
Configuration Manual

MSc Research Project

Data Analytics

Zeba Siddique
Student ID: x20227086

School of Computing

National College of Ireland

Supervisor: Dr. Abubakr Siddig

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Zeba Siddique

Student ID: x20227086

Programme: Data Analytics

Year: 2022

Module: MSc Research Project

Supervisor: Dr. Abubakr Siddig

Submission Due Date: 15/08/2022

Project Title: Configuration Manual

Word Count: 1126

Page Count: 29

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Zeba Siddique

Date: 13th August 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Configuration Manual

Zeba Siddique
x20227086

1 Introduction

This document is a configuration manual that contains all the necessary information re-
quired to achieve a child speech synthesis artefact. It comprises of the minimum and
must-have system requirements for reproducing the thesis work. Along with the ne-
cessary system configurations and pre-requisites, this document with the help of code
snippets describes the main blocks of the thesis. The document details the step-by-step
instructions from data collection to generating results to executing the artefact.

2 Required Specifications

2.1 Hardware requirements

Figure 1 describes the hardware specifications (device and windows) used to carry out
the thesis.

Figure 1: Hardware Specifications

1



2.2 Software requirements

For execution of the artefacts, the below mentioned list of software must be installed on
the system.

1. Anaconda Navigator for Windows (Version 4.12.0)

2. Python 3.9.13

3. Visual Studio Code (Version 1.70.0 [user setup])

4. VS Extensions:

(a) Jupyter (v2022.7.1102252217)

(b) Jupyter Keymap (v1.0.0)

(c) Jupyter Notebook Renderers (v1.0.9)

(d) Pylance (v2022.8.20)

(e) Python (v2022.12.0)

5. Google Chrome (Version 104.0.5112.81)

2.3 Storage requirements/ Products/ Subscriptions

Following are the additional and essential requirements used to carry out the thesis:

1. Google Colaboratory Pro+

2. Google One/ Drive - 2TB storage

3 Data Collection

This research uses a freely available multi-speaker child speech dataset: My Science Tutor
(MyST). This dataset was obtained through a shared drive after receiving necessary
permissions from concerned authorities and agreeing to terms and conditions for the
research license agreement. Access to MyST Corpus can be requested from the official
website of the dataset 1. The dataset contains audio references (.flac) and their transcripts
(.trn) if any for each speaker based on the recording phase. The MyST corpus consists
of 456 hours speech data from 1,371 students.

4 Data Cleaning and Pre-processing

Out of the total child speech data available in the MyST corpus only 45% of the audio
references are transcribed. This thesis focuses on the audio references that have a tran-
script file. The data is sampled using the non-probability based purposive sampling to
use the transcribed audio references for phase 2 sessions. Based on the works of Jain
et al. (2022) on the same corpus, the MyST corpus is processed. The data cleaning and
pre-processing steps undertaken for MyST corpus for this research are described below:

1MyST Corpus: https://boulderlearning.com/request-the-myst-corpus/

2

https://boulderlearning.com/request-the-myst-corpus/


4.1 Import Libraries for preparing the MyST corpus

Figure 2 demonstrates the libraries to be imported to pre-process the MyST corpus. The
figure also mentions the different .py files that facilitate the cleaning and pre-processing
of MyST corpus.

Figure 2: Required Python Libraries for MyST corpus

4.2 Creating Constants

Figure 3 demonstrates the constants used during the cleaning and pre-processing of the
MyST corpus.

Figure 3: Defining Constants for MyST corpus

3



4.3 Data Cleaning

Figure 4 demonstrates the execution point for cleaning the MyST corpus.

Figure 4: Code Execution Point

Figure 5 demonstrates the selection of transcribed audio references that are 10-15
seconds in length and free from dis-fluency markers. The punctuation in the transcripts
are replaced. Additionally, the details of the selected transcribed audio files are saved in
a CSV file for further processing

4



Figure 5: Selection of Audio-Transcripts from MyST corpus

Figures 6, 7, and 8 demonstrates the transcript cleaning, audio selection, and creation
of CSV file respectively.

5



Figure 6: Purposive Sampling and Transcript Cleaning

6



Figure 7: Selection of Audio and Creation of DataFrame

Figure 8: MyST CSV File Creation

7



4.4 Data Pre-processing

For performing data pre-processing on the MyST corpus, the CSV file is retrieved to
obtain the cleaned audio references. The following figures 9 and 10 demonstrate the
steps carried on the MyST corpus.

Figure 9: MyST Data Pre-processing

8



Figure 10: MyST Data Metadata

Figure 11 demonstrates the distribution of duration of the pre-processed audio refer-
ence files.

Figure 11: Pre-processed Audio Distribution

9



5 Implementation of the HiFi-GAN vocoder

This section describes the implementation of the HiFi-GAN vocoder that uses the python
TTS library (for training from scratch) 2 and the coqui-ai TTS Github repository (for fine-
tuning) 3. The rest of the artefeacts are executed on Google Colab Pro+ with hardware
accelerator selected as ’GPU’, with High Run-time and background execution enabled.
Note: The pre-processed MyST corpus having folder structure as

• Folder: DataSetName

– Folder: wavs (containing all pre-processed files)

– Folder: wavs1 (containing 10% files from the wavs folder)

– File: metadata.txt

5.1 Run pre-requisites

Figure 12: Colab Pre-requisites for HiFi-GAN

2Python TTS library https://pypi.org/project/TTS/
3Python TTS library https://github.com/coqui-ai/TTS

10

https://pypi.org/project/TTS/
https://github.com/coqui-ai/TTS


Figure 13: Mount Google Drive

5.2 Import Libraries for implementing the HiFi-GAN vocoder

The following Figure demonstrates all the necessary libraries required to implement the
HiFi-GAN vocoder to be trained on the MyST corpus.

Figure 14: Import Libraries for HiFi-GAN vocoder

11



5.3 Training the HiFi-GAN vocoder on MyST corpus

The implementation of the HiFi-GAN vocoder for this research uses the HiFi-GAN gen-
erator 4, discriminator 5 and the training config file 6. The modifications in the configur-
ations are demonstrated in the subsequent figures.

Figure 15: Modifying the parameters for HiFi-GAN vocoder

4HiFi-GAN Generator https://github.com/coqui-ai/TTS/blob/dev/TTS/vocoder/models/

hifigan_generator.py
5HiFi-GAN Discriminator https://github.com/coqui-ai/TTS/blob/dev/TTS/vocoder/models/

hifigan_discriminator.py
6HiFi-GAN Config https://github.com/coqui-ai/TTS/blob/dev/TTS/vocoder/configs/

hifigan_config.py

12

https://github.com/coqui-ai/TTS/blob/dev/TTS/vocoder/models/hifigan_generator.py
https://github.com/coqui-ai/TTS/blob/dev/TTS/vocoder/models/hifigan_generator.py
https://github.com/coqui-ai/TTS/blob/dev/TTS/vocoder/models/hifigan_discriminator.py
https://github.com/coqui-ai/TTS/blob/dev/TTS/vocoder/models/hifigan_discriminator.py
https://github.com/coqui-ai/TTS/blob/dev/TTS/vocoder/configs/hifigan_config.py
https://github.com/coqui-ai/TTS/blob/dev/TTS/vocoder/configs/hifigan_config.py


Figure 16: Initiate Audio Processor for HiFi-GAN vocoder

Figure 17: Initiate Trainer Class for HiFi-GAN vocoder

The following figure displays the HiFi-GAN vocoder trained from scratch on pre-
processed MyST corpus for 500 epochs

13



Figure 18: Training the HiFi-GAN vocoder from scratch on the MyST corpus

5.4 Generating Audio References from the trained HiFi-GAN
vocoder

The audio references were generated as shown in Figure 19 from the HiFi-GAN vocoder
model trained on MyST corpus for 100 and 200 epochs for preliminary analysis. Figure
20 demonstrates the use of IPython library to hear the audio file generated from the
vocoder

14



Figure 19: Generating audio references from the HiFi-GAN vocoder for 100 and 200
epochs

Figure 20: Playing the audio generated from HiFi-GAN vocoder for 100 and 200 epochs

As the audio generated from the HiFi-GAN vocoder trained from the scratch was
purely metallic, the transfer learning approach was adopted.

15



6 Transfer Learning approach for the HiFi-GAN vo-

coder

This section describes the implementation of the transfer learning approach of the HiFi-
GAN vocoder. A pre-trained HiFi-GAN model was used to be further fine-tuned on
the MyST dataset. The generator and the discriminator is the same as used in 5. The
configuration parameters changed are described in the subsequent figures.

6.1 Import/ Install repository for implementing the transfer
learning for the pre-trained HiFi-GAN vocoder

Figure 21: Cloning the TTS git repository

16



6.2 Modify the hyper-parameters in the HiFi-GAN vocoder
configuration file

Figure 22: Modifying the parameters for fine-tuning the HiFi-GAN vocoder

17



6.3 Start Fine-tuning and Training the HiFi-GAN Vocoder

Figure 23: Fine-tune and train the HiFi-GAN vocoder on MyST corpus

The following figure demonstrates the repetition of the fine-tuning and training process
for desired number of epochs (here 200).

18



Figure 24: Restoring the training process for fine-tuning the HiFi-GAN vocoder

7 Synthesizing voice from the proposed model

This section describes the implementation of the proposed model (Speaker encoder -
Tacotron 2 - HiFi-GAN) . The implementations uses the implementation of the speaker

19



encoder and Tacotron model 7 and the pre-trained model weights from 8 and 9. Following
figures demonstrate the steps to synthesize voice from the proposed model.

7.1 Import/ Install repository for implementing the proposed
model that contains transfer learning for the pre-trained
HiFi-GAN vocoder

Figure 25: Cloning the git repository and load default models

7Speaker encoder and Tacotron 2 Implementation https://github.com/CorentinJ/

Real-Time-Voice-Cloning
8Speaker encoder checkpoints https://drive.google.com/drive/folders/

1FuAY2XXcU0vLVo1f9QYQjhs_g9eURbio
9Acoustic model checkpoints https://drive.google.com/drive/folders/1wcxVnJ5mQZNdl1r_

aLzY86iIAgRm4hQH

20

https://github.com/CorentinJ/Real-Time-Voice-Cloning
https://github.com/CorentinJ/Real-Time-Voice-Cloning
https://drive.google.com/drive/folders/1FuAY2XXcU0vLVo1f9QYQjhs_g9eURbio
https://drive.google.com/drive/folders/1FuAY2XXcU0vLVo1f9QYQjhs_g9eURbio
https://drive.google.com/drive/folders/1wcxVnJ5mQZNdl1r_aLzY86iIAgRm4hQH
https://drive.google.com/drive/folders/1wcxVnJ5mQZNdl1r_aLzY86iIAgRm4hQH


Figure 26: Download pre-trained models and use HiFi-GAN pre-trained model

7.2 Synthesize voice using pre-trained HiFi-GAN vocoder in
the proposed model

The following figures demonstrate loading the pre-trained HiFi-GAN vocoder model and
synthesize voice from the proposed model.

Figure 27: Load pre-trained HiFi-GAN vocoder model and upload an audio file to syn-
thesize

As shown in the figure below, enter the desired text to generate the synthesized voice.
Additionally, save the input and the synthesized file for evaluation

21



Figure 28: Enter desired text to generate the synthesized voice

7.3 Synthesize voice using fine-tuned HiFi-GAN vocoder for
100 epochs in the proposed model

The following figures demonstrate the generation of synthesized voice for the fine-tuned
HiFi-GAN vocoder model for 100 epochs.

Figure 29: Load fine-tuned HiFi-GAN vocoder model (100 epochs) and upload an audio
file to synthesize

As shown in the figure below, enter the desired text to generate the synthesized voice.
Additionally, save the input and the synthesized file for evaluation

22



Figure 30: Enter desired text to generate the synthesized voice

7.4 Synthesize voice using fine-tuned HiFi-GAN vocoder for
200 epochs in the proposed model

The following figures demonstrate the generation of synthesized voice for the fine-tuned
HiFi-GAN vocoder model for 200 epochs.

Figure 31: Load fine-tuned HiFi-GAN vocoder model (200 epochs) and upload an audio
file to synthesize

As shown in the figure below, enter the desired text to generate the synthesized voice.
Additionally, save the input and the synthesized file for evaluation

23



Figure 32: Enter desired text to generate the synthesized voice

8 Evaluation: Generate MOSNet scores

This section describes the generation of MOSNet scores for the original and the synthes-
ized audio files produced in 7. The MOSNet for this research is implemented from 10.
The following figure demonstrates the generation of MOSNet scores for this research.

8.1 Import/ Install repository for implementing and generating
MOSNet scores

Figure 33: Cloning the git repository, change directory, and install requirements

10MOSNet Implementation https://github.com/lochenchou/MOSNet.git

24

https://github.com/lochenchou/MOSNet.git


8.2 Get Valid Directories for MOSNet to run

Figure 34: Get Valid Directories for MOSNet

8.3 Generate MOSNet scores for synthesized voices from pre-
trained HiFi-GAN vocoder

Figure 35: MOSNet scores for synthesized voices from pre-trained HiFi-GAN vocoder

25



8.4 Generate MOSNet scores for synthesized voices from fine-
tuned HiFi-GAN vocoder (100 epochs)

Figure 36: MOSNet scores for synthesized voices from fine-tuned HiFi-GAN vocoder (100
epochs)

26



8.5 Generate MOSNet scores for synthesized voices from fine-
tuned HiFi-GAN vocoder (200 epochs)

Figure 37: MOSNet scores for synthesized voices from fine-tuned HiFi-GAN vocoder (200
epochs)

9 Evaluation: Plot Visualization

This section describes the generation of mel spectrograms and waveforms for the original
and synthesized voices produced in 7. The following figures demonstrate the visualizations
done in this research.

27



9.1 Plot Mel Spectrograms and Waveforms

Figure 38: Generate and Store Mel Spectrograms and Waveforms

28



Figure 39: Produced Mel Spectrograms and Waveforms

References

Jain, R., Yiwere, M. Y., Bigioi, D., Corcoran, P. and Cucu, H. (2022). A text-to-
speech pipeline, evaluation methodology, and initial fine-tuning results for child speech
synthesis, IEEE Access 10: 47628–47642.

29


	Introduction
	Required Specifications
	Hardware requirements
	Software requirements
	Storage requirements/ Products/ Subscriptions

	Data Collection
	Data Cleaning and Pre-processing
	Import Libraries for preparing the MyST corpus
	Creating Constants
	Data Cleaning
	Data Pre-processing

	Implementation of the HiFi-GAN vocoder
	Run pre-requisites
	Import Libraries for implementing the HiFi-GAN vocoder
	Training the HiFi-GAN vocoder on MyST corpus
	Generating Audio References from the trained HiFi-GAN vocoder

	Transfer Learning approach for the HiFi-GAN vocoder
	Import/ Install repository for implementing the transfer learning for the pre-trained HiFi-GAN vocoder
	Modify the hyper-parameters in the HiFi-GAN vocoder configuration file 
	Start Fine-tuning and Training the HiFi-GAN Vocoder 

	Synthesizing voice from the proposed model
	Import/ Install repository for implementing the proposed model that contains transfer learning for the pre-trained HiFi-GAN vocoder
	Synthesize voice using pre-trained HiFi-GAN vocoder in the proposed model
	Synthesize voice using fine-tuned HiFi-GAN vocoder for 100 epochs in the proposed model
	Synthesize voice using fine-tuned HiFi-GAN vocoder for 200 epochs in the proposed model

	Evaluation: Generate MOSNet scores
	Import/ Install repository for implementing and generating MOSNet scores
	Get Valid Directories for MOSNet to run
	Generate MOSNet scores for synthesized voices from pre-trained HiFi-GAN vocoder
	Generate MOSNet scores for synthesized voices from fine-tuned HiFi-GAN vocoder (100 epochs)
	Generate MOSNet scores for synthesized voices from fine-tuned HiFi-GAN vocoder (200 epochs)

	Evaluation: Plot Visualization
	Plot Mel Spectrograms and Waveforms


