and Robustness: After establishing that the RF model was
the best performer, Mamoshina et al. (2020) experimented with different combinations
of feature subsets on the RF classifier chain, including: 1) Gene-expression features only,
and 2) Molecular descriptors and fingerprints only. It was found that models trained on
all features performed better than any subset. For robustness, different cross-validation
methods were trialled, including: 1) Random validation sets, and 2) Leave-drug-out
validation sets. It was found that random cross-validation led to overly high performance
due to overfitting, whereas the leave-drug-out approach showed less overfitting, with lower
performance. This was the approach to model robustness.

Further Observations: Mamoshina et al. (2020) established the first machine learn-
ing approach capable of predicting six forms of drug-induced cardiotoxicity from both
gene expression and molecular descriptors data. They reported that the RF classifier
chain showed good predictive ability for cardiotoxicity forms, outperforming SLC mod-
els, and that coupling the gene-expression data with the molecular descriptors improved
predictive power.

Shttps://bioportal.bioontology.org/ontologies/ MEDDRA
Thttps://www.drugbank.com/
8https://cran.r-project.org/web/packages/rcdk /index.html



2.6 Identified Research Gaps

Several research gaps have been identified from the literature and preliminary analysis.

Feature Selection: This was somewhat investigated in (Mamoshina et al.; 2020)
by experimenting with a few large feature subset blocks, namely gene-expression data,
molecular descriptors, and 79-bit fingerprints. The gap being addressed in this research is
to fully test all possible feature combinations, using recursive feature elimination prior to
training the model. Investigating further reductions in feature count dramatically helps
speed up training.

Training Set: The size of the ‘Mamoshina’ training set is considered quite small for
the purpose of this study. This gap is addressed by re-sourcing a larger portion of the
L1000 CMap data with an increased number cell lines.

Choice of Performance Metric: Rather than use the SLC metrics (MCC and
Cohen Kappa), as in (Mamoshina et al.; 2020), the Jaccard score is considered to be
more suitable for this project, due to its suitability for both SLC and MLC models.

Automated Hyperparameter Selection: A core aspect of the research question
is automating the hyperparameter search for the robust MLC. Building on the approach
in (Mamoshina et al.; 2020), and considering that Auto-ML hyperparameter selection for
MLC models is still an open issue (Wever et al.; 2021), the proposed solution addresses
this gap.

Experiment Interruption: A requirement for automation is the continuous training
of several experiments without getting stuck in infinite loops. The proposed solution im-
plements timed interruption of the training process to ensure that the overall experiment
process can complete in reasonable time.

3 Methodology

3.1 Datasets

Curation: Data were curated for this project from CLUE CMap?, and (Mamoshina et al.;
2020). The CMap data contains only gene-expression data, measured and processed
through the LINCS L1000 project. The gene-expression data represents the extent to
which a variety of gene assay samples have been experimentally expressed using controlled
drug stimuli. The genes span many biological cell lines, and other features in the drug
perturbation stimuli include dosage amount and dose time.

The data from (Mamoshina et al.; 2020) were supplied on request by email, and con-
tain a small subset of gene-expression data from the CMap source, joined with separately
curated cardiotoxicity labels, drug compound molecular descriptors and 79-bit finger-
prints. The gene-expression data in the provided Mamoshina training dataset were only
associated with one cell line, having approximately 1000 observations. This was con-
sidered too small to obtain sufficiently accurate results in this study, so to increase the
sample size, the gene-expression data was replaced with newly collected CMap data with
more cell lines (each having a row count of at least 100 cases). This increased the dataset
to approximately 9000 observations, where a feature selection process was adopted to
automatically remove data with poor predictive ability.

9https://clue.io/
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Choice of Raw CMap Dataset: The CMap data are publicly available at different
levels (1 to 5), differing in terms of the degree of processing from the raw laboratory
experiment readings. Level-1 is the most raw, and level-5 is the most processed. The
creators of the CMap data suggest using Level-5 data, however Mamoshina et al. (2020)
reported using Level-3 data. On close inspection, the provided Mamoshina dataset ap-
pears to be more closely matched with the Level-2 data. This led to choosing the Level-2
data in this project with some further standardisation.

Joining CMap and Mamoshina Data: The two datasets are inner-joined using
the drug identification numbers. Based on the exploratory data analysis (EDA), the data
are also filtered to keep only rows where the dose time was 6 or 24 hours, and the dosage
had a molar concentration of 10uM. The joined dataset has 354 features, 7 labels, and
9106 rows. It is split into training and test datasets to have the same respective drugs as
in the Mamoshina training and test data. Finally, the data are standardised by removing
the mean, and scaling to unit variance.

Feature Selection: Feature selection is used to reduce the dimensionality of the
feature set, and increase the predictive power of the trained model. This is implemented in
Python using random forest binary classifiers and recursive feature elimination, with one
model per label. The process is applied to each independent label, and the reduced feature
set that leads to the highest model performance is selected as the final set. Assessment is
based on the highest Area Under the Curve (AUC) score, also factoring in the F1 scores.

3.2 Modelling and Training

Random Forest Classifier Chains: The chosen model for this project is a classifier
chain to closely match the one used in (Mamoshina et al.; 2020). Figure 1 shows the
model structure, comprising several random forest binary classifiers chained together,
where the output predictions from one stage are appended to the feature set of the fol-
lowing stage. The base features, before chain linking, are obtained from the feature
selection process, and each model in the chain predicts one of the multiple labels. To
mimic the approach in (Mamoshina et al.; 2020), the order of the labels (and chain
stages) is maintained as: 1) Vascular.disorders, 2) Cardiac.disorder.signs.and.symptoms,
3) Cardiac.arrhythmias, 4) Heart.failures, 5) Coronary.artery.disorders, 6) Pericar-
dial.disorders, 7) Myocardial.disorders. Each stage has a training and validation phase,
using b-fold cross-validation. This validation phase deviates slightly to the leave-drug-
out validation in (Mamoshina et al.; 2020), due to difficulty in applying the Mamoshina
approach with the Python library module used.

Best Means Chain: The novel work in this project is the creation of a robust random
forest classifier chain, building on the work in (Mamoshina et al.; 2020). The concept
of Best Means is that the hyperparameters that on average lead to increased model
performance (measured by the Jaccard score), are selected to train a single classifier chain,
called the Best Means Chain. The best hyperparameters are selected by grouping the
results from 100 classifier chain training experiments, and calculating the mean Jaccard
scores for each hyperparameter value. The values with the highest mean score are then
chosen. The idea is that using the set of hyperparameters which generally yield the
highest model performance will increase robustness of the model when unseen data is
used to predict cardiotoxicity. As with any robust modelling approach, this robust model
is expected to perform highly most of the time but not necessarily always. Section 6
presents the results of the hyperparameter selection process, arising from 100 individually
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Figure 1: Classifier Chain Structure.

trained classifier chains. The hyperparameters include:

n_estimators: number of trees in the forest.

max_features: maximum number of features considered for splitting a node.
maz_depth: maximum number of levels in each decision tree.

bootstrap: method for sampling data points.

min_samples_leaf: minimum number of data points allowed in a leaf node.
min_samples_split: minimum number of data points placed in a node before the
node is split.

Mamoshina et al. (2020) used a subset of these hyperparameters (ntree and mtry) in
their ‘R’ implementation for n_estimators and max_features respectively. ntree is equival-
ent to n_features, however mtry differs from maz_features slightly, in that it is defined as
an exact value rather than a range of values. Note also that n_estimators and max_features
are commonly described as being the most influential hyperparameters for the random
forest algorithm. The remaining ones used in this study were chosen from commonly
found online examples. The decision to use randomly selected hyperparameters within
relevant ranges addresses the small search space goal in this project, as a practical trade-
off against running all possible combinations, which would be time-prohibitive. The
ranges for n_estimators and maz_features are based on those in (Mamoshina et al.; 2020)
to mimic the search space as closely as possible. The additional hyperparameters are
included to deepen the hyperparameter search space, from which the small subset is
sampled.



Ensemble Chain: To help benchmark the Best Means Chain, an alternative classifier
chain is created. This is a direct-voting ensemble of the 100 individual chain predictions.
The algorithm averages the output probabilities for each label across the individual chains,
and applies a 0.5 probability threshold to set the binary output to either zero or one.

Training Time: Training experiment runs reveal that training duration varies dra-
matically, with times ranging between 0.5 and 2 hours, sometimes diverging. A Python
class-based multi-threading approach is used to automatically halt the training process
after 1 hour and continue with the next experiment. The whole training process for the
100 experiments runs continuously for approximately 1 week. FEach classifier chain is
saved to a single model output file, for subsequent post-processing.

3.3 Post-Processing and Evaluation

Assembly of the Training Results: The first stage of post-processing involves loading
each of the model artifact files, and linking the models, hyperparameters and experiment
performance results. Each row in the results data frame corresponds to a single model
within each chain, leading to 700 rows from the 100 chains and 7 labels. The calculated
metrics include precision, recall, F1 score, MCC score, and Jaccard score. Note that
the metrics for each row correspond to the random forest binary classifiers at each chain
stage. Correlation statistics between each of the performance metrics are presented in
Section 6.

Performance Metric Calculations: The second stage of post-processing is to group
the rows by each hyperparameter, and calculate the aggregate mean Jaccard scores. The
Jaccard score has been chosen to assess relative chain performance, as it can easily be
applied to both single-label and multi-label outputs. It is also easily interpretable, ranging
between 0 and 1, with 1 being a perfect score. In contrast, Mamoshina et al. (2020) used
the MCC on the chain’s random forest binary classifiers, then averaged them to score
the overall model. Section 6 shows the grouped Jaccard scores for two hyperparameter
examples, plotted in descending order to clearly show the best performing hyperparameter
values across the 100 chains. The best performing set of hyperparameters are then used
to train the Best Means Chain. The individual random forest chains, Best Means Chain
and Ensemble chain are then ranked according to their Jaccard scores. The results are
presented in Section 6.

Computation Time and Ensemble Size: The trained model artifact properties are
analysed to determine the computation time of each training run and file size. Correlation
statistics are also calculated between the Jaccard scores, computation time (training +
file writes), and file size. Further analysis is conducted to search for diminishing returns
in the computation time and model performance to determine if there is an optimal
time at which computation should be halted. Diminishing return analysis is carried
out to investigate if there exists an ensemble size beyond which, additional benefit in
training more chains is limited. The process involves recalculating the ensemble output
for increasing numbers of chains between 2 and 100, then plotting the Jaccard score vs.
ensemble size. The results are presented in Section 6.
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4 Design Specification

Hardware and Software Platforms: All code was executed on a standard spec HP
Pavilion laptop, running Windows 10, with a 6-core AMD Ryzen 5 4500U processor,
2.375 Ghz, Radeon Graphics card, 8GB RAM, and a 500GB hard drive. Anaconda and
Jupyter Notebooks were used as the programming framework, with all code being written
in Python. Standard library packages, such pandas, numpy, pickle, etc. were used for the
common tasks, and specialist packages including scikit-learn!® and cmapPy!! were used
for machine learning related tasks and working with the CMap data.

Data Curation and Merging: The CMap gene-expression data was
sourced from the CLUE CMap!? project. The data consists of three files:
1) Perturbation information, GSFE927/2_Broad_LINCS sig_info.tzt, 2) Gene in-
formation GSE927/2_Broad_LINCS_gene_info.tzt, and 3) Gene-expression data
GSE92742_Broad_LINCS_Level2_GEX _epsilon_n1269922x978.gctx.  The first two are
relatively small files, however the gene-expression data is close to 5 GB in size.
Therefore, the information files are used to obtain the indexes of only the required
gene-expression data. These are then used to ingest the gene-expression values.

The Mamoshina dataset was sourced directly from the authors of (Mamoshina et al.;
2020), who provided a link to .csv files via email. The genes and drugs in the Mamoshina
datasets are used to collect the meta data from the CMap datasets before ingesting the
gene-expression data as described above. The curated and merged datasets are saved
into Python binary ‘pickle’ files called train_v2_2.pkl and test_v2_2.pkl. These data are
also standardised, using Python’s scikit-learn package, where the standard scaler object
is stored in scaler.pkl.

Exploratory Data Analysis: The merged data is analysed for distribution char-
acteristics in the numerical features, and value counts for the categorical features. The
histograms and bar charts are created using Python’s matplotlib package. The final data-
sets formed for model training and validation are saved into ‘pickle’ files v22_train_x_cc.pkl,
v22_train_y_cc.pkl, v22_test_x_cc.pkl, and v22_test_y_cc.pkl.

Feature Selection: Feature selection pipelines, using a random forest classifier and
recursive feature elimination are trained separately for each of the labels, requiring ap-
proximately 30 min for each set of features to be reduced. Scikit-learn is used for both
training and evaluation.

Modelling and Training: The training process involves stepping through a large
number of randomly selected hyperparameter combinations until 100 random forest classi-
fier chains are successfully trained. Scikit-learn is used to train the models and extract the
final performance metrics. Early training experiments showed that some hyperparameter
combinations unpredictably led to insolvable models. A class-based processor threading
method remedies this by automatically interrupting the experiments and moving on to
the next run. Using this approach, the overall training process continues uninterrupted
with the 100 experiments completing in approximately one week.

Post-Processing and Evaluation: The final results are gathered into pandas data
frames and saved to all_results.pkl. The graphical outputs (bar charts, box plots and
correlation charts) are created using matplotlib.

Feature Expansion: Due to the feature selection process, the current design is

Ohttps:/ /scikit-learn.org /stable/
Uhttps://clue.io/cmapPy/
2https://clue.io/
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Figure 2: End-to-End Design.

suitable for a specific subset of genes, molecular descriptors, and estate fingerprint bits.
If additional genes, chemical properties, and / or drugs are required, the training and
test datasets would need to be rebuilt and the model retrained. Also, if new drugs
are introduced, they would need to be accompanied with labels for each of the seven
cardiotoxicity outcomes. The feature selection process would also need to be redone.
Figure 2 shows the overall end-to-end process described above.

5 Implementation

Concept: Following a process of data curation, transformation, and training, the final
solution in this study is to predict seven cardiotoxicity outcomes based on measured gene
expression data for known drugs and their chemical properties. To do this, a robust
random forest classifier chain is trained, based on hyperparameter values, proven on
average to yield high model performance.

Best Means Chain Model Predictions: After training, the Best Means Chain
model is validated using a test set to predict cardiotoxicity outcomes with drugs unseen
by the trained model. All performance metrics are calculated based on these predictions
and known true values in the test set.

Evaluation and Benchmarking: The Best Means Chain performance is compared
to the 100 individual chains and the direct-voting Ensemble chain. The test set is used
to obtain the predictions from all models, with the Jaccard similarity score being used to
assess performance. In addition to model performance, measurements are collected for
the trained model artifact sizes, and computation times (training + file write operations).
These are analysed to assess potential associations between model performance and com-
putation times and artifact storage requirements. The motivation is to identify potential
time and storage savings to be made during the model training process. Ensemble size
is also investigated for potential computation time savings at the post-processing stage.
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Figure 3: Feature and Label Distributions.

6 Results and Discussion

6.1 Training Dataset

Discrepancies between Reported and Provided Mamoshina Datasets: The
training set in the Mamoshina data obtained for this project, matches the reported di-
mensions in (Mamoshina et al.; 2020), however the provided test set size differs slightly.
Also, the entire Mamoshina dataset of 9,933 samples is not available, so it cannot be
validated how the entire dataset was collapsed into the smaller training sets. Further,
the size of the smaller training set is considered too small for the purpose of this project.
This is the main motivation for re-sourcing the CMap gene-expression data and joining
it with the drug-related portions of the Mamoshina dataset.

Note also that Mamoshina et al. (2020) reported using L1000 Level 3a - NORM data,
however on inspection, similar gene-expression values could not be found between the
Mamoshina dataset and the online CMap source, where values differed by one to two
orders of magnitude. This gap is reduced by using the Level 2 CMap data, although
it is not normalised at source. It is supposed that Mamoshina et al. (2020) carried out
transformations on the Level 3a - NORM data, however this could not be confirmed. This
unresolved discrepancy makes direct performance comparison with this project difficult.
Focus in this project has been firmly placed on relative performance of the Best Means
Chain with the other chains in this project, rather than absolute comparisons with the
Mamoshina model performance.

6.2 Exploratory Data Analysis and Transformations

Figure 3a shows example gene expression distributions in the CMap dataset. All other
genes show similar distributions, most of which are nearly normal. Some do have some
slight right-skew, although most of the skewness is due to outliers. Figure 3b shows the
distribution of labels from the Mamoshina dataset, where a large variability can be seen
between the level of imbalance between the positive and negative cases. The proportions
refer to the proportion of positive cases to all cases.
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Figure 4: Best Feature Selection Model.

6.3 Feature Selection Results

Figure 4 shows the best performance results from the feature selection process, and
corresponds to the Cardiac.arrhythmias label. Figure 4a shows the confusion matrix
and the classification report. From left to right, top to bottom, the confusion matrix
shows the [ True-Negative, False-Positive, False-Negative, True-Positive] having the values
[825, 69, 562, 152] respectively. The row of highlighted metrics (precision, recall, f1-
score) corresponds to cardiotoxicity outcomes being positive, i.e. drugs with reported
cardiotoxicity. The support values show that there are 714 out of 1608 occurrences in
the test set with a positive value. The number of selected features for this model is 221,
reduced from the full set of 354. Figure 4b shows the Receiver Operating Characteristic
(ROC) curve for the model, with an AUC score of 0.59, 9% better than randomly guessing
the outcome.

While there is a noticeable reduction in the number of features, the model training
time could be significantly improved if the number of features could be reduced further,
for example to less than 50. One possible approach might be to use Principle Component
Analysis (PCA), which could potentially also lead to higher model accuracy from the
projection of features onto orthogonal axes.

One issue that has not been dealt with in this project is that the optimal feature
set depends on which label is used to train the feature selection model. However the
current implementation only allows for one feature set to be applied to all classifiers in
the chain. This causes the feature selection for the overall classifier chain to be sub-
optimal. Improved results might be achieved if the classifier chain algorithm could be
modified to allow each stage of the chain to have its own optimal base feature set.

6.4 Model Performance Metrics

Figure 5 shows the correlations between each of the classifier chain model performance
metrics (precision, recall, F1, MCC, Jaccard), calculated for each model in each chain.
Relative to the Jaccard score all metrics have a high correlation, with values above 0.64,
two of which (recall and F1) have extremely high correlation values above 0.99. The
MCC score has a high correlation of 0.76. Another benefit of choosing the Jaccard score
to evaluate the models is that it has a very high correlation with recall, which when
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Figure 5: Performance Metric Correlations.

maximised, results in minimising false-negatives. This would be considered safer in a
medical context such as cardiotoxicity prediction.

The choice of using the Jaccard score in this study deviates from (Mamoshina et al.;
2020), where MCC was used. This makes it difficult to make absolute performance
comparisons, however it was decided that Jaccard score is more suitable for calculating
performance metrics for multi-label classifiers. Given that the primary goal of this re-
search is to create a robust classifier chain, only relative scores between the individual
chains, Best Means Chain and the Ensemble are strictly needed. For that purpose, the
choice of Jaccard score is considered appropriate.

6.5 Best Means Hyperparametmers

Figure 6a and Figure 6b show the mean Jaccard scores for two hyperparameters,
n_estimators and max_features, commonly used with random forest classifiers. It can
be seen that n_estimators = 50 leads to the highest mean score of approximately 0.143,
and that max_features leads to a much higher mean Jaccard score with a value of
n_features. Note that n_features refers to the total number of features in the training
set, and sqrt refers to the square root of that number.

The same approach was used with all other hyperparameters, leading to the set of
Best Mean Hyperparameters, shown in Table 1, and used to train the Best Means Chain.
Note that Chain ID and Model ID refer to the individual chain ID and model (or label)
ID numbers. As discussed in Section 6.6, this Best Means Chain approach has proved
very effective, resulting in a high Jaccard score, relative to the individual chains and
Ensemble chain.
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Figure 6: Averaged Jaccard Scores across Grouped Training Results.

Hyperparameter

Chain 1D 13

Model ID 1
n_estimators a0
max_features m_features
max_depth 40
bootstrap Falze
min_samples_leaf 2
min_samples_split P

Table 1: Best Means Hyperparameters.
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6.6 Chain Rankings

Figure 7 shows the ranking of all 100 individual chains (blue), the Ensemble of those
chains (green), and the Best Means Chain (red). The Jaccard score here is the multi-
label version, calculated for each chain. The Best Means Chain has outperformed most,
which is also highlighted in the boxplot in Figure 8. The red marker shows that the
Best Means Chain performance lies well into the upper outlier region, and the Ensemble
is closely situated to the bottom of the interquartile range. These results demonstrate
that the Best Means approach has been very effective at producing a robust model, in
contrast to all other chains in this project.

Individual Chain Score Distribution
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Figure 8: Boxplot Distribution of Chain Performance.

The configuration manual for this project (Signorelli; 2022) shows how the training
experiments can be run in a Short Demo Mode that allows the code to execute in ap-
proximately 20 min, as opposed to the 1 week needed for the full set of experiments.
Figure 9 shows that the Best Means Chain performs well even with a small number of
individual chains, however the relative benefit of the approach increases with the number

17



of chains. This highlights generalisability of the approach. Future work could investigate
the relationship between the number of chains and the Best Means Chain performance
in more depth. As part of that work, a curve of diminishing returns would help identify
the point at which there is no further benefit to increasing the number of chains, as the
training time can be intensive.

Classifier Chain Performance Comparison

Jaccard Score
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~

0.16 -
0.15 -
0.14 | =
0.13 A
B.M. Chain Ensemble
Chain ID

Figure 9: Chain Rankings (Short Demo).

The positive trend of Jaccard performance on the test set suggests that the robustness
of the Best Means Chain approach is generalisable to other similar data sets. Future work
could look at how the approach works with unrelated datasets, to determine how well
generalisability extends to a wider context. The approach to robustness in (Mamoshina
et al.; 2020), was to use a leave-drug-out cross validation approach, where each fold (or
sub-division) in the validation set did not contain drugs from any other fold. Mamoshina
et al. (2020) reported that this improved the robustness of the model. Carrying on from
this project, future work could investigate whether a combination of the two approaches
leads to superior performance of the individual ones alone.

6.7 Ensemble Size and Computation Times

Ensemble Size: Figure 10a shows the diminishing return curve for ensemble size. Fol-
lowing some initial transient oscillations, the curve is quite flat, with a slight downward
trend beyond approximately 20 chains. This suggests that for the current application,
limited benefit can be expected from large ensemble sizes. Future work could investigate
whether the random selection of individual chain subsets, used in each ensemble voting
calculations might change the results. Additionally, individual chains with different clas-
sification models, for example support vector machines, k-nearest neighbours, and the
various other models in (Mamoshina et al.; 2020) could be added to the ensemble. These
different model types could potentially increase the Ensemble performance.
Computation Times: Figure 10b shows the Computation Time curve, and Fig-
ure 11 shows the correlation between the Jaccard performance metric, the computation
time, and artifact size of the trained models. The Jaccard score can be seen to have no
correlation with computation time, and a slight negative correlation with artifact size.
The Ensemble Size curve also suggests that there is no clear relationship between Jaccard
score and computation time, although there is potentially a small band of computation
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times that exhibit high performances between approximately 1.3 and 1.7 hours. This
should be investigated in future work, and considering that the Best Means Hyperpara-
meters appear to be well correlated with Jaccard score, it would be insightful to search for
correlations between the Best Means Hyperparameters and computation time. If no cor-
relation exists, then future training experiments could be potentially interrupted earlier
in the process. This could dramatically reduce the overall training time.
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Figure 10: Diminishing Return Curves for Ensemble Size and Computation Time.

Computation Time (hr)

Computation Time (hr) Size (MB) Jaccard
Size (MB)

Computation Time (hr) 1.000000 0.437228 0.089430
Size (MB) 0.437228 1.000000 -0.295665 Jaccard

Jaccard 0.089430 -0.295665 1.000000

Figure 11: Correlations between Performance, Computation Time, and Artifact Size.
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7 Conclusions and Future Work

This research project has achieved all of the objectives for answering the research ques-
tion: “How can the hyperparameter search of a multi-label classifier, used to predict
multiple cardiotoxicity outcomes from gene-expression data, be automated to train a ro-
bust model in reasonable time, given only a small search space?”. To achieve OBJ-1,
empirical gene-expression (CMap) data from the NIH’s L1000 platform was collected
and joined with the Mamoshina data, creating a sufficiently large, cleaned dataset. To
achieve OBJ-2, feature selection was performed, using recursive feature elimination with
single-label random forest classifiers to reduce the dimensionality by approximately one-
third. To satisfy OBJ-3, the Mamoshina MLC chain model was replicated as closely as
possible, with a modified hyperparameter set for the random forest models. OBJ-4 was
achieved by creating a process-interruptable framework for aborting computationally ex-
pensive training experiments, from which, the hyperparameters were decoupled to obtain
the best performers. These were used in the Best Means Chain. OBJ-5 was achieved
by comparing the Jaccard scores for all individual chains, the Best Means Chain, and
Ensemble, demonstrating the Best Means Chain to be ranked in the top-3. OBJ-6 was
achieved through correlation analysis between computation time, and model performance.

Hyperparameter automation has been achieved using the Best Means Chain approach
that automatically decouples the hyperparameters across the 100 individual chains to
find the highest performing ones on average. The small search space goal has been
achieved, since the subspace of 100 hyperparameter combinations is much smaller than
the set of possible combinations arising from six random forest hyperparameters that
have either 2, 3, 5, or 11 potential values. Training time has been kept feasible, using an
interrupt-based framework that prevents non-converging experiments to be halted and
skipped. Robustness has been demonstrated through consistently high performance on
small and large datasets (full experiment runs versus short demo runs). It has also been
demonstrated by how the Best Mean Chain ranked in the top-3 of the 100 individual
and Ensemble chains. Having achieved all of these outcomes and objectives, the research
question has been answered.

It was found that, for this cardiotoxicity application, it is possible to find a relatively
high performing robust MLC model from a relatively small hyperparameter search space,
using the Best Means Chain (CONTR-1). Implications of the work are that, while Auto-
ML for MLC models is still an open issue, the outcomes can be used to tune robust
MLC models in a straightforward manner, at least for similar applications (CONTR-2).
One limitation of this study is that each stage in the MLC chains implements the same
base model, base features, and hyperparameters, which makes the solution sub-optimal.
The high ranking performance of the Best Means Chain, and its consistent performance
between the full experiment runs and the short demo runs, demonstrates generalisability
of the approach (CONTR-3).

While this project has successfully demonstrated a technique for creating robust MLC
chains for cardiotoxicity prediction, several avenues can still be investigated. Potential
exists to further optimise the MLC performance by using different base models at each
stage of the chain. Also, using different feature subsets at each stage may also increase
performance. The leave-drug-out cross-validation approach could be implemented to
investigate further improvements to robustness, when combined with the proposed Best
Means Chain approach. Investigating variations of label order in the chain would add
further depth to the hyperparameter search space. Searching for relationships between
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the number of individual chains and the Best Means Chain performance could lead to
computational savings, where the process-interrupt timeout period could potentially be
reduced. While this work is expected to be generalisable beyond the scope of this project,
more work is needed to confirm the extent. To gain a deeper understanding, the proposed
solution could be applied to the other PGx applications presented in Section 2. Finally,
further insights should be sought for the medical interpretations of expanding the training
set to include more cell lines.
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