~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Zeba Siddique
Student ID: x20227086

School of Computing
National College of Ireland

Supervisor: Dr. Abubakr Siddig

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Zeba Siddique
Student ID: x20227086
Programme: Data Analytics
Year: 2022
Module: MSc Research Project
Supervisor: Dr. Abubakr Siddig
Submission Due Date: 15/08/2022
Project Title: Configuration Manual
Word Count: 1126
Page Count: 29

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Zeba Siddique

Date: 13th August 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

1 Introduction

This document is a configuration manual that contains all the necessary information re-
quired to achieve a child speech synthesis artefact. It comprises of the minimum and
must-have system requirements for reproducing the thesis work. Along with the ne-
cessary system configurations and pre-requisites, this document with the help of code
snippets describes the main blocks of the thesis. The document details the step-by-step
instructions from data collection to generating results to executing the artefact.

Zeba Siddique
x20227086

2 Required Specifications

2.1 Hardware requirements

Figure (1| describes the hardware specifications (device and windows) used to carry out

the thesis.

Device Specifications
HP Spectre x360 Convertible 14-ea0xxx

Device name
Processor

Installed RAM
Device ID
Product ID
System type
Pen and touch

DESKTOP-KHUORMC

11th Gen Intel(R) Core (TM)

i7-1165G7 @ 2.80GHz 2.80 GHz

16.0 GB (15.6 GB usable)
B3992509-FEF9-4008-A80E-1FD4E8A47312
00325-97258-57122-AAOEM

64-bit operating system, x64-based processor
Pen and touch support with 10 touch points

Windows Specifications
Windows 10

Edition
Version
Installed on
OS build
Experience

Windows 10 Home

21H2

23-Sep-21

19044.1889

Windows Feature Experience Pack 120.2212.4180.0

Figure 1: Hardware Specifications

2.2 Software requirements
For execution of the artefacts, the below mentioned list of software must be installed on

the system.

1. Anaconda Navigator for Windows (Version 4.12.0)
2. Python 3.9.13
3. Visual Studio Code (Version 1.70.0 [user setup])

4. VS Extensions:
(a) Jupyter (v2022.7.1102252217)
(b) Jupyter Keymap (v1.0.0)
(¢) Jupyter Notebook Renderers (v1.0.9)
(d) Pylance (v2022.8.20)
)

(e) Python (v2022.12.0)

5. Google Chrome (Version 104.0.5112.81)

2.3 Storage requirements/ Products/ Subscriptions

Following are the additional and essential requirements used to carry out the thesis:

1. Google Colaboratory Pro+

2. Google One/ Drive - 2TB storage

3 Data Collection

This research uses a freely available multi-speaker child speech dataset: My Science Tutor
(MyST). This dataset was obtained through a shared drive after receiving necessary
permissions from concerned authorities and agreeing to terms and conditions for the
research license agreement. Access to MyST Corpus can be requested from the official
website of the dataset ﬂ The dataset contains audio references (.flac) and their transcripts
(.trn) if any for each speaker based on the recording phase. The MyST corpus consists
of 456 hours speech data from 1,371 students.

4 Data Cleaning and Pre-processing

Out of the total child speech data available in the MyST corpus only 45% of the audio
references are transcribed. This thesis focuses on the audio references that have a tran-
script file. The data is sampled using the non-probability based purposive sampling to
use the transcribed audio references for phase 2 sessions. Based on the works of |Jain
et al.| (2022) on the same corpus, the MyST corpus is processed. The data cleaning and
pre-processing steps undertaken for MyST corpus for this research are described below:

!MyST Corpus: https://boulderlearning.com/request—the-myst-corpus/

https://boulderlearning.com/request-the-myst-corpus/

4.1 Import Libraries for preparing the MyST corpus

Figure [2| demonstrates the libraries to be imported to pre-process the MyST corpus. The
figure also mentions the different .py files that facilitate the cleaning and pre-processing
of MyST corpus.

dataPrep > libs > data_placement.py > ...

Figure 2: Required Python Libraries for MyST corpus

4.2 Creating Constants

Figure |3| demonstrates the constants used during the cleaning and pre-processing of the
MyST corpus.

Figure 3: Defining Constants for MyST corpus

4.3 Data Cleaning

Figure 4| demonstrates the execution point for cleaning the MyST corpus.

extract readings(run_typ
s the i

s._read dataset(run_type)

logger.exception('Get Dataset Details: %s')

if name == " main_ °:
params_myst = {
: 'development’

handler(params_myst,
extract_rec

read dataset(run_type:
ate to the file path anc t
ait extract recording details() # st
recording df = await read recording details from csv()

Figure 4: Code Execution Point

Figure |5| demonstrates the selection of transcribed audio references that are 10-15
seconds in length and free from dis-fluency markers. The punctuation in the transcripts
are replaced. Additionally, the details of the selected transcribed audio files are saved in
a CSV file for further processing

f _extract recording detai
lid audio F nd transcripts from the

C r
root_directory
batch_counter = 1

speech data details

for dir path, direct , files in os.walk(root directory):
or filename in file
is _valid session = await _check for phase two sessions(directory path=dir_path)
if is_valid session:

if filename.endswith(".flac"):
flac_file = os.path.join(dir_path,filename)
trn_file = flac_file.replace(".flac", ™.trn")
is valid transcript, transcript content = await _check for valid transcript(trn_file=trn_file)

if is valid transcript :
speech_data = await _get data_details_in row(
flac_file=flac file, trn_file=trn_file,
transcript_content=transcript_content
)
if speech data != []:
speech data details.append(speech data)
if (len(speech data details) % 100 == @):
av _write speech details to file(speech data details)
speech _data_details = []
print("Batch d : ", batch_counter)
batch_counter +=

continue
if len(speech data details) » e:
await _write speech details to file(speech data details)
speech_data_detai
print("Batch c as last : ", batch_counter)

print ("function finis

Figure 5: Selection of Audio-Transcripts from MyST corpus

Figures[0], [7] and [§]demonstrates the transcript cleaning, audio selection, and creation
of CSV file respectively.

e sampling:
isvalid
phase_two sessions = [*
for session _name in phase two sessions:
if session_name directory path:
isvalid =
return isvalid

isvalid =
transcript content

disfluency marker:
"¢SILEP '

if os.path.exists(trn_file):
with open(trn_file, 'r', encoding=" i', errors=) as transcript file:
transcript_content = transcript_file.read()

transcript_content = transcript_content.upper()

if any(ele in transcript_content for ele in disfluency markers):
isvalid =
transcript_content =

isvalid =

if isvalid :
transcript content = *'.join([i for i in transcript content if i string.punctuation])

return isValid, transcript_content

Figure 6: Purposive Sampling and Transcript Cleaning

> libs >
C gPt data details in row(flac file : str, trn file : str, transcript content : str):
o ((and tra ot file names along
wit

speech_details = []

samples, sample rate = libr .load(flac_file)
duration_of recording= round(1lit .get_duration(y = samples, sr = sample rate),2)
if duration_of _recording »>= 10 and duration_of recording <= 15:
speech_details = [

_get_speaker_id(file name=flac_file),

duration_of recording,

flac_file,

trn_file,

transcript_content.stri

sample rate

1

return speech details
_rows_to
speegh dFtallh _df

speech_data dptalls,
columns=[

rn speech details df

_get speaker_id(file name :
h ker ID from

"

ment.p

I _write_speech _details_to file(speech data_details):
EEEpuE bl il the valid i a) File™""
speech_data dataframe = rows to dataframe(speech data_details)
file name = r \u \z \M
1 path.exists(file name):

data dataframe.to csv(
se, encoding="utf-

smmhdﬂadﬂa&mptocw(

mode="a', header= e, i alse, encoding="utf-
)

print("Appe

Figure 8: MyST CSV File Creation

4.4 Data Pre-processing

For performing data pre-processing on the MyST corpus, the CSV file is retrieved to
obtain the cleaned audio references. The following figures [9] and demonstrate the
steps carried on the MyST corpus.

ataPrep 2 da ment.p
_read_recording details from_csv():
the Fil sisting d il fr gs and dataframe
if os.path.exists(
recording df =
return recording df

wow

"""Re all the sil
if len(recording df) > e@:
tr
for row in recording df.itertuples(index= , hame='Pandas'):
if os.path.exists(row.AudioFilePath):
wav_file name = (row.AudiofFilePath.split("\\")[-1]).split(".flac™)[@]
wav_file name with_extension = wav_file name + "
wav_file path = \ \\" + wav_file_name with_extension

audio file, s: e = librosa.load(row.AudioFilePath, sr= row.AudioSampleRate, mono=)

clips = libr L€ plit(audio file, top db=1e@)

audio data = audio file[clip[@]: clip[1]]
wav_data.extend(audio_data)

st.write(wav_file path, wav_data, row.AudioSampleRate)

print("r lips™)
st.write(wav_file path, audio file, row.AudioSampleRate)

await write transcript_to metadata(row, wav_file name)
te
logger.exception('Error in _re e_from_audio files:)
final
logger.exception(' Finished uting silence_from_audio_files')

Figure 9: MyST Data Pre-processing

=~

file path \M \m
audio info = audio file name + "|" + audio details.TranscriptText + "|" + str(audio details.SpeakerID) +

\n

wa

file mode =

os.path.exists(file path):

file mode = "w
ile mode = "a"
with open(file path, mode = file mode)
f.write(audio info)

logger.exception('Error in _wri ~anscript to me

Figure 10: MyST Data Metadata

Figure [11] demonstrates the distribution of duration of the pre-processed audio refer-
ence files.

ataPrep

_plot_audio_length_distribution(speech_data_dataframe : pd.DataFrame):

s = plt.hist(x=speech_data_dataframe] h*], bins='auto', color="
alpha=0.7, rwidth=0.85)
plt.grid(axis="y', alpha=0.75)
plt.xlabel{'Duration in
plt.ylabel(Numbe
plt.title('Distrib
maxfreq = n.max()

plt.ylim(ymax=np.ceil(maxfreq / 18) * 1@ if maxfreq % 10 maxfreq + 10)
plt.show()

Distribution of audio duration

Number of Audio files

Duration in seconds

Figure 11: Pre-processed Audio Distribution

5 Implementation of the HiFi-GAN vocoder

This section describes the implementation of the HiFi-GAN vocoder that uses the python
TTS library (for training from scratch) fland the coqui-ai TTS Github repository (for fine-
tuning) E| The rest of the artefeacts are executed on Google Colab Pro+ with hardware
accelerator selected as 'GPU’, with High Run-time and background execution enabled.
Note: The pre-processed MyST corpus having folder structure as

e Folder: DataSetName

— Folder: wavs (containing all pre-processed files)
— Folder: wavsl (containing 10% files from the wavs folder)

— File: metadata.txt

5.1 Run pre-requisites

Step 1: Do some pre-checks

1. Ensure the colab notebook is connected to GPU
2. Ensure the colab notebook is using high RAM runtime
3. Ensure the Background execution option is selected

gpu_info Invidia-smi
gpu_info = "\n’ n(
if gpu_info.find(

from psutil
am_gh i
" .format(ram_gb))

Name Persistence-M| Bus-Id
Temp Perf Puwr:Usage/Cap| Memory-Usage | GPU-Util Compute M.
MIG M.
off | ceeces00:00:04.8
3eW / 258M | BMiB / 16286MiB |

| Processes:
GPU GI C PID Process name

Your runtime has 13.6 gigabytes of available RAM

Figure 12: Colab Pre-requisites for HiFi-GAN

2Python TTS library https://pypi.org/project/TTS/
3Python TTS library https://github.com/coqui-ai/TTS

10

https://pypi.org/project/TTS/
https://github.com/coqui-ai/TTS

Step 2: Download the My Science Tutor Children Speech Corpus

Step 3: Clean and pre-process the MyST dataset by executing extract_readings.py file

Step 4: Upload the preprocessed .wav files and the metadata.txt file obtained from Step 3 to Google Drive
Folder Structure:

1. MyST_DataSet

1. wavs (folder)
2. wavs1 (pick roughly 500 files from wavs folder into this folder)

3. metadata.txt

Step 5: Mount the drive folder

from google.colab i
drive.mount i , force remount=

Mounted at /content/gdrive

Figure 13: Mount Google Drive

5.2 Import Libraries for implementing the HiFi-GAN vocoder

The following Figure demonstrates all the necessary libraries required to implement the
HiFi-GAN vocoder to be trained on the MyST corpus.

~ Install & Import Required Libraries

Step 6: Install & Import necessary libraries for training the HiFi-GAN vocoder model on MyST corpus

Note that: For training the HiFi-GAN, the Python TTS library is used.

Ipip install TTS

Looking in indexes: https://pypi.org/simple, https://us-pytho
Requirement already satisfied: TTS in /usr/local/lib/pythen3.7/di
Ipip install trainer
Looking in indexes Lfus-p
Requirement already satisfied: ner in fusr/local/lib/python3.7/dist-packages (@
Requirement already satisfied: protobuf<3.2e, .9.2 in fusr/local/lib/python3.7/dist-packages (from trainer) (3.17.3

Ipip install IPython

Looking in indexes: ht org/f 2, http

Requirement already satis

(from IPython) (5.1.1)

S.utils.audio
.vocoder .conf
.vocoder.datasets.preproce
S.vocoder.models. gan

.tts.datasets

t librosa

t librosa.display
matplotlib.pyplot

C numpy as np

Figure 14: Import Libraries for HiFi-GAN vocoder

11

5.3 Training the HiFi-GAN vocoder on MyST corpus

The implementation of the HiFi-GAN vocoder for this research uses the HiFi-GAN gen-
erator EL discriminator |E| and the training config file E| The modifications in the configur-
ations are demonstrated in the subsequent figures.

~ Training the HiFi-GAN vocoder model from scratch on the pre-processed MyST children's speech corpus

Step 7: Provide the folder path to save the checkpoints for training the model from scratch
output_path =

Step 8: Set the training parameters for the HiFi-GAN vocoder of the TTS library Note that: The parameters

1. data_path: Provide the folder path where the wavs1 or wavs folder is present

2. output_path: Provide the folder path where the checkpoints, training log and config will be stored

3. epochs: Set the number of epoch 1o train the model. As background execution option along with high RAM and GPU was available, the
training epoch size was straight away set to 500. The checkpoints at regular intervals (100, 200, and so on) can be later evaluated

config = HifiganConfig(

batch_siz

eval batc

num_loader

num_eval lo
run_eval=True,
test_delay epochs=5,

print_ste
print_eva

Figure 15: Modifying the parameters for HiFi-GAN vocoder

4HiFi-GAN Generator https://github.com/coqui-ai/TTS/blob/dev/TTS/vocoder/models/
hifigan_generator.py

°HiFi-GAN Discriminator https://github.com/coqui-ai/TTS/blob/dev/TTS/vocoder/models/
hifigan_discriminator.py

“HiFi-GAN Config https://github.com/coqui-ai/TTS/blob/dev/TTS/vocoder/configs/
hifigan config.py

12

https://github.com/coqui-ai/TTS/blob/dev/TTS/vocoder/models/hifigan_generator.py
https://github.com/coqui-ai/TTS/blob/dev/TTS/vocoder/models/hifigan_generator.py
https://github.com/coqui-ai/TTS/blob/dev/TTS/vocoder/models/hifigan_discriminator.py
https://github.com/coqui-ai/TTS/blob/dev/TTS/vocoder/models/hifigan_discriminator.py
https://github.com/coqui-ai/TTS/blob/dev/TTS/vocoder/configs/hifigan_config.py
https://github.com/coqui-ai/TTS/blob/dev/TTS/vocoder/configs/hifigan_config.py

Step 9: Initiate the audio processor for HiFi-GAN vocoder of the TTS library

ap - AudioProcessor(**config.audic.to_dict())

> hop_L :25
> win_length:1024

Step 10: Load training samples for the HiFi-GAN vocoder of the TTS library

es, train samples = load wav_data(config.data path, config.eval split :

Figure 16: Initiate Audio Processor for HiFi-GAN vocoder

Step 10: Load training samples for the HiFi-GAN vocoder of the TTS library

eval_samples, train_samples = load_wav_data(config.data path, config.eval_ split size)

Step 10: Initiate the HiFi-GAN vocoder for the TTS library Note that: The details of the generator and discriminator are displayed to ensure the
files that are being used from the TTS library

model = GAN(config, ap)
> Generator Model: hifigan_generator
> Discriminator Model: hifigan_discriminator

Step 11: Initiate the Trainer model to train the HiFi-GAN vocoder for the TTS library

L 4

trainer = Trainer({
TrainerArgs(), config, output_path, model=model, train_samples=train_samples, eval_ samples

> Using CUDA: True
> Number of GPUs: 1

> Model has 84668721 parame

Figure 17: Initiate Trainer Class for HiFi-GAN vocoder

The following figure displays the HiFi-GAN vocoder trained from scratch on pre-
processed MyST corpus for 500 epochs

13

Step 12: Start the training of the HiFi-GAN vocoder model from scratch.

Note that: Observe the evaluation results to understand the loss trends of the HiFi-GAN vocoder model

trainer_ fit()
se_gan take loss:
' loss_@: (+0.83587)
' G_11 spec loss: (-8.01777)

. feat | i (+0.00070)
» avg_G_gen loss: [968)
adv_loss:)

> EPOCH: 498/500
--» /content/gdrive/MyDrive/Zeba TTS/TTS CP_HiFiGan/run-August-@6- 4+27PM-0600008
Jfusr/local/lib/python3.7/dist-packages/torch/utils/data/dataloader. py: : UserWarning: This Dataloade
cpuset_checked))

> TRAINING (2022-08-087 086:19:00)

> EVALUATION

--» EVAL PERFORMANCE
| avg_loader time: (+8.00808)
| » avg D mse_gan_loss: (-9.85387)
| > avg D _real
| » avg D fake (+0.817
| :).)
| _spec_loss: (-8.88472)
I (-8.19316)
| eat_match_loss: (+0.00588)
| » avg loss:
| » avg G_adv loss: {
| » avg loss 1: (+6.13475)

> EPOCH: 499/588
--» fcontent/gdrive/MyDrive/Zeba TTS/TTS CP_HiFiGan/run-August-86-2622 84+27PM-0008008
fusr/local/lib/python3.7/dist-packages/torch/utils/data/dataloader.py:568: UserWarning: This Dataloade
cpuset_checked))

> TRAINING (2022-08-07 86:20:48)
> EVALUATION
--> EVAL PERFORMANCE

| » avg_loader time: (+0.88002)
| » avg D mse gan loss: (+0.01722)

Figure 18: Training the HiFi-GAN vocoder from scratch on the MyST corpus

5.4 Generating Audio References from the trained HiFi-GAN
vocoder

The audio references were generated as shown in Figure [19] from the HiFi-GAN vocoder
model trained on MyST corpus for 100 and 200 epochs for preliminary analysis. Figure
demonstrates the use of IPython library to hear the audio file generated from the
vocoder

14

Step 13: Generate audio from the trained HiFi-GAN vocoder

1. Check the audio for 100 and 200 epochs and draw inferences from it

ltts --text "
--model_name
--vocoder_name
rocoder_path
--vocoder_config_path
--out_path scratchle@.wav
e
['My dataset is on test for 10@ epochs’]
> Processing time: 2.37512159347
> Real-time factor: ©.62934328
> Saving output to scratchl@@.wav

ltts --text "My
--model_name
--vocoder_name
--vocoder_path
--vocoder_config pa
--out_path scratch20e.wav

> Generator Model: hifigan_generator

> Discriminator Model: hifigan_discriminator
Removing weight norm...

> Text: My dataset is on test for 288 epochs
> Text splitted to sentences.

[*My dataset is on test for 20@ epochs’]

> Processing time: 2.422065496444702

> Real-time factor: ©.6359

> Saving output to scratch2e@.wav

Figure 19: Generating audio references from the HiFi-GAN vocoder for 100 and 200
epochs

~ Playing the sound generated by training the HiFi-GAN vocoder model purely on MyST corpus

port IPython
IPython.display.Audio(”

p 0:00/003 eo—————

ort IPython
IPython.display.Audio(”

p 0:00/0:03

Figure 20: Playing the audio generated from HiFi-GAN vocoder for 100 and 200 epochs

As the audio generated from the HiFi-GAN vocoder trained from the scratch was
purely metallic, the transfer learning approach was adopted.

15

6 Transfer Learning approach for the HiFi-GAN vo-
coder

This section describes the implementation of the transfer learning approach of the HiFi-
GAN vocoder. A pre-trained HiFi-GAN model was used to be further fine-tuned on
the MyST dataset. The generator and the discriminator is the same as used in[5} The
configuration parameters changed are described in the subsequent figures.

6.1 Import/ Install repository for implementing the transfer
learning for the pre-trained HiFi-GAN vocoder

~ Transfer-Learning of the HiFi-GAN vocder model pre-processed MyST children's speech corpus

Step 14: Provide the folder path to save the checkpoints for fine-tuning the model
output_path =

Step 15: Cloning the coqui-ai TTS git repository and change to the TTS directory to change the hyper-parameters for fine-tuning the HiFi-GAN
vocoder model for the pre-processed MyST children's speech corpus

lgit clone https://github.com/coqui-ai/TT5.git

Cloning into 'TTS'...

remote: Enumerating objects: 27496, done.

remote: Counting objects 8% (), done.

remote: Compressing objects: : 68), done.

remote: Total : 6 (: » reused 46 (delta 28), pack-reused 27488
Receiving obje 1867 g 7496), 120.14 MiB | 23.41 MiB/s, done.
Resolving deltas: 106% (20836/20036), done.

TS

[content/TTS

Figure 21: Cloning the TTS git repository

16

6.2 Modify the hyper-parameters in the HiFi-GAN vocoder
configuration file

Step 16: Locate the train_hifigan.py file for the LJSpeech dataset (|

Change the necessary parameters. The parameters changed to fine-tune HiFi-GAN for MYST dataset are:

. data_path ="
. output_path = "/c] / 3
. restore_path = — pre-trained HiFi-GAN path (for 1st run) then our checkpoint paths for next runs
. eval_split_size = 100
5. epochs = 100 each time
. resblock_type = 1
. upsample_initial_channel = 512
. resblock_kernel_sizes = [3,7,11]
. resblock_dilation_sizes = [[1,3,5111, 3, 5111, 3, 5]
. upsample_factors = [8,8,2,2]

. upsample_kernel_sizes = [16,16,4,4]
. n_fft: 1024
. hop_length: 256

14. win_length: 1024

15. n_mels: 80

Figure 22: Modifying the parameters for fine-tuning the HiFi-GAN vocoder

17

6.3 Start Fine-tuning and Training the HiFi-GAN Vocoder

Step 17: Start fine-tuning the HiFi-GAN vocoder model based on the hyper-parameters mentioned above

/ISIBLE_DEVICES=
--output_path=
e_all b

etting up Audio Processor...
sample_rate:22858
resample:False
num_mels: 88

log func:np.logle
min_level db:-18e
frame_shift_ms:None
frame_length_ms:None
ref_level db:28
fft_size:1024

powe

presmphas
griffin lim iters:6@
signal_norm:True
symmetric_norm:True
mel fmin:@
mel_fmax:None
pitch_fmin:e.e
pitch_fmax:640.8
spec_gain:20.80
stft_pad_mode:reflect
max_norm:4.6
clip_norm:True
do_trim _silence:True
trim_db:45
do_sound_norm:False
do_amp_to_db_linear:True
do_amp_to_db_mel:True
do_rms_norm:False
db_level:None

:None

VWOV W W Y

WO W W N

>
>
>
>
>
>

VoW W W Y YW

L

256
win_length:16824
Generator Model: hifigan_generator
Discriminator Model: hifigan discriminator
Using CUDA: True
Number of GPUs: 1

> Model has 84660721 parameters

> EPOCH: @/1e0

--» fcontent/gdrive/MyDrive/Zeba HiFi/FineTune HiFi/run-August-18-2822 12+38PM-d46fbc24

> TRATNTNG (2822-A8%-18 12:38:04)

Figure 23: Fine-tune and train the HiFi-GAN vocoder on MyST corpus

The following figure demonstrates the repetition of the fine-tuning and training process
for desired number of epochs (here 200).

18

Step 18: Repeat the training process for various epochs by changing the —restore_path parameter for the latest checkpoint available in each run

!CUDA_VISIBLE_DEVICES="8" python
--output_path= i
--restore_path

--> EVAL PERFORMANCE
| » avg loader time: (-0.00006)
| (-0.01204)
| (-0.085039)
| (+0.00312)
| z : .01204)
| G - loss: (-0.81766)
| (-©.81965)
| (+0.090170)
| (-9.79476)
| » avg G_adv_loss: (+8.16438)
| » avg loss 1: (-9.63839)

ICUDA_VISIBLE_ DEVICE python *
--output_path
--restore_pat
--save_all best =

D_mse_gan_loss:
D_mse_gan_real

D _mse_gan_fake_lo
loss_@: 8.314
grad_norm ©: 4.
G_11 spec_loss:
G_mse_fa

G_feat_mi

G_gen_lo

G_adv_lo

loss_1:

grad_norm_1
current_lr_@: ©.00009
current_lr_1: ©.60009
step_time: 2.
loader_time:

> CHECKPOINT : /content/gdrive/MyDrive/Zeba HiFi/FineTune_HiFi/run-August-18-2022_ 83+83PM-d4a6fbc24/checkpoint_216@.pth

> EVALUATION

--> EVAL PERFORMANCE

| » avg loader time: (-0.00001)

| avg D _mse_gan_loss: (-8.83052)

| | (-8.83455)
| ' D_mse_gan_fake loss: (+8.80377)
| o
|
|

Figure 24: Restoring the training process for fine-tuning the HiFi-GAN vocoder

7 Synthesizing voice from the proposed model

This section describes the implementation of the proposed model (Speaker encoder -
Tacotron 2 - HiFi-GAN) . The implementations uses the implementation of the speaker

19

encoder and Tacotron model []and the pre-trained model weights from []and] Following
figures demonstrate the steps to synthesize voice from the proposed model.

7.1 Import/ Install repository for implementing the proposed
model that contains transfer learning for the pre-trained
HiFi-GAN vocoder

Step 19: To synthesize voice from the proposed TTS model that uses:

1. Speaker Encoder Model (pre-trained on 4 corpus)
2. Tacotron 2 (pre-trained on 2 corpus)
3. Fine-tuned HiFi-GAN vocoder model

Clone the github repo : 't Allow the following code to download the repo's d
models

os.path

git_repo url =
projec
if not exis

lgit clone -gq --r

led {project_ && pip install -g -r requirements.txt
!pip install -q --upgrade gdown
t install -qq libportaudio2
install -q https://github.com/tugstugi/dl-colab-notebooks/archive/colab utils.zip

nbuvdKAQLgNKE
{project_name}/s: ’ d x = / jiv mUh-5
{project_na s/ - 5 C 6FtI8jDuy8AV3Xgn6le06dH]

sys
th.append(project_name)

IPython.display i display, Audio, clear output
IPython.utils io

ipywidgets

numpy as np
dl_colab_notebooks.audio ir t record_audio, upload audio

m synthesizer.inference import Synthesizer

Figure 25: Cloning the git repository and load default models

"Speaker encoder and Tacotron 2 Implementation https://github.com/CorentinJ/
Real-Time-Voice-Cloning

$Speaker encoder checkpoints https://drive.google.com/drive/folders/
1FuAY2XXcUOvLVol1f9QYQjhs_g9eURbio

YAcoustic model checkpoints https://drive.google.com/drive/folders/1wcxVnJ5mQZNdl1ir_
al.zY861IAgRm4h(QH

20

https://github.com/CorentinJ/Real-Time-Voice-Cloning
https://github.com/CorentinJ/Real-Time-Voice-Cloning
https://drive.google.com/drive/folders/1FuAY2XXcU0vLVo1f9QYQjhs_g9eURbio
https://drive.google.com/drive/folders/1FuAY2XXcU0vLVo1f9QYQjhs_g9eURbio
https://drive.google.com/drive/folders/1wcxVnJ5mQZNdl1r_aLzY86iIAgRm4hQH
https://drive.google.com/drive/folders/1wcxVnJ5mQZNdl1r_aLzY86iIAgRm4hQH

Step 20: Download the MyST pre-trained model for the speaker encoder and acoustic model

1. Encoder Checkpoint : hitps
2. Acoustic Model Checkpoint:

Step 21: The pre-trained model checkpoints downloaded from Step 20, and the fine-tuned HiFi-GAN vocoder model checkpoints are used for
drawing inferences.

Figure 26: Download pre-trained models and use HiFi-GAN pre-trained model

7.2 Synthesize voice using pre-trained HiFi-GAN vocoder in
the proposed model

The following figures demonstrate loading the pre-trained HiFi-GAN vocoder model and
synthesize voice from the proposed model.

~ Synthesizing voice for HiFi-GAN pre-trained model - Original

Step 22: Drawing inferences from the original HiFi-GAN pre=trained model without any fine-tuning.

sizer(Path("

gdrive Real-Time-Voice-Cloning sample data

Loaded encoder "encoder child.pt™ trained to step 1312581

Synthesizer using device: cpu

Building vocoder

Trainable Parameters: 4.481M

Loading model weights at /content/gdrive/MyDrive/MyST Checkpoints/vocoder_pretrained.pt

SAMPLE_RATE = 2
record or_upload =
record_seconds = 1&

embedding =
_compute_embedding(audio):
display(Audio(audio, rate-SAMPLE RATE, autoplay-))
embedding
embedding =
embedding = encoder.embed utterance(encoder.preprocess wav(audio, SAMPLE RATE))
_record_audio(b):
clear_outpu
audio - record_audio(record_seconds, sample_rate-SAMPLE_RATE)
_compute_embedding(audio)
_upload_audi :
clear_outpu
audio - upload_audio(sample_rate-SAMPLE_RATE)
_compute_embedding(audio)

if record_or_upload
button = widgets
button.on_click(_record audio)
display(button)

_upload_audio("")

No file chosen Upload widget is only available when the cell has been executed in the current browser session. Plg
Saving myst 962013 2014-03-11 11-14-16 LS 2.1 049.wav to myst 862013 2014-83-11 11-14-16 .1 @49.wav

» 0:00/0:10

Figure 27: Load pre-trained HiFi-GAN vocoder model and upload an audio file to syn-
thesize

As shown in the figure below, enter the desired text to generate the synthesized voice.
Additionally, save the input and the synthesized file for evaluation

21

» [embed])

zer.sample_rate), mode

.sample_rate, autoplay=True))

nthesize(embedding, text)

» 0:00/011

Figure 28: Enter desired text to generate the synthesized voice

7.3 Synthesize voice using fine-tuned HiFi-GAN vocoder for
100 epochs in the proposed model

The following figures demonstrate the generation of synthesized voice for the fine-tuned
HiFi-GAN vocoder model for 100 epochs.

Step 23: Drawing inferences from the fine-tuned HiFi-GAN model for 100 epochs.

Real -Time-Voice-Cloning
14-16 15 2.1 849.wav sample data
ild.pt™ trained to step 1312561

: cpu

Trainable Par 4.481M
Loading model weights at /content/gdrive/MyDrive/MyST Checkpoints/vocoder finetuned 100.pt

SAMPLE_RATE =
record or_upload =
record_seconds -

embedding =
: mpu

(audio, SAMPLE RATE))
upload_audi
ompute_embeddi

n.on_click(_record audio)
ay(button)

_upload_audio("")

No file chosen ad widget is only available when the cell has been executed in the current browser session.
Saving myst 862162 2014-62-27 3 1S 1.1 829.wav to myst 882102 2014-02-27_ S 1.1 829.wav

Figure 29: Load fine-tuned HiFi-GAN vocoder model (100 epochs) and upload an audio
file to synthesize

As shown in the figure below, enter the desired text to generate the synthesized voice.
Additionally, save the input and the synthesized file for evaluation

22

Synthesize a text

text: " Trying to produce synthesized voice on the fine-tuned model for 100 epochs. Sounds cool?

» 0:00/0:10

Figure 30: Enter desired text to generate the synthesized voice

7.4 Synthesize voice using fine-tuned HiFi-GAN vocoder for
200 epochs in the proposed model

The following figures demonstrate the generation of synthesized voice for the fine-tuned
HiFi-GAN vocoder model for 200 epochs.

Step 24: Drawing inferences from the fine-tuned HiFi-GAN model for 200 epochs.

Real-Time-Voice-Cloning
6_LS_2.1_649
LS 1.1 629
trained to step 1312501

Trainable Parameters: 4.481M
Loading model weights at /content/gdrive/MyDrive/MyST Checkpoints/vocoder_finetuned_26e.pt

SAMPLE_RATE =
record_or_upload
record seconds = 18

embedding -
- mpute_embedding(au
WPLE RATE, autoplay=True))

ed_utteranc der. prepr: idio, SAMPLE RATE))

cord_seconds, sample_rate-SAHPLE_RATE)
0)

e_rate-SAMPLE_RATE)

record_audio)
ay(button)

_upload audio("")

No file chosen U il is only available when the cell has been executed in the current browser session.
Saving myst 902180 2014-03-04 80-23-46_LS 1.3 000.wav to myst 2109 2014-03-84_09-23-46 LS 1.3 00O.wav

» 0:00/0:10

Figure 31: Load fine-tuned HiFi-GAN vocoder model (200 epochs) and upload an audio
file to synthesize

As shown in the figure below, enter the desired text to generate the synthesized voice.
Additionally, save the input and the synthesized file for evaluation

23

[embed])

izer.sample_rate), mode=

sample_rate, autoplay= =))

nthesize(embedding, text)

» 0:00/0:08

Figure 32: Enter desired text to generate the synthesized voice

8 Evaluation: Generate MOSNet scores

This section describes the generation of MOSNet scores for the original and the synthes-
ized audio files produced in |7/} The MOSNet for this research is implemented from H
The following figure demonstrates the generation of MOSNet scores for this research.

8.1 Import/ Install repository for implementing and generating
MOSNet scores

~ Generating the MOSNet scores for the synthesized voice

Step 25: Get the MOSNet scores for the synthesized voice
1. Ensure a folder has only two audio files i.e. the original and the synthesized voice. Sample: 002010 - Folder (Speaker Name)
myst_xx_oc.wav - original audio syn_myst_xx_xx.wav - synthesized audio
. Clone the MOSNet github repo hitps:/github.com
. Switch to MOSNet directory

. Download the required libraries for MOSNet to work

!git clone https://github.com/lochenchou/MOSNet.git

Counting objects:
Compressing objec
e pack-reused 78
Receiving obje 3 & (1), 22.56 MiB | 29.43 MiB/s, done.
Resolving delt i

/content/MOSNet

!pip install -r requirements.txt

in ind

Figure 33: Cloning the git repository, change directory, and install requirements

OMOSNet Implementation https://github.com/lochenchou/MOSNet.git

24

https://github.com/lochenchou/MOSNet.git

8.2

8.3

Get Valid Directories for MOSNet to run

directory = "
ous_directory

dir_path, sub_director: fi
r filename in files:

previous directory
previous_directory dir

print(”

les in eos.walk(root_directory):

(dir_path):
or previous_directo != dir_path:
path
", previous_directory)

directories : /content/gdrive/MyDrive a_TTs/Synthesized Voices/Pretrained @/862813 Pretrained

directories : [content/gdrive/MyDrive a_TT5/Synthesized Voices/Pretrained /882833 _Pretrained

directories : /content/gdrive/MyDrive TS ized Voices/Pretrained 180/682826 Pretrained
directories : [fcontent/gdrive/MyDrive a_TT5/Synthesized Voices/Pretrained 100/66203@ Pretrained
directories : /content/gdrive/MyDrive/Zeba_TTS/Synthesized Voices/Pretrained 100/002102 Pretrained
directories : [content/gdrive/MyDrive/Zeba TTS/Synthesized Voices/Pretrained_200/002109 Pretrained
directories : /content/gdrive/MyDrive a_TT5/Synthesized Voices/Pretrained 200/662113 Pretrained
directories : /content/gdrive/MyDrive ized Voices/Pretrained 200/082269 Pretrained
directories : /content/gdrive/MyDrive TTS/! ized Voices/Pretrained 200/682274 Pretrained

Figure 34: Get Valid Directories for MOSNet

Generate MOSNet

scores for synthesized voices from

trained HiFi-GAN vocoder

!python ./custom_test.py
rootdir C t

print("\n")

!python ./custom_t

--rootdir

Loading model weights

CNN_BLSTM init

Start evaluating 2 waveforms...
160% 2/2 [08:84<08:88, 2.87s/it]
Average: 2.3395

Loading model weights

CNN_BLSTM init

Start evaluating 2 waveforms...
100% 2/2 [@@:03<e8:08, 1.99s5/it]
Average: 2.3 866688000802

pre-

Figure 35: MOSNet scores for synthesized voices from pre-trained HiFi-GAN vocoder

25

8.4 Generate MOSNet scores for synthesized voices from fine-
tuned HiFi-GAN vocoder (100 epochs)

Ipython .
--rootdir

print(’

!python ./
--rootdir

print("\n"

Ipython ./
--rootdir

Loading model weights

CNN_BLSTM init

Start evaluating 2 waveforms...
166k 2/2 [@e:e3<e0:08, 1.71s/it]
Average: 2.994

Loading model weights

CNN_BLSTM init

Start evaluating 2 waveforms...
10e% 2/2 [00:04<00:00, 2.08s5/it]
Average: 2.6870800080000003

Loading model weights
CNN_BLSTM init

Start evaluating 2 waveforms...
16e% 2/2 [e8:093<06:88,

Average: 2.6405

Figure 36: MOSNet scores for synthesized voices from fine-tuned HiFi-GAN vocoder (100
epochs)

26

8.5 Generate MOSNet scores for synthesized voices from fine-
tuned HiFi-GAN vocoder (200 epochs)

!python ./custom_test.py |
--rootdir

print("\n")

!python ./custom
--rootdir

print{"\n"

!python ./custom
--rootdir

print("\n"

!python ./custom_test.py \
--rootdir

Loading model weights

CNN_BLSTM init

Start evaluating 2 waveforms...
1eek 2/2 [@e:03<ee:88, 1.77s/it]
Average: 2.928

Loading model weights

CNN_BLSTM init

Start evaluating 2 waveforms...
108% 2/2 [e@:83<e0:88, 1.75s/it]
Average: 2.9215

Loading model weights

CHN_BLSTM init

Start evaluating 2 waveforms...
180% 2/2 [@8:83<08:88, 1.76s/it]
Average: 2.721

Loading model weights

CNN_BLSTM init

Start evaluating 2 waveforms...
1ee% 2/2 [@0:83<08:808, 2.08s/it]
Average: 2.3899999999990997

Figure 37: MOSNet scores for synthesized voices from fine-tuned HiFi-GAN vocoder (200
epochs)

9 Evaluation: Plot Visualization

This section describes the generation of mel spectrograms and waveforms for the original
and synthesized voices produced in[7] The following figures demonstrate the visualizations
done in this research.

27

9.1 Plot Mel Spectrograms and Waveforms

~ Plot visualizations for inferences

Step 27: Plotting spectrograms and waveforms for original and synthesized voices

1. Ensure that the original and synthesized voice are the only files present in the folder.
2. For ease of inference, the code follows the following directory structure: Synthesized Voices Output > Pretained_0 or Pretrained_100 or
Pretrained_200 > Speaker > myst_xx_xx (original audio file) syn_mys_xx_xx (synthesized audio file)

dir_path, sub_directories,

~ filename in files:
filename.endswith("
audio_file = os.path.join(dir_path,filename)
audio_data, sr = librosa.load(audio_file)

melspectrum = librosa.feature.melspectrogram(y=audio_data, sr=sr, hop_length= 512, window="hann', n_mels=88)
fig, ax = plt.subplots()

S_dB = librosa.power_to_db(melspectrum, ref=np.max)

img = librosa.display.specshow(S_dB, x_ axis="t '

fig.colorbar(img, ax=ax,

fig title = "I

pltFileName = dir_path + 1 + filename.split(’
t(title=fig title)

plt.show()

", pltFileName)

y, sr = librosa.load(audio_file, duration = 4)
fig title Wavefc " + filename
pltFileName f " + filename.split(”
plt.plot(y
t.title(fig_title)
.xlabel('T N
t.ylabel("
t.show()
t.savefi
print ¢ ", pltFileName)

Figure 38: Generate and Store Mel Spectrograms and Waveforms

28

Mel-frequency spectrgoram of syn_myst_002013_2014-03-1 1_11—14—16_3.%_‘128_1_049“%
+

Mel-frequency spectrogram saved in : /content/gdrive/MyDrive/Zeba TTS/Synthesized V

Waveform of syn_myst_002013_2014-03-11_11-14-16_LS_2.1_049.wav

06

0.4 4

02

o
=
2
g‘

T T T T
20000 40000 60000 80000
Time in seconds [samples)
Waveform saved in : [fcontent/gdrive/MyDrive/Zeba TTS/Synthesized Voices/Pretrained
<Figure size 432x288 with © Axes>

/content/gdrive/MyDrive/Zeba TTS/Synthesized V

Mel-frequency spectrogram saved in :

Figure 39: Produced Mel Spectrograms and Waveforms

References

Jain, R., Yiwere, M. Y., Bigioi, D., Corcoran, P. and Cucu, H. (2022).
speech pipeline, evaluation methodology, and initial fine-tuning results for child speech

synthesis, IEEE Access 10: 47628-47642.

A text-to-

29

	Introduction
	Required Specifications
	Hardware requirements
	Software requirements
	Storage requirements/ Products/ Subscriptions

	Data Collection
	Data Cleaning and Pre-processing
	Import Libraries for preparing the MyST corpus
	Creating Constants
	Data Cleaning
	Data Pre-processing

	Implementation of the HiFi-GAN vocoder
	Run pre-requisites
	Import Libraries for implementing the HiFi-GAN vocoder
	Training the HiFi-GAN vocoder on MyST corpus
	Generating Audio References from the trained HiFi-GAN vocoder

	Transfer Learning approach for the HiFi-GAN vocoder
	Import/ Install repository for implementing the transfer learning for the pre-trained HiFi-GAN vocoder
	Modify the hyper-parameters in the HiFi-GAN vocoder configuration file
	Start Fine-tuning and Training the HiFi-GAN Vocoder

	Synthesizing voice from the proposed model
	Import/ Install repository for implementing the proposed model that contains transfer learning for the pre-trained HiFi-GAN vocoder
	Synthesize voice using pre-trained HiFi-GAN vocoder in the proposed model
	Synthesize voice using fine-tuned HiFi-GAN vocoder for 100 epochs in the proposed model
	Synthesize voice using fine-tuned HiFi-GAN vocoder for 200 epochs in the proposed model

	Evaluation: Generate MOSNet scores
	Import/ Install repository for implementing and generating MOSNet scores
	Get Valid Directories for MOSNet to run
	Generate MOSNet scores for synthesized voices from pre-trained HiFi-GAN vocoder
	Generate MOSNet scores for synthesized voices from fine-tuned HiFi-GAN vocoder (100 epochs)
	Generate MOSNet scores for synthesized voices from fine-tuned HiFi-GAN vocoder (200 epochs)

	Evaluation: Plot Visualization
	Plot Mel Spectrograms and Waveforms

