ﬁ

\‘
National
Collegeof

Ireland

Configuration Manual

MSc Research Project
M.Sc. Data Analytic, MSCDAD_JANZ21A |

Vineet Sawant
Student ID: x19237758

School of Computing
National College of Ireland

Supervisor: Bharathi Chakravarthi

Student
Name:

Student ID:
Programme:
Module:
Lecturer:

Submission
Due Date:

‘-—
National College of Ireland \ National

Collegeof
Ireland

MSc Project Submission Sheet

School of Computing
Vineet Manoj Sawant

Forecasting Carbon Dioxide Emission from Energy Consumption within

Project Title: the Industrial Sector in U.S.

Word Count:

I hereby certify
pertaining to res

1674 10
... Page Count: ...

that the information contained in this (my submission) is information
earch I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet ma
required to use t
author's written
action.

Signature:

Date:

terial must be referenced in the bibliography section. Students are
he Referencing Standard specified in the report template. To use other
or electronic work is illegal (plagiarism) and may result in disciplinary

Vineet Manoj Sawant

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o

copies)

Attach a Moodle submission receipt of the online project i
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both | o
for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (

if applicable):

Configuration Manual

Vineet Sawant
x19237758

1 Introduction

The presented configuration manual document states the hardware and software requirements
or tools used in the MSc research project “Forecasting Carbon Dioxide Emission from
Energy Consumption within the Industrial Sector in U.S.”. It also presents the code that was
used in modeling.

2 System Requirements
2.1 Hardware requirements

Processor: 11th Gen Intel(R) Core(TM) i7-1165G7 @ 2.80GHz 1.69 GHz
RAM: 8GB

Storage: 512 GB

System Type: 64-bit operating system, x64-based processor

Operating System: Windows 10 (64-bit operating system)

2.2 Software requirements
Programming Environment: Jupyter Notebook by Anaconda and Google Colab.
Diagram: diagram.net (Online software for making charts and process flow diagrams)

Other tools: Microsoft Word (for making tables), Snipping tool (for taking screenshots of
diagrams or tables), Microsoft Excel (for reading dataset).

3 Project Development
This section provides a full overview of the steps used to attain the research objectives from
the beginning of the project to the completion.

3.1 Data collection

The dataset is downloaded from the U.S. Energy Information Administration (EIA)! that
contains the monthly carbon dioxide emissions measured in metric tonnes from January 1973
to April 2021. This raw dataset contains 580 rows and 15 columns which contain the month

L https://www.eia.gov/totalenergy/data/browser/?tb|=T11.04#/?f=M
1

and the carbon dioxide emission from thirteen sectors along with a column for the total
carbon dioxide emission. The figure 1 shows the dataset that is used for the purpose of the
research project.

A 8 c D E F
1 |Month _Cual Industrial Sector CO2 Emissions Coal Coke Net Imports CO2 Emissions Natural Gas Industrial Sector CO2 Emissions Distillate Fuel Oil Industrial Sector CO2 Emissions HGL Industrial Sector CO2 Emissions Kerosene |
2 (1973 January 33.236 -0.127 42.413 9.501 3.252
3 1973 February 30.609 -0.014 36.577 10.312 2.495
4 1973 March 31.408 -0.229 383 9.384 177
5 1973 April 30.904 -0.074 42.268 6.701 1777
6 1973 May 31.429 -0.323 24,609 8.865 2.457
7 1973 June 29.806 0.028 40.207 7.385 2.583
8 1973 July 29.249 0.13 43134 7.784 2.539
9 1973 August 28.846 0.167 45.075 8.276 3339
10 1973 September 27.997 -0.136 44,928 8.93 3.144
11 1973 October 30.832 0.198 51.862 8,685 3.442
12 1973 November 31.702 0.139 51279 10.588 .z
13 1973 December 34.828 0.04 5252 9.83 1.47
14 1974 Januar ¥ 32.855 0.43 37.621 10.332 2639
15 1974 February 30.818 0337 40.048 9.083 1.589
16 1974 March 31.168 0.419 41.261 8.353 1.765
17 1974 April 30.787 0.504 34.296 7.699 23
18 1974 May 29.955 0.589 40.398 7.353 2.412
19 1974 June 28,533 0.385 36.919 7.205 2.915
20 1974 July 28.323 0.408 41.252 7.054 3114
211974 August 29.187 0.439 43.617 7.423 3.292
22 1974 September 28.45 0.744 47.997 6.046 3.527
23 1974 October 30.327 1.036 51.21 8.187 3.319
241974 November 27.05 0.555 51.068 8,685 2.797
25 1974 December 26.567 0.558 47.756 9.953 2.522
26 1975 January 29.383 0.971 45,972 12.08 2.748
27 | 1975 February 26944 0.928 32.16 9.709 1.557

Figure 1 : Dataset

3.2 EDA and Data Visualization

This section contains the python code developed for the initial EDA and time series
visualization. The figure 2 shows the code snippet for it.

In []: import warnings
warnings.filterwarnings(ignore")
import matplotlib.pyplot as plt

In []: import pandas as pd
import datetime

df = pd.read_excel (r'Carbon dioxide forecasting.xlsx', sheet_name='Monthly Data')
In []: df.dtypes
In []: df['coal Industrial Sector C02 Emissions'].isnull().values.any()

In []: df.set_index('Month', inplace=True)

df .index

Time Series Visualization

In []: df['Coal Industrial Sector C02 Emissions'].plot(linewidth=e.5);

Figure 2 : EDA and Visualization
3.3 Checking for Stationarity

The time series data needs to be checked for stationarity . The dickey fuller test is used to
check if the time series is stationary. The dickey fuller test generates a p-value which is
checked , if the p- value is less than 0.05 the null hypothesis is rejected and it is inferred that
the time series is stationary. The figure 3 shows the code snippet for the same.

Check Stationarity of a Time Series - Dickey Fuller

In []: from statsmodels.tsa.stattools import adfuller
#Perform Dickey-Fuller test:
print('Results of Dickey-Fuller Test:")
dftest = adfuller(df['Coal Industrial Sector CO2 Emissions'], autolag='AIC")
dfoutput = pd.Series(dftest[@:4], index=['Test Statistic','p-value','#lLags Used', 'Number of Observations Used'])
for key,value in dftest[4].items():
dfoutput[‘critical value (%s)'%key] = value
print(dfoutput)

Figure 3 : Dickey Fuller Test
3.4 Making time series stationary
If the time series data is not stationary we use differencing to make the time series stationary.

The time series is also decomposed into its components of trend, seasonality and residuals to
better understand the time series. Figure 4 shows the code snippet for the same.

Making Time Series Stationary

In []: from statsmodels.tsa.seasonal import seasonal_decompose
result = seasonal_decompose(df['Coal Industrial Sector CO2 Emissions'], model='additive')
result.plot()
plt.show()

In []: df['Difference’] = df['Coal Industrial Sector CO2 Emissions'].diff()
plt.figure(figsize=(10, 7))
plt.plot(df['Difference’])
plt.title('First Order Differenced Series’, fontsize=14)
plt.xlabel('vear', fontsize=12)
plt.ylabel('Difference’, fontsize=12)
plt.show()

Figure 4 : Making Time Series Stationary

Once differencing is done , dickey fuller test needs to be performed on the differenced time
series and if its not become stationary differencing needs to be performed again. Usually
differencing of order 1 or 2 is sufficient to make the time series stationary.

3.5 Data Split

The data used by the models is split into 80/20 where 80% of the data is used to train the
model and the remaining 20% is used for testing. The figure 5 shows the code snippet for the
same.

In []: data = df.Difference.dropna()
n= int (len(data) * @.8)
train = data [: n]
test = data[n:]

Figure 5 : Data Split
3.6 Time series forecasting models

This section contains the python code developed for constructing the forecasting models .
Jupyter notebook by anaconda is used to develop the Simple Exponential Smoothing (SES)
model, Holt-Winter Exponential Smoothing model (HW), Autoregressive Integrated Moving
Average (ARIMA) model and the Prophet model . Google Colab is used to develop the Long
Short-Term Memory (LSTM) model. Some python libraries like numpy , pandas , matplotlib
, Sklearn are used in the development of the time series analysis models.

3

3.6.1 SES

When there is no evident trend or seasonality, the simple exponential smoothing (ses) model
is used to forecast time series data. Importing the SimpleExpSmoothing model from the
statsmodel package is used to build the model. The fit() method is used to train and test the
model, while the predict() function is used to predict potential values. Figure 6 shows the
code snippet for the same.

Simple Exponential Model

In []: import warnings
warnings.filterwarnings('ignore"')
from statsmodels.tsa.holtwinters import SimpleExpSmoothing
from pandas import datetime

fit model
model_ses = SimpleExpSmoothing(train)
model fit ses = model ses.fit()

print(model fit_ses.summary())

#Test the model

start_index = datetime(2e11, 9, 1)

end_index = datetime(2021, 4, 1)

ses_prediction = model fit_ses.predict(start=start_index, end=end_index)

#Forecast for the next 6 months

forecast_start_index = datetime(2021,5,1)

forecast_end_index = datetime(2021,10,1)

forecast = model_fit_ses.predict(start=forecast_start_index , end=forecast_end_index)

ses_forecast = forecast.cumsum().add(forecast.cumsum(),fill value=2)

ses_forecast

Figure 6 : SES Model

The test and predicted values are plotted, and MAE, MAPE, and RMSE values are computed
with the sklearn and numpy libraries, which may be used to compare the different models.
The figure 7 shows the code snippet for the same.

In []: import numpy as np
from sklearn.metrics import mean_squared_error
from sklearn.metrics import mean_absolute_percentage error
from sklearn.metrics import mean_absolute_error

ses_mae = mean_absolute_error(test, ses_prediction)
print("MAE:", ses_mae)

ses_mape = mean_absolute_percentage error(test, ses_prediction)
print("MAPE:",ses_mape)

ses_rmse= np.sqrt({mean_squared_error(test, ses_prediction))
print("RMSE: ",ses_rmse)

test.plot(legend=True,label="TEST',figsize=(10,4))
ses_prediction.plot(legend=True,label="PREDICTION',x1lim=[datetime(2011, 9, 1),datetime(2021, 4, 1)])
plt.title('Test and Predicted Test using Simple Exponential Model')

Figure 7 : SES Evaluation Metrics

The reference for forecasting from SES model was taken from the works of Singh (2018) and
the reference for calculating evaluation metrics was taken from the works of Miiller (2020).

3.6.2 HW

When there is a trend and seasonality in a time series, the Holt-Winter exponential smoothing
model (hw) is used to forecast it. Importing the ExpotentialSmoothing model from the
statsmodel library is used to build the model. The fit() method is used to train and test the
model, while the predict() function is used to forecast future values. The figure 8 shows the
code snippet for the same.

Holt-Winter Exponential Smoothing

In []: import warnings
warnings.filterwarnings('ignore')
from statsmodels.tsa.holtwinters import ExponentialSmoothing

fit model
model_hw= ExponentialSmoothing(train)
model_fit_hw = model_ hw.fit()

print(model fit_hw.summary())

#Test the model

start_index = datetime(2011, 9, 1)

end_index = datetime(2021, 4, 1)

hw_prediction = model fit_hw.predict(start=start_index, end=end_index)

#Forecast for the next 6 months

forecast_start_index = datetime(2021,5,1)

forecast_end_index = datetime(2021,10,1)

forecast = model_fit_hw.predict(start=forecast_start_index , end=forecast_end_index)

hu_forecast = forecast.cumsum().add(forecast.cumsum(),fill value=0)

hw_forecast

Figure 8 : HW Model

The test and predicted values are plotted, and MAE, MAPE, and RMSE values are computed
with the sklearn and numpy libraries, which may be used to compare the different models.
The figure 9 shows the code snippet for the same.

In []: import numpy as np
from sklearn.metrics import mean_squared_error
from sklearn.metrics import mean_absolute_percentage_error
from sklearn.metrics import mean_absolute_error

hw_mae = mean_absolute_error(test, hw_prediction)
print("MAE:", hw_mae)

hw_mape = mean_absolute_percentage error(test, hw_prediction)
print("MAPE:", hw_mape)

hw_rmse= np.sgrt(mean_squared_error(test, hw_prediction))
print("RMSE: ",hw_rmse)

test.plot(legend=True,label="TEST',figsize=(10,4))
hw_prediction.plot(legend=True,label="PREDICTION' ,xlim=[datetime(2011, 9, 1),datetime(2021, 4, 1)])
plt.title('Test and Predicted Test using Holt-Winter Exponential Smoothing")

Figure 9 : HW Evaluation Metrics

The reference for forecasting from HW model was taken from the works of Singh (2018) and
the reference for calculating evaluation metrics was taken from the works of Miller (2020).

3.6.3 ARIMA

Importing the ARIMA model from the statsmodel package creates the Autoregressive
Integrated Moving Average (ARIMA) model. We need to pass the order of (p,d,q). The order
of ‘d’ is determined by the number of times we difference the time series to make it
stationary. To determine the value of ‘p’ and ‘q’ the PACF (Partial autocorrelation function)
and ACF (Autocorrelation function) plots are plotted respectively using the plot_pacf() and
plot_acf() functions from the statsmodel library. The figure 10 shows the code snippet for the
same.

import statsmodels.api as sm
fig = plt.figure(figsize=(12,8))

ax1 = fig.add_subplot(211)
tig = sm.graphics.tsa.plot_pacf(df['Difference’].dropna(),lags=40,ax=ax1)
ax2 = fig.add_subplot(212)
fig = sm.graphics.tsa.plot_acf(df['Difference’].dropna(),lags=40,ax=ax2)

Figure 10 : PACF AND ACF Plots

Once the order of (p,d,q) is determined the ARIMA model is trained and fitted using the fit()
function. Using the predict() function the future values are forecasted. The figure 11 shows
the code snippet for the same.

In []:

import warnings
warnings.filterwarnings('ignore')

from statsmodels.tsa.arima.model import ARIMA
fig = plt.figure(figsize=(12,8))

fit model
model arima= ARIMA(train, order=(2, @, 2))
model_fit_arima = model_arima.fit()

print(model_fit_arima.summary())

#Test the model

start_index = datetime(2011, 9, 1)

end_index = datetime(2021, 4, 1)

arima_prediction = model_fit_arima.predict(start=start_index, end=end_index)

#Forecast for the next 6 months

forecast_start_index = datetime(2021,5,1)

forecast_end_index = datetime(2021,10,1)

forecast = model fit arima.predict(start=forecast_start_index , end=forecast end_index)

arima_forecast = forecast.cumsum().add(forecast.cumsum(),fill value=8)

arima_forecast

Figure 11 : ARIMA Model

The test and predicted values are plotted, and MAE, MAPE, and RMSE values are computed
with the sklearn and numpy libraries, which may be used to compare the different models.
The figure 12 shows the code snippet for the same.

In []:

import numpy as np

from sklearn.metrics import mean_squared_error

from sklearn.metrics import mean_absolute_percentage_error
from sklearn.metrics import mean_absolute error

arima_mae = mean_absolute_error(test, arima_prediction)
print("MAE:", ses_mae)

arima_mape = mean_absolute_percentage_error(test, arima_prediction)
print("MAPE:",ses_mape)

arima_rmse= np.sqrt(mean_squared_error(test, arima_prediction))
print(“RMSE: ",arima_rmse)

test.plot(legend=True,label="TEST',figsize=(10,4))
arima_prediction.plot(legend=True,label="PREDICTION',xlim=[datetime(2011, 9, 1),datetime(2021, 4, 1)])
plt.title('Test and Predicted Test using ARIMA')

Figure 12 : ARIMA Evaluation Metrics

The reference for forecasting from ARIMA model was taken from the works of Singh (2018)
and the reference for calculating evaluation metrics was taken from the works of Muller
(2020).

3.6.4 Prophet

Importing the Prophet model from the fbprophet library is used to create the Prophet model.
The data for the month and timeseries are loaded in a dataframe, with the column names
changed to 'ds' and 'y'. The data is split into two categories: 80% for training and 20% for
training. The figure 13 shows the code snippet for the same.

In []: from fbprophet import Prophet
df = pd.read _excel (r'Carbon dioxide forecasting.xlsx', sheet_name='Monthly Data')

df= df[['Month’, 'Coal Industrial Sector €02 Emissions']]
print(df)

In []: df.columns = ["ds","y"]
df.head()

In []: n= int (len(df) * ©.8)
train = df [:n]
test = df[n:]

Figure 13 : Data Load & Data Spilt Prophet

The Prophet() method is used to create the model. The fit() method is used to train and fit the
model on the training dataset. To generate future predictions, the make future dataframe()
method is used to build a dataframe containing future dates, with the periods and frequency
parameters provided in. The forecasts' frequency is set to 'MS' (Month Start). To generate the
forecast, the future dataframe is supplied to the predict() method. The figure 14 shows the
code snippet for the same.

In []: model = Prophet()
In []: model_fit = model.fit(train)
In []: model

In []: future = model.make_future dataframe(periods=116 , freq = 'MS")
forecast = model.make_future_dataframe(periods=122, freq ="MS")
In []: pred= model.predict(future)
forecast = model.predict(forecast)

In []: pred
forecast

In []: pred[["ds","yhat","yhat lower","yhat_upper"”]].tail()
forecast[["ds", "yhat","yhat_lower"”,"yhat upper™"]].tail()

Figure 14 : Prophet Model

The test and predicted values are plotted, and MAE, MAPE, and RMSE values are computed
with the sklearn and numpy libraries, which may be used to compare the different models.
The figure 15 shows the code snippet for the same.

import numpy as np

from sklearn.metrics import mean_squared_error

from sklearn.metrics import mean_absolute_percentage_error
from sklearn.metrics import mean_absolute_error

prophet_mae = mean_absolute error(test.y, pred[n:].yhat)
print("MAE:", prophet_mae)

prophet_mape = mean_absolute_percentage_error(test.y, pred[n:].yhat)
print("MAPE: ", prophet_mape)

prophet_rmse= np.sqrt(mean_squared_error(test.y, pred[n:].yhat))
print("RMSE: ",prophet_rmse)

model.plot(pred,uncertainty=True)

plt.show()

test.set_index('ds', inplace=True)

pred.set_index('ds’, inplace=True)
test['y'].plot(legend=True,label="TEST',figsize=(10,4))
pred[n:].yhat.plot(legend=True,label="PREDICTION" ,color="red")
plt.title('Test and Predicted Test using Prophet’)

Figure 15 : Prophet Evaluation Metrics

The reference for forecasting from Prophet model was taken from the works of Brownlee
(2020) and the reference for calculating evaluation metrics was taken from the works of
Muller (2020).

3.6.5 LSTM

The model for long short-term memory (LSTM) is built in Jupyter notebook with Google
Colab. The time series data is imported from Excel into a Jupyter notebook dataframe. The
seed() parameter is set to ensure that the model is repeatable. The dataframe index is assigned
to the 'Month' column with index frequency set to 'MS', and the 'Month' column is
transformed to a datetime. Training and testing data are separated from the time series data.
Figure 16 shows the code snippet for the same.

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt
from numpy.random import seed
seed(1)

df = pd.read_excel (r'/content/Carbon dioxide forecasting.xlsx', sheet_name='Monthly Data")

df.head()

df= df[['Month", 'Coal Industrial Sector €02 Emissions’']]
df['Month'] = pd.to_datetime(df.Month)
df.set_index('Month', inplace=True)

df.index.freq="Ms"

print(df.head())

print(df.info())

df.plot(figsize=(12,6))
plt.show()

train = df [: 574]
test = df[574:]

Figure 16 : Data Load & Data Split LSTM

The MinMaxScaler, which converts values in the range of 0 and 1, is used to change the
values in the train and test sets. The model's sample input and output components are
generated by the TimeseriesGenerator. Figure 17 shows the code snippet of the same.

from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()

scaler.fit(train)
scaled_train = scaler.transform(train)
scaled_test = scaler.transform(test)

scaled_train[:10]

from keras.preprocessing.sequence import TimeseriesGenerator

define generator

n_input = 6

n_features = 1

generator = TimeseriesGenerator(scaled train, scaled train, length=n_input, batch_size=1)

Figure 17 : LSTM Tranformation and Generator

The loss function is plotted after the LSTM model has been trained and fitted using 50 epochs
on the train dataset values. The figure 18 shows the code snippet for the same.

from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM

define model

model = Sequential()

model.add(LSTM(100, activation="relu’, input_shape=(n_input, n_features)))
model.add(Dense(1))

model.compile(optimizer="adam’, loss="mse')

model. summary ()

fit model
model.fit(generator,epochs=5@)

loss_per_epoch = model.history.history['loss’']
plt.plot(range(len(loss_per_epoch)),loss_per_epoch)

Figure 18 : LSTM Model

To forecast values, the predict() function is used. The code snippet is shown in figure 19.

test_predictions = []

first_eval_batch = scaled_train[-n_input:]
current_batch = first_eval_batch.reshape((1, n_input, n_features))

for i in range(len(test)):

get the prediction value for the first batch
current_pred = model.predict(current_batch)[@]

append the prediction into the array
test_predictions.append(current_pred)

use the prediction to update the batch and remove the first value
current_batch = np.append(current_batch[:,1:,:],[[current_pred]],axis=1)

test_predictions

test.head()

true_predictions = scaler.inverse_transform(test_predictions)

test['Predictions’] = true_predictions

Figure 19 : Prediction using LSTM

The test and predicted values are plotted, and MAE, MAPE, and RMSE values are computed
with the sklearn and numpy libraries, which may be used to compare the different models.
The figure 20 shows the code snippet for the same.

test.plot(figsize=(14,5))

test

from sklearn.metrics import mean_squared_error

from math import sqrt

from sklearn.metrics import mean_absolute percentage_error
from sklearn.metrics import mean_absolute_error

mae = mean absolute error(test[’'Coal Industrial Sector C02 Emissions’],test['Predictions'])
print("MAE:", mae)

mape = mean_absolute_percentage_error(test['Coal Industrial Sector €02 Emissions’],test['Predictions’])
print("MAPE:",mape)

rmse=sqrt(mean squared error(test|'Coal Industrial Sector C02 Emissions'],test['Predictions’]))
print("RMSE:",rmse)

Figure 20 : LSTM Evaluation Metric

The reference for forecasting from LSTM model was taken from the works of Hebbar (2021)
and the reference for calculating evaluation metrics was taken from the works of Muller
(2020).

References

Brownlee, J 2020, Time Series Forecasting With Prophet in Python, Machine Learning
Mastery, viewed 16 November 2021, <https://machinelearningmastery.com/time-series-
forecasting-with-prophet-in-python/>

Hebbar, N 2021, RNN_Youtube.ipynb, Available at: https://github.com/nachi-hebbar/Time-
Series-Forecasting-LSTM/blob/main/RNN_Y outube.ipynb

Miller, F 2020, Evaluate the Performance of Time Series Forecasting Models with Python,
relataly.com, viewed 16 November 2021, https://www.relataly.com/evaluating-time-series-
forecasting-models/923/

Singh, G 2018, 7 methods to perform Time Series forecasting (with Python codes), Analytics

Vidya, viewed 16 November 2021, < https://www.analyticsvidhya.com/blog/2018/02/time-
series-forecasting-methods/>

10

