~

N\ National
College
Ireland

Machine Learning Framework for predicting
Empathy using Eye tracking and Pupil
Dilation

MSc Research Project
Data Analytics

Akshay Dilip Sayar
Student ID: 20211121

School of Computing
National College of Ireland

Supervisor: Dr. Anu Sahni
Dr. Paul Stynes

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Akshay Dilip Sayar
Student ID: 20211121
Programme: Data Analytics
Year: 2022
Module: MSc Research Project
Supervisor: Dr. Anu Sahni
Submission Due Date: 19/09/2022
Project Title: Machine Learning Framework for predicting Empathy using
Eye tracking and Pupil Dilation

Word Count: 2367
Page Count: [16]

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Akshay Dilip Sayar

Date: 18th September 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | [J
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual
Machine Learning Framework for predicting Empathy
using Eye tracking and Pupil Dilation

Akshay Dilip Sayar
20211121

1 Introduction

The purpose of the report is provide step by step instructions to implement the research
- 'Machine Learning Framework for predicting empathy using Eye tracking and Pupil
Dilation’. The configuration manual describes the step-by-step details performed in the
completion of the research. The research aims to determine how efficiently a empathetic
person can be recognized based on pupil dilation and eye tracking features. For the imple-
mentation of this research, we have used multiple machine learning algorithms to detect
empathetic people and compare the performance of these machine learning algorithms.
The following points shows structure of the report.

Section 2 Hardware and Software Requirements:

Section 3 Data Collection: In this section data collection steps are discussed.

Section 4 Data Pre-processing: Shows how data was preprocessed and features were
extracted from the raw data.

Section 5 Implementation: This show how and which machine learning models were
applied to predict the empathy of a person.

Section 6 Conclusion: Conclusion of the report.

2 Hardware and Software Requirements

The detail of the system configuration used in the research is shown in table [I}

Operating System Windows 10
Installed Memory (RAM) | 8 GB

Processor Ryzen 7 5800
Graphic Processor Nvidia GTX 1650

Table 1: System Configuration

For implementation of the research, Python Programming Language has been used,
using Jupyter Notebook as IDE. The detail of libraries and programming languages used
for the research are mentioned below : - Python 3.8.5

1

e Jupyter Lab 3.0.14
e Pandas

e Numpy

e Tensorflow

e Dlib

e Yolovh

o Cv2

e Ellseg framework

e scikit learn — os

3 Data Collection

Data collection starts by conducting experiments on participants. The experiment starts
with signing the consent form by the participant. After that self reported parameters are
noted down like age, gender, sadness level on the scale of 1-10 (1 being least sad and 10
being extremely sad) before the experiment begins. The participants sits on a chair and
a laptop is place in front of him. The participants gets a headphone to listen to the audio
clearly. Then eye tracking glasses are given to the participant which is then calibrated
on three point scale, the three points being top left of the laptop screen, top right and
bottom centre of the screen. Then the pupil recording starts on the mobile and video is
played on the laptop. The participant is left alone to watch the video. The video is 13
minute long video which is narrated by actors. The stories are sad emotion based stories
narrated by four different actors and are used from the research papers 7. After the video
is finished the participants are asked to report the sadness level after watching the video
again on the scale of 1-10. Then the participant is asked to memory questionnaire which
has ten questions based on the video they just watched. For each right questions is given
1 mark and no negative marks for wrong answers. The final step of the experiment is that
the participants has to answer the emotion based empathy questionnaire ? the score of
which will be used as to check if the parson is highly empathetic or not. Data collection
for one person ends her and then these same steps are used on 53 participants.

4 Data Pre-processing

In this section we will discuss step by step process of data pre-processing for the research.

4.1 Data Preparation

After the experiment is conducted, the video and the folder which contains the data
related to the experiment is transferred to the laptop in which the BeGaze software was
installed. The video is processed and point of gaze is extracted which is shown on the
screen as orange color circle. The event matrix was also extracted from the BeGaze
software. The video extracted from the BeGaze software was in 1000 frame per seconds

Figure 1: Eye tacking glasses

to convert it into 25 frame per seconds the script shown in figure [2] was used and the
name of the file which has the script is ‘1000t025fps.py’. The output of the script is a
video in mp4 format.

import time

import cwv2

def process(input_dicr, output_dirl}):
cap cva. VideoCapture (input_dir)

fps = cap.get{cvi.CAP_PROP_POS_FRAMES)
fource = ev2.VideoWriter fource('X", "V', 'I", 'D")

H = inti{cap.get({cvi.CAP_ FROP_FRAME_HEIGHT)
W = int{cap.get{cvd.CAP_PROP_FRAME_WIDTH))

out_1 v VideokWriter(output_dirl ,fourcc, 25,(W,H)})

start_time = time.time()
C=idl

while cap.isOpened():

Ctml
ret, frame = cap.read()
if ret:
ocut_l.write(frame)
else:
cap.set{cv2.CAP_PROP_POS_FRAMES, @)
break
if evi.waltkKey(15) & OxFF == ord('q’): # Press 'Q° on the keyboard te exit the playback
bBreak

cap.release()
out_l.release()

f_time = time.time()
print{f_time-start_time}
cv2.destroyal lWindows()

Figure 2: Script to convert 1000 fps videos to 25 fps

The pupil video contained videos recording of both the eyes in one frame and hence
it was videos using the script shown in figure |3l The output of the script are 2 videos in
mp4 format. The name of the file is ‘pupil _video_crop.py’.

In [1:
import cv2
import numpy as np
import os
import time
def process{input_dir, output_dirl, ocutput_dirr, file):
print{input_dir + str{file))
cap = cvi.VideoCapture(input_dir + str(file))
fps = cap.get{cvd.CAP_PROP_POS_FRAMES)
fource = cvi.videowriter_fourcc(X", "V, "I", ‘D)

out_l = cvi.videoWriter{output_dirl + str(flle)[:-4]+ "_lefr.avi” ,fourcc, 31,(581,436))
out_r = cvl.VideoWriter{output_dirr + str(flle)[:-4]+ "_right.avi™ ,fourcc, 24, (581,436))
start_time = time.time()
=8
while cap.isOpened():
Ca=1
ret, frame = cap.read()
if ret:
roll = frame[232:668; 58:639]
roil2 = frase[232:668, 630:-68]
out_l.write{rail)
out_r.write(roi2)
else:
cap.set(cv2.CAP_PROP_POS_FRAMES, @)
break
if cvi.waltkey(15) & OxFF == ord("q°): # Press Q" on the keyboard to exit the playback
break

cap.release()
out_l.release()

F_time - time.time()
print{cs/{f_time-start_time))
evd . destroyAl INindews ()

input_die = “CivWUsersihaksha‘\DocumentidZiwThesis\\Pupll processedi\”™
output_dirl = “C:\\Users\\aksha\\Documents\\Thesis\\Pupil_lefri\”
eutput_dirr = “C:\\Users\\aksha\\Documents \\Thesis\\Pupil_righi\”

files = [file for file im os.listdir(input_dir) if flle.endswith{™.mpa=}]

for flla in files:
print{“wnin\n\nstarted with - “,strel{flls))
process{input_dir, output_dirl,output dirr, file)
print{“finished with - “;str(file))

Figure 3: Script to split a pupil recording video in 2 video (one for right eye and one for
left eye)

4.2 Feature Extraction

In this section we will discuss the feature extraction performed for the research. To extract
heat map of point of gaze, two yolo models were created one for detecting the point of
gaze circle and the other for detecting laptop screen. Yolovb folder was downloaded from
the github site of Ultralytics. Data was created by taking screenshot of the frame of
videos and labelling them using labelimg software which is opensource. Total of 124
images were used to train point of gaze circle and 215 images for laptop screen detection.
The train.py from yolovb was used to train a model which would give us weights of
the model in “.pt” format. Both the model were trained for 300 epochs and batch size
of 8. To detect the point of gaze circle and screen the following command was used,
which outputs a “.txt” file which has coordinates of circle/screen for one single frame of
the video. python detect.py —weights /path_to_model weights/best_circle_weight.pt —img
640 —conf 0.25 —source path_to_videoparticipant_1.avi —save-txt —nosave —save-conf —-name
participant_1 —project circle_or_screen/

To generate average distance from eye dlib library was used to get the face landmarks
of the actors present in the screen of field of gaze. The script used for the same is in jupyter
file “get_face landmarks_dlib.ipynb” which used weight stored in “shape_predictor_68_face
_landmarks.dat”. The scripts outputs a “.csv” file which contains coordinates of eyes of
actors from each frame of the video. Using the data from the above yolov) inference
heat map could be created and using point of gaze circle coordinate from yolovb and
coordinates of eyes from the dlib module average distance from each eye can be calculated.
For both heat map and average distance of point and gaze and eyes of actors a single
scripts was written, which can be called (figure {4 for all the participants.

In []: inmp_c = "participant_1"
inp ¢ label = "participant 1"
inp s = "participant_1"

start = 53
end = 14208

start = {(int(start//1808)%*60*24)+(int(startXl08)%*24)
end = (int{end//186)*60%24)+(int(endX18@)*24)

print({start,end)

heatmaps(inp c,inp c_label,inp s,inp_s,inp_s,start,end)

dlib_distance(inp_c,inp_c_label,inp_s,start,end)

Figure 4: Calling definition to create heatmap and average distance from eyes.

In the figure 6, “heatmaps” creates the heat map of point and gaze and “dlib_distance”
calculates the average distance between point of gaze and eyes of actor. Start and end is
the start and end of time of a video in seconds. The output of the script is a CSV file
which has average distance from point of gaze to actors left and right eyes and heatmap
in “.png” format.

To get peak pupil dilation and other pupil features, ellseg framework from was used.

Some modifications were made to extract just the pupil radii from the script. The pupil
video for left and right eyes which were extracted in the last step will be used as input
and as the output two radii for the pupil is extracted for each frame of the video. Hence
for each participant the script was ran twice, one for left eye and one for right eye which
gives data for rl and r2 (two radii of ellipse) and this was saved in json format. Once
all the data was extracted for all the participants and saved to json file format, featured
from this was extracted. First the average of r1 and r2 was taken for each frame for each
eye of a participant. The features include peak pupil dilation, 0,10,25,50,75,90 and 100
percentile of the distribution. All the features were extracted and to normalize the data
was divided by the smallest size (radius) of pupil. This was done for all the participants
and features from the pupil dilation was extracted. “evaluate_ellseg_thesis.py” was used
to extract pupil radii of each eye of a participant. The script is taken from github and
the research paper is cited in the report. The script has been updated to extract only
useful information. The output of the script is “.json” file which has list of all the radii
of pupil for each frame of the video. “pupil_feature_from raw_json.ipynb” contains the
script (shown in figure [5)) which extracts information from the raw json file like peak pupil
dilation and 0,10,25,50,75,90 and 100 percentile of the distribution. The output of the
script is a CSV file which has all the feature for each participant.

[47]: with cpen{™X Pk projects\ViEye trackingVipupdl_radius.is0n”) as json_file
d face . load(jaon_File)
sett=[]
Far 1 in d:
1§13 = f.3plie(b}
if len{lis)=-a:
sett.append(E. split (™ _~)fe]«" _"«i.split{”_")[21]}
AETH
sett.append (. splity e
sett=sat{satt)
Len{sett)

1t fi=[]
def polnt{per,s3);:

return{round({s3.quantile{per) - np.meands3))/ np. std(53), 2))
for 1 in sett:

try:
51 = pd.Serdes{d[1+"_pupll left=]['r1*]}
51 = pd.Series(d[f+~ pupil lefc-]["r2°])
81 = (81eg2)/
11 = [i.split(J[@) doweer(), podnt@, £3) podnt 6. 1,53} ,podnt (8. 25, 53) podrt(8.5,53) polnt (0. 75, 53) , podnt (8.9, 53] , padnt(
sl = pd.Serles(d[i+” _pupll_right™]['r1"]
i2 = pd.Secles(d[i+" pupll right™]['r2" 1)
53 [slas2)f2
12 [podne{d,s3) polat{e. 1,830 polnt (0. 25,53) podnt({0.5,53) ,podnt (0. 75, 53) polat{e. 9,53) polatil,s3)]

1i.extensd{12})
F1 . append{11)
FACEPL
i (§]

dfi . DataF rame | £, columng=[“name™, " 167, 118"

dfl. to_csw{"X: ViEye_t sv™, Index=False]

Figure 5: Script to create features from pupil dilation

To create features from the event statistics which was generated from the BeGaze
software. The script from figure[6] was used. The output of the script is extracted features
like blinks_per, blink_mean, saccade_per etc in CSV format for all the participants.

In [185]: import os, pandas as pd, rampy as np

In [135]: blink means[]
blink_stds[]
saccade_sgans| |
saccade_stds|)
name-[]

for § in o5 llstdle("X:\\Eye_tracking Processed Raw_videcs\\Fimal EVENT_STATS\\"):
peint (i)
df-pd.read_cav("X:\\Eye_tracking Processed Raw_videos\\Flnal EVENT _STATS\\ el sep="11")
print {df.columns)
df b = df[df[“Category™]=="Elink"]
df b = -

o Time [ms]"].i2na(}]
| | t ime [ms]°].dsnaf)]
df_B["Event 5 s Ti ®] = pd.te_datetima{df B[Event Start Video Tise [mg]™], format="XH:09:X5:%F7)
of B["Event £ = pd, e _datetise(df b [25])7], format="XiRM:X5:%F")
df_b["blink_tise"]-df_b[“Evenrt End video Time [ms]™)-&f _b[“Event Start Video Time [ms]"]
df_b[‘blink_tiss"]-df_b[‘bl se’ |inp. timedeltatd(1, 's')
f_bedf_b[(dF_b["Blink_tiss" |s=df ink_tise’], quantile.05) }h(df bl blink_tise']cedf_b['Blink_tise'].quantile(s.95))]
blink_mesn . sppend(np . mean{df_b[" ime"])
blink_std. append(np.stdidf b[blink _ti
df_s = df[df[“Category™]=="Saccade”]
df_s = df_s.replace(™-",np.Nal}
df 8 = of s[-df_s[Eve art Video [ms)"].1sna(}]
df s = dF s[~df_s["Event End video Time [ms]"].dsna()
df_s[“Event Start Video Time [ms]”] = pd.to_datetise(df_s[“Event Start Video Time [ms]”], formats="¥H:%4:X5:%4°)
pd . to_dat mo [m5]”], formats"XH:BH:X5:%F")

1 oo Tise [#s]™)

e 1)
me']})

df_s["Event End o0 Tise [ms]"] =
df_s["saccade J=df_s["
df_s[*saccade_time")-df_s| “saccade_t
of_s=df_s[{df_s["saccade_time’ Jo-of 5[°
Saccade_ean. appand(ng.sean(af s sa
saccade_std. append(np, sud{df_s| "sacc
[name, oppend(os . split.pathiife]))

name. append(i[:-4])

. 5°)
_time"].quantile(e.es))& (df 5[saccads time’ J<-of 5[saccade_time’].guantile{e

diet = {"ndme”indme, blink mean”: Blink_sédn, "Blink_std™: blink_std, "saccade_sedn”: Shccade_sedn, saccade_std’:shccbde_std}
data-pd.DataFramedict
data.to_csv("X: \\Eye_tracking_Processed_Raw_videos)

vivent_statisticsil, csv”,index-False)

Figure 6: Script for Feature extraction from event statistics

All the data from above was merged together to form the final dataset. And dataset
of heatmap contained only the images of heat map of point of gaze. All the features is
shown in the table 3] and table 2

Z
o

Features
Age

Sex

before

after
difference
memory
eeq

ADR

ADL
blink_mean
blink_std
saccade_mean
saccade_std
saccade_per
blink_per

O 0| | O O = | W[N+~

—
@)

—
—_

—
[\

—
w

—_
N

—
(S8

Table 2: Features from eye tracking and during questionnaire

4.3 Exploratory Data Analysis

The Dataset contains 47 rows and 41 features and one target variable. The distribution
of target variable is shown in the figure [7]

Z,
S

Features
std_10
std_110
std_125
std_150
std_175
std_190
std_1100
std_r0
std_r10
std_r25
std_r50
std_r75
std_r90
std_r100
min_110
min_125
min_150
min_175
min_190
min_1100
min_r10
min_r25
min_r50
min_r75
min_r90
min_r100

COIJ| | Y = | W DN —

Ne}

—_
)

—_
—_

—_
[\

—_
w

»—
W

—
(S5

—
D

—_
-3

—_
oo

—
Ne}

DO
=)

[\
—

)
[\)

[\)
w

[\
=~

[\]
(@)

DO
D

Table 3: Features from pupil dilation

target
80

Figure 7: Distribution of target variable empathetic and non empathetic.
8

The distribution of gender in the data is unequal as shown in figure [§

14 (29.79%)

Sex
@ Male

@®Female

33 (70.21%)

Figure 8: Count of gender in the dataset

Females are generally more empathetic than male and can be seen in figure [0

Sex @Female @Male

Count of Sex

larget

Figure 9: Count of gender for each of the categories (empathetic and not empathetic)

The distribution of age of participants are as shown in figure

Age His‘iogram

30
15

20

| -
. I I

[13, 21.3] (21.3, 23.6] (23.8, 25.9] (25.9, 28.2] (28.2, 30.5]

Figure 10: Distribution of age of participants

5 Implementation

The models implemented on the structured data and image data has been discussed in
this section. A total of four experiments were conducted in this research. First experiment
was model training on self reported features, the second experiment was ML model on eye
tracking features. The third experiment was model on pupil dilation based features. The
fourth experiment was modelling on all the features. In experiment 1,2 and 3 only three
models were applied - random forest, logistic regression, and gradient boosting. In fourth
experiment along with the three models extreme gradient boosting was also applied and
the code snippet are attached in the following subsections. The code snippets contains
hyperparameters space and applying of tuned model on test data for all the models. In
experiment three which is modelling on pupil based features, PCA was not applied on the
features and were taken as raw features in the experiment three. But in experiment four
the pupil features were reduced to four using PCA which is discussed in the following
subsection.

5.1 Questionnaires

Two questionnaires were asked while conducting the experiments. The first questionnaire
was memory based questionnaire. The memory based questionnaire is accessed using the
moodle, as it is saved as moodle quiz. The moodle quiz are opened in the laptop in which
the participant watches the video. The score are shown immediately on the completion
of the test which has to be noted down. The interface of the quiz/memory questionnaire
is as shown in the figure

10

Question 1

Answer saved

ked aut of

00

& Eit

question

Question 2

& win

quastion.

Question 3
ot yet
answered

Marked out of
100

& Eit

question

 Flag question

¥ Flag question

 Flag question

Which relative of Bruce was suffering?

O a Auwnt

@b, Sister

O ¢ Mother

0 d. Grandmother

Clear my choice

‘What happened to Bruce's relative (disease)?

0 a Covid
O b. Alzheimer
Oec TB

O d. Cancer

What was stolen from Bruce?

O a Watch
O b. Bieyde
O ¢ Motorbike
0 d. Mobile

Quiz navigation
B00000A0

Finish attempt ...

Start a new preview

The sad emotion based empathy questionnaire is created in Microsoft survey. The
link of the same is used to open the questionnaire at the end of the experiment as the last
step. There are a total of thirteen question where the first three questions are participant
name, gender and age. The next ten questions are empathy questionnaire. Each question
is multiple choice question and has seven options in it and marks are given based on
the option chosen. For ”Strongly disagree” -3 is given for neutral ”0” and for ”Strongly
agree” 3 is given and the other question’s mark are given linearly. The output of the
questionnaires are send to a google excel sheet. The out of the sheet contains options
chosen for each question and a total average score which lies between -3 to 3. A sample
questions and survey’s interface is shown in the figure The memory questionnaire’s
result and empathy questionnaire’s result along with gender and age is merged in the

Figure 11: Interface of memory questionnaire

final dataset with other features.

Questions Responses @

13. If someone tells me about an event that made him/her sad, | can easily understand why that
event made him/her sad *

() Disagree Strongly

)

Disagree Somewhat

Disagree Slightly

O

Neutral

O O

Agree Slightly

)

Agree Somewhat

Strongly Agree

O

Figure 12: Interface of Empathy questionnaire

11

5.2 PCA on Pupil Data and Heat map images

PCA was applied to the 26 pupil features and the result is shown in figure 12. The

figure |13[shows that 99% of variance was shown in only first four features and hence the
dimension of data was reduces and 26 features were reduced to 4 features using the PCA.

The number of components needed to explain 99% variance in Pupil dilation features

110

105

99 cutloffhhras
R o e T o e R e e e i e

F 100
w
L #
- ’
5 pss /
Y ;
S $
E '
3 090 !
[
!
[
I
085 !
I
¢
a3 - - —T—T"T—T—T—T—T
01 23456 768 91W011121314151617 1819202122 232425 26

Number of Components

Figure 13: PCA on pupil data shows that 99% of variance in combination of 4 features.

PCA was applied to the 12288 heat map flatten image’s features and the result is

shown in figure [14 The figure shows that 95% of variance was shown in only first
thirty four features and hence the dimension of data was reduces and 12288 features were

reduced to only 34 features using the PCA.

. The number of components needed to explain 95% variance for heatmap images
10 r'_.‘_.-fii
- 'H-’
95% cut-off threshold _r..s-"'
09 -
-
-
-
el
g el
o ‘-’
5 -
EX -~
g ,
] s
3
§ A
J o Ei
-
'.'
05 "
‘
1]
K
s 8

‘

i

i

;

!

012345678 9WNIBMISIENTISNNI0IIZI3M 252627 26 2530 31 3233 34 3536 37 38 394041 4243 44 454647 4849

Numbes of Companents

Figure 14: PCA on heat map image’s flatten array data shows that 95% of variance was
found in combination of 34 features

12

5.3 Random Forest model

Random Forest algorithm was implemented across all the experiment. The implement-
ation of Random Forest for experiments in research is shown in figure The code
includes the search space of hyperparameters for the model. The hyperparameters are
tuned. Using the tuned model, the prediction is done on test data.

In [

ra
3

1: |# Use the random grid to search for best hyperparameters
First create the bose model to tune
rf = rfe()
Rondom search of porameters, using 3 fold cross validation,
search across 189 different combinations, and use oll aveilable cores
rf_random = RandomizedSearchCv{estimater = rf, param_distributions = random_grid, n_iter = 18@, cv = 2, verbose=2, random_state-:
Fit the random search model
rf_random.fit(X_train, y_train)

Fitting 3 felds for each of 182 candidates, totalling 388 fits

Out[22]: RandomizedSearchiVicv=3, estimator=RandomForestClassifier(), n_iter=lsa,
n_jebs=-1,
param_distributions={"bootstrap': [True, False],
‘max_depth': [1e, ze, 2@, 28, 5@, &8,
7@, %2, @@, 182, 11,
Hone],
'max_features': ['aute', 'sgrt'],
'min_samples_leaf': [1, 2, 4],
‘min_samples_split': [2, 5, 18],
‘n_estimators': [2@@, 4@3, £08, 228,
1@¢e, l2ee, l4@e, lee@e,
1322, 2e0@2]},
random_state=42, verbose=2)

In [23]: rf_cv = rf_random.best_estimator_
y_pred = rf_cv.predict(X_test)
conf_mat = confusion_matrix(y_test, y_pred)
print{"confusion matrixn",conf_mat)
precision, recall, f1 = metricss(y_test, y_pred)
print("f1 - ",f1)
print{"recall - ",recall}
print{"precision - ",precision)

Figure 15: Random Forest implementation with hyper parameters tuned.

13

5.4 Gradient Boosting model

Gradient boosting |16/ was applied. The code includes the search space of hyperparameters
for the model. The hyperparameters are tuned. Using the tuned model, the prediction
is done on test data. The gradient boosting did not perform well in all the experiments.

In

In

In

[25]:

[26]:

[27]:

parameters = {
"n_estimators":[5,58,258,588,1888],
"max_depth":[1,3,5,7,9,15,28,58],
"learning_rate":[e.81,0.1,1,10,188],
"max_depth" : [int{x) for x in np.linspace(ie, 118, num = 11}],
"min_samples_split" : [2, 5, 1a],
"min_samples_leaf" : [1, 2, 4]

Use the random grid te search for best hyperparameters
First create the base model to tune

gbc = GradientBoostingClassifier()

Rondom search of parometers, using 3 fold cross validation,

segrch ocross 189 different combinations, and use all ovoilable cores

gbc_random = RandomizedSearchoV({estimator = gbc, param_distributions - parameters, n_iter = 182, cv = 3, verbose=1, random_state:
Fit the random search model

gbc_random.fit(X_train, y_train)

Fitting 3 folds for each of 188 candidates, totalling 3ee fits

RandomizedSearchCV(cv=3, estimator=GradientBoostingClassifier{}, n_iter=122,
n_jobs=-1,
param_distributicns={'learning_rate": [@.e1, @.1, 1, 1&,
128],
'max_depth': [18, 28, 28, 48, S8, &0,
78, 3@, %@, 120, 118],
'min_samples_leaf': [1, 2, 4],
‘min_samples_split': [2, 5, 18],
‘n_estimators®: [5, 58, 258, sSee,
leee]},
randem_state=42, verbose=1)

gbc_cv = gbc_random.best_estimator

y_pred = gbc_cv.predict(X_test)

conf_mat = confusion_matrix(y_test, y_pred)}
print{"confusion matrix\n",conf_mat)

precision, recall, f1 = metricss(y_test, y_pred)

print{"f1 - ",f1)
print{"recall - ",recall}
print{"precision - ",precision}

Figure 16: Gradient Boosting implementation with hyper parameters tuned.

14

5.5 Logistic Regression model

Logistic regression model was applied as shown in figure The code includes the
search space of hyperparameters for the model. The hyperparameters are tuned. Using
the tuned model, the prediction is done on test data. Logistic regression performed the
better in all the experiments as compared to the other models.

space = dict()

space["solver'] = ['newten-cg", 'lbfgs', 'liblinear', 'sag', 'saga']

space["penalty'] = ['mone’, '11', '12°, 'elasticnet’]

space['C'] = loguniform{le-5, 12a)

define search

1r_random = RandomizedsearchCw{lr, space, n_iter=18@, scerimg="accuracy', n_jobs=-1, cv=cv, random_state=1)

In [42]: # execute search
result = 1r_random.fit{X_train, y_train)
summorize result
print(‘Best Score: Xs' X result.best_score_}
print(‘Best Hyperparameters: ¥s' X result.best_params_)}

Best Score: @.7944444224a044440
Best Hyperparameters: {'C': 1.892924£1732975%2, 'penalty': ‘none', 'solver': 'sag'}

C:hUsershaksha\anaconda3lib\site-packages'sklearn\model_selection’_validation.py:372: FitfailedWarning:
1418 fits failed out of a total of eea.

The score on these train-test partitions for these parameters will be set to man.

If these failures are nct expected, you can try to debug them by setting error_score='raise".

Below are more details about the failures:
218 fits failed with the following error:
Traceback (most recent call last):
File "C:\Users\aksha‘\anaconda2lib\site-packages\sklearn\mcdel_selection'_validation.py", line 681, in _fit_and_score
estimator.fit(X_train, y_train, **fit_params)
File "C:\Users\aksha\anaconda3\lib\site-packages\sklearn\linear_model_logistic.py", line 1461, in fit
solver = _check_sclver{self.solver, self.penalty, self.dual)
File "C:\Users\aksha‘\anaconda2\lib\site-packages\sklearn\linear_mcdel'_legistic.py", line 447, in _check_solver
raise wvalueError{
valueError: Solver newton-cg supports only '12' or ‘none' penalties, got elasticnet penalty.

In [43]: lr_cv = lr_random.best_estimator_
y_pred = lr_cv.predict(X_test)
conf_mat = confusicon_matrix(y_test, y_pred)
print("confusion matrix\n",conf_mat)
precision, recall, f1 = metricss(y_test, y_pred)
print("f1 - ",f1)
print({"recall - ",recall}
print{"precision - ",precision}

Figure 17: Logistic regression performed the best with 88.89% overall accuracy.

15

5.5.1 Extreme Gradient Boosting model

XGB Model was applied and figure (18 shows the code snipped of the same. The code
includes the search space of hyperparameters for the model. The hyperparameters are
tuned. Using the tuned model, the prediction is done on test data. The XGB model did
not perform well.

In [28]: Xgb = xgboost.XGBClassifier()
params = {
"learning_rate" : [@.85,0.18,8.15,8.20,8.25,8.38],
"max_depth" : [3, 4, 5, &, 8, 18, 12, 15],
"min_child_weight" : [1, 3, 5, 7],
"gamma": [8.8, 8.1, 8.2 , 8.3, 8.4],
"colsample bytree®" : [8.3, 8.4, 8.5 , 8.7]

In [28]: |Xgb_random=RandomizedsearchCv{xgb,param_distributicns=params,n_iter=5,scoring='roc_auc',n_jobs=-1,cv=5,verbose=3}
xgb_random.fit(X_train,y_train}

Fitting 5 folds for each of 5 candidates, totalling 25 fits

out[28]: mandomizedSearchiV(cvss,

estimator=xGeClassifier(base_score=None, booster=None,
colsample_bylevel=Hone,
colsample_bynode=teone,
colsample_bytree=Ncne, gamma=Mone,
gpu_id=None, impcrtance_type=‘gain',
interaction_constraints=Hcne,
learning_rate=None,
max_delta_step=none, max_depth=Hone,
min_child_weight=-Mone, missing=nan,
monotene_censtraints=None,
n_estimators=10a,...
reg_lambda=Ncne,
scale_pos_weight=Hone,
subsample=tone, tree_methcd=None,
validate_parameters=None,
verbesity=nNone),

m dtar-c n dnhe-_1

In [38]: xgb = xgb_random.best_estimator_
y_pred = xgb.predict(x_test)
conf_mat = confusion_matrix(y_test, y_pred)
print{"confusion matrix\n",conf_mat)
precision, recall, f1 = metricss(y_test, y_pred)
print("f1 - ",f1)
print{"recall - ",recall}
print{"precision - ",precision}

Figure 18: XGB Implementation
6 Conclusion

The steps are clear and discussed in a way which are easy to replicate the complete
project. The conclusion and results of the model are discussed in the thesis report.

16

	Introduction
	Hardware and Software Requirements
	Data Collection
	Data Pre-processing
	Data Preparation
	Feature Extraction
	Exploratory Data Analysis

	Implementation
	Questionnaires
	PCA on Pupil Data and Heat map images
	Random Forest model
	Gradient Boosting model
	Logistic Regression model
	Extreme Gradient Boosting model

	Conclusion

