

Configuration Manual

MSc Research Project MSc Data Analytics

Vibhash Anil Kumar Shrivastava Student ID: x19236263

> School of Computing National College of Ireland

Supervisor: Dr. Barry Haycock

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:	Vibhash Anil Kumar Shrivastava				
Student ID:	X19236263				
Programme:	MSc Data Analytics Year: Jan 2021-20				
Module:	MSc Research Project				
Lecturer:	Dr. Barry Haycock				
Submission Due Date:	31st January 2022				
Project Title:	Implementation of Cascaded CNN architecture for fully automated Multiple modalities-based Brain tumour segmentation using MRI scans using selective overlapping patches.				

Word Count: 1047

Page Count: 12

I hereby certify that the information contained in this (my submission) is information pertaining to research I conducted for this project. All information other than my own contribution will be fully referenced and listed in the relevant bibliography section at the rear of the project.

<u>ALL</u> internet material must be referenced in the bibliography section. Students are required to use the Referencing Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature: Vibhash Shrivastava

Date: 31/01/2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple copies)	
Attach a Moodle submission receipt of the online project submission, to each project	
(including multiple copies).	
You must ensure that you retain a HARD COPY of the project, both for your own	
reference and in case a project is lost or mislaid. It is not sufficient to keep a copy on	
computer.	

Assignments that are submitted to the Programme Coordinator Office must be placed into the assignment box located outside the office.

Office Use Only	
Signature:	
Date:	
Penalty Applied (if applicable):	

Configuration Manual

Vibhash Anil Kumar Shrivastava X19236263

1. Introduction

This Document will discuss the Hardware, System configuration, Software and various technology stack require for the execution of the Research project. Below are the detailed stages that needs to be done in order to execute the Deep learning project.

2. System Configuration

- Processor AMD Ryzen 5 3500U with Radeon Vega Mobile Gfx @ 2.10 GHz
- GPU 2 GB of AMD Vega RADEON
- RAM 8GB DDR4
- Operating System Windows 10 64-bit
- Storage 500GB SSD

2.1Hardware

Device specifications			
Device name	LAPTOP-9HK0R30G		
Processor	AMD Ryzen 5 3500U with Radeon Vega Mobile Gfx 2.10 GHz		
Installed RAM	8.00 GB (5.95 GB usable)		
Device ID	2B96DEF7-78BB-49DD-9104-EA7F63CCC783		
Product ID	00327-35896-22274-AAOEM		
System type	64-bit operating system, x64-based processor		

Fig 1.Hardware Configuration for Project

2.2 Software

Software Used – Google Colab Pro

	Colab Free	Colab Pro	Colab Pro +
Guarantee of resources	Low	High	Even Higher
GPU	K80	K80, T4 and P100	K80, T4 and P100
RAM	16 GB	32 GB	52 GB
Runtime	12 hours	24 hours	24 hours
Background execution	No	No	Yes
Costs	Free	9.99\$ per month	49.99\$ per month
Target group	Casual user	Regular user	Heavy user

Table1.Google Colab versions comparasion

2.3 Technology Stack

Technologies Used -

• Pythion 3.9

- NumPy 1.21.4
- Pandas
- Keras 2.4.3
- TensorFlow 1.15 backend
- SimpleTK
- Matplotlib

3. Implementation

The below diagram gives the overview of the End-to-End flow of working of our fully automated segmentation model, which includes stages from pre-processing to model training and post processing and finally prediction.

Fig 2...End to End Pipeline of brain tumor segenation project

3. Data Visualization

Here we have used thea images from the datset and visualize the image with high grade and low grade tumor and without tumor.

High grade tumor	Low grade Tumor	mor Without tumor	
0 50 - 100 - 150 - 200 - 0 50 100 150 200	0 50 - 100 - 150 - 200 - 0 <u>50</u> 100 1 <u>50</u> 200	0 25 - 50 - 75 - 100 - 125 - 150 - 175 - 0 50 100 150	

Fig 3.Data Visualization

4. Data Extracting & Preparation

Here first the data was downloaded in the drive and later extracted using the Google Colab pro software (Since size of data is 3GB) while extraction requires more space. Here we see we done image conversion and transpose along with reshaping the images in order to feed to the training and validation datasets.

Dataset source Link - https://www.kaggle.com/sanglequang/brats2018=

5. Training & Validation datasets preparation

In this step we divide the datasets into training and validation datasets where we use 80/20 for splitting the training datasets and 75/25 for splitting the validation datasets and after printed the shape of the images. Here we used TensorFlow as backend.

Fig 5.Training & Validatoion datasets preparation

6. Important Packages for Implementation

In this stage we had imported all the necessary library packages required to execute the model which include different layers of CNN library required for training and complying purpose from keras application.

Fig 6. Keras application packages required for exection.

7. Alternate Methodology Used – UNET

Below is the architecture of the Unet which we used as an alternate methodology which has one encoder at input and two decoders at output for segmentation of the brain images, but the drawback was it took around 9 hours for training the model using GPU.

Fig 7.Alternate methology used for segementing using Unet Model.

8. Model Implemented

Here we have implemented our core CNN model (3 variant architecture) using the spars and dense architecture

Below diagram shows the model architecture used for the implementation which was discussed in brief in the report. Here the spare module consist of 6 different layers of operation and Dense module consist of different Convolutional layers of different size with two different activation function and concatenation at the output.

Sparse and Dense CNN architecture Fig 1.Sparse and Dense module CNN architecture

Fig 8.Three CNN model made using sparse and dense module CNN

10.Image Pre-processing

Here we have use three different steps for image pre-processing which include image normalization, standardaization and agumentaion process along with isolation of healty region from the image with tumorus region.

Fig 9.Image preporcessing stage

11. Post processing.

Here we performed two post processing operations first by removing the small connected region form the image and second is the morphological operations on the image.

Fig 10.Image post processing stage

12. Model Trained

Here we have selected compiler and loss funtion for our training model and check pointer along with class weighted approach for imbalanced problem.

<pre>[] from keras import backend as K def dice_coef(y_true, y_pred, epsilon=1e=6): intersection = K.sum(K.abs(y_true * y_pred), axis=-1) return (2. * intersection) / (K.sum(K.square(y_true),axis=-1) + K.sum(K.square(y_pred),axis=-1) + epsilon) def dice_coef_loss(y_true, y_pred): return 1-dice_coef(y_true, y_pred)</pre>	
<pre>model.compile(optimizer=Adam(lr=1e-5),loss=dice_coef_loss,metrics=[dice_coef]) #model.load_weights('./Wodel Checkpoints/weights.hdf5') checkpointer = callbacks.ModelCheckpoint(filepath = '/content/drive/My_Drive/Brain_Tumor/Model_Checkpoints/weights.hdf5',save_best_only=True) training_log = callbacks.TensorBoard(log_dir='/content/drive/My_Drive/Brain_Tumor/Model_Checkpoints')</pre>	
<pre>[] class_weighting= [0.28, 0.08, 0.43, 0.21] Init_train = Training(history, 8, 1, class_weighting) history = model.fit(X_train,Y_train,validation_data=(X_val,Y_val),batch_size=16,epochs=16,callbacks=[training_log,checkpointer],shuffle=True)</pre>	
Train on 4505 samples, validate on 1350 samples Fpoch 1/16 4560/4569 [====================================	
4050/4050 [===================================	

Fig 11.Training stage of model

13. Evaluation

The model were evaluted based on the dice and loss score for that we have used our saved trained model for estimating the validation loss and dice coefficient as stated on below code which includes the highest value at the 16^{th} epcoch of the training step.

Fig 12.Code for plotting loss and dice scores for model

Fig 14. Graph of Model score vs Epoch

14. Prediction

Here we have done the preidction by testing it on brian tumor MRI images with low grade, high grade and images with no brain tumor.

Fig 15.Code for printing the prediction results

Parameter	Low	High	Low	High	No tumor
	Grade	Grade	Grade	Grade	
Test image					
Actual		2			
Predicted	۲	*	\$		

Table 2. Prediction resulst on low, high grade and brain images with no tumor.

15. References.

- 1. Axel, D, 2014. Brain Tumor Segmentation with Deep Neural Networks. In: Proceedings MICCAI-BRATS. Issue 2014, pp. 01-05.
- 2. https://arxiv.org/pdf/1505.03540.pdf
- 3. https://mymoodle.ncirl.ie/pluginfile.php/205095/mod_resource/content/0/Masters%20 Research%20Project%20Handbook_2021-2022_Final.pdf