Configuration Manual

MSc Research Project
Data Analytics

Sarath Kumar Samynathan
Student ID: x20185774

School of Computing
National College of Ireland

Supervisor: Giovani Estrada

~

National
Collegef
Ireland

National College of Ireland

National

Project Submission Sheet School College of
of Computing
Ireland

Student Name: Sarath Kumar Samynathan
Student ID: X20185774
Programme: Data Analytics
Year: 2021-2022
Module: MSc Research Project
Supervisor: Giovani Estrada
Submission Due Date: 16/12/2021
Project Title: Configuration Manual
Word Count: 982
Page Count: 7

| hereby certify that the information contained in this (my submission) is information
pertaining to research | conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at t
of the project.

he rear

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other

author’s written or electronic work is illegal (plagiarism) and may result in disciplinary action.
Signature: Sarath Kumar Samynathan
Date: 16th December 2021
PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:
Attach a completed copy of this sheet to each project (including multiple copies). Q
[ATUACIT d IVIOUUTE SUDTTITSSTUIT TETETPT UT UTE UTIE PTOUJETT SUPTTITSSIUNT, U Q
each project (including multiple copies).
150 S RV S G Y (U ENPT@RER UL TOT yUUT UWITTETETETICE
a copy on compuiter. Q

Assignments that are submitted to the Programme Coordinator office must be placed into

the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Sarath Kumar Samynathan

X20185774
MSc Research Project in Data Analytics
16th December 2021

1 Introduction

The software requirements, hardware requirements, and system setup would all be
covered in this configuration manual. In addition, the following codes have been utilized for
programming that has been created for the purpose of putting the research study into action:

"Improvised ICD-10 (International Classification of Diseases 10th Revision) Code
Prediction using Machine Learning”

2 System Configuration

2.1 Hardware

Processor: AMD Ryzen 5 3500U with Radeon Vega Mobile Gfx 2.10 GHz; RAM:8GB Storage:
512 GB SSD; Operating system: Windows 10, 64-bit.

2.2 Software

* Python, utilizing the Jupyter notebook: data analysis, data cleansing, pre-processing, and
manipulation are all covered. Cross-validation, as well as the development of machine learning
algorithms and word embeddings, were accomplished through the use of Python modules.

* Microsoft Excel: Used for saving of data, data exploration, and plots forexplorations.

3 Project Development
The following are the steps involved in project development: data extraction from a pickle

file, data preparation, model creation, model validation, word embedding setup, and cross
validation to determine which model is the most effective.

3.1 Data Extraction

Our data originates from Kaggle, which is a freely available source of information. Many pieces
of information are contained within HTML files that have been scraped from the
icd10data.com website. Each HTML file is allocated to a specific ICD code category, which may
be found here. This HTML file contains the whole set of ICD code detail information. In the
html file, there is a section titled 'Synonym' where we will submit this synonyms data as input
for the model to train based on the synonyms text to predict the ICD code, and this data will
be stored in a database.

1 Data Preparation

1.0.1 Extracting the input data zip file

1.0.2 Function to parse through each pickle file and extract the synonymns inside the particular segment

In [8]: from bs4 import BeautifulsScup
import pickle
def extract_synonyms{path,icd_cede):
list_of_tuples_sub=[]
ory:
with open(path, 'rb") as f:
data = pickle.load(f}
text = data.decode("utf-3")
parsed_html = BeautifulSoup(text)
igs = parsed_html.find all('ul')
ul= [ul for ul in tags if ul.findPrevious().text=="Approximate Synonyms']
for 11 in ul[@].findAll('1i"):
list_of_tuples_sub.append((1i.text,icd_code))
return 1ist_of tuples_sub
except:
return 1ist_of tuples_sub

1.0.3 Loops through each pickle file and calls the above functions and also stores the ICD code

In []: import os
directory="C:/Users/sarat/Thesis/bs4 14 dump/bsa_la_dump/
list_of_tuples_main=[]
e

for filename in os.listdir(directory):

i=i+1

if filename.endswith(".pkl"):

name = filename.split('_")[-1]

= name.replace(.pkl',"")
cd_code)
-path.join({directory, filename)
les_sub = extract_synonyms(path,icd_code)

if].is‘t_of_{upl es_sub:
list_of_tuples_main.extend(1list_cf_tuples_sub)

=
k=)

continue
else:
break

Figure 1: Data Extraction

3.2 Data Preparation
For the sake of this stage, we'll divide the data into two sections: one for training and another for
testing (Botta-Dukat, 2008) . In all, we have around 80,000 records. We will create our test data from
the train data because we do not have enough entries for each class to use the train data as is
currently. Selecting 20,000 records at random from train data, we'll switch the wording in the
synonyms to make it difficult for the machine to predict the outcome.

In [35]:

def shuffle_words(row):

import random

1

= row.split()

random. shuffle(1)

result = *

" join(1)

return result

f_sample["text'] = df_sample['Synonyms'].

index{drop=True)

/(lambda x: shuffle_words(x))

In [35]: df_sample

out[36] Synonyms ICD_Code text
18340 G80.8 palsy Hypotonic cerebral
19375 HOZ 411 mechanical Right condition) ptosis (eye
344 AB2.0 Human oma virus infection
644 bacterial disease A48 bacterisl disease Gram nepative
12398 Diabetic ulcer of left toe dus to diabetes mel... E10.522 to type Diabetic keft meliitus 1 due of ulcer _.

a118 Benign D10.38 Benign n=opla
14727 Hypersomnia ¢ F10.882 to Hypersomnia akcohol due
7648 Large cell lymphoma of lower imb lymph nodes C83.35 of limb lymphoma nodes lymph cell Large lower
4848 Cancar, leiomyosarcoma C40.9 Cancer, leiomyosarcoma
17334 MNeuralgiform headache with conjunctival redness G44.03% conjunctival Neuralgiform headache with redness

2500 rows * 3 columns

In [37]: df_test_data = df_sample[["text®, 'I(D_Code']].reset_index()
In [38]: df_test_data.head(}
out[38] index text ICD_Code
0 18340 palsy Hypotonic cerebral GED.3
1 18375 mechanical Right condition) ptosis (eye HOZ.411
2 244 Human papilloma vines infection A0
3 244 bacterial diseaze Gram negative 2420
4 12588 1o type Disbetic left mellitus 1 due of ulcer .. E10.622
In [339]: df_test_data.rename{columns = {"text':'Synonyms'}, inplace = True)

df_test_data-df_test_data.drop(['index'],axis=1)

4 Code used for Machine Learning Models

This study has involved the implementation of six machine learning models and one deep learning
model in total. The coding for this study was completed using the Jupyter Notebook programming
language. Because the entire code was written in Python, it was only necessary to perform the
correlation, cleaning, and model functions. It is intended that the following programs for
explanation be used in the following ways: cross validation, imbalance of classes, word

Figure 2: Data Preparation

embeddings, and experiments on models.

4.2 Logistic Regression Classifier

~ pipe = Pipeline([("vect", Countwvectorizer{)),
("tfidf', TfidfTransformer(}),
{ "'model', LogisticRegression{))])

model = pipe.fit(x _train, y_train)
prediction = model.predict{x_test)
primt{"accuracy: {i&".format{round{accuracy_score(y_test, prediction)*1e,2}))

BCCUracy: 45.5%

4.3 Support Vector Classifier

= pipe = Pipeline([('vect", Countwectorizer{)),
("tfidf', TFidfTransformer(}),
{"'model’, LinearswC({))1)

model = pipe.fit{x_train, v_train)
prediction = model.predict(x_test)
primt{"accuracy: {}%".format{round{accuracy score(y_test, predicticn)*1ee,2)))

accuracy: 85.12%

4.4 Multinomial Naive Bayes Classifier

~ pipe = Pipeline([("vect", Countwvectorizer{)),
("tfidf', TfidfTransformer(}),
{ "model', MultinomialNB()})]1)

model = pipe.fit(x _train, y_train)
prediction = model.predict{x_test)
primt{"accuracy: {i&".format{round{accuracy_score(y_test, prediction)*1e,2}))

accuracy: 15.12%

4.5 Bernoulli Naive Bayes Classifier

= pipe = Pipeline([('vect", Countwectorizer{)),
("tfidf', TFidfTransformer(}),
{"model’, BermoulliNeE(})}]1)

model = pipe.fit{x_train, v_train)
prediction = model.predict(x_test)
primt{"accuracy: {}%".format{round{accuracy score(y_test, prediction)¥*1ee,2)))

accuracy: 8.85%

4.6 Random Forest Classifier

pipe = Fipeline([("vect", Countvectorizer()),
("tfidf', TFidfTransformer()}),
("'model’, RamdomForestClassifier{))])

model = pipe.fit{x_train, y_train}
prediction = model.predict(x_test)
primt{"accuracy: {}X".format{round(accuracy score(y_test, predicticn)*1ee,2})})

aCCuUracy: 98.8%

4.7 KNN Classifier

pipe = Pipeline([({"vect', Countvectorizer()),
('tfidf', TfidfTransformer()}},
{"model', KNMeighborsClassifier(n_neighbors = 1@,weights = "distance’,algorithm = "brute')}])

model = pipe.fit(x_train, y_train)
prediction = model.predict(x_test)
primt{"accuracy: {}X".format{round(accuracy score(y_test, predicticn)*1ee,2})})

aCCuUracy: 86.48%
Figure 3: Machine Learning Models

5 Deep Learning Model

We have implemented the ICD-10 classification (Maier, Philipp and Zaudig, 1990) with on the basic
deep learning technique called MLP classifier. Before performing multilayer perceptron model, we
will perform LASER embedding (Aluru, Mathew, Saha and Mukherjee, 2021) in our features which is
considered as a language model published by Facebook known as Language-Agnostic Sentence
Representation.

5.1 Laser setup:

4.8.2 Laser setup for word embedding

import pandas as pd

import numpy as np

from sklearn.preprocessing import LabelEncoder
import joblib

from laserembeddings import Laser

path_to bpe codes-r'C:/users/sarat/anacendaz/Lib/site-packages/laserembeddings/data/93langs.fcodes”

path_to_bpe wvocab=r'C:/Users/sarat/anaccnda3/Lib/site-packages/laserembeddings/data/931langs.fvocab"
path_to_encoder=r'C:/Users/sarat/anaconda3/Lib/site-packages/laserembeddings/data/bilstm.931langs.2818-12-26.pt"
laser=Laser(path_toc bpe_codes,path_to bpe_wocab,path_to encoder)

laser=Laser()

Figure 4: Laser setup for word embedding
5.2 Cross validation:

With the use of the gridsearchCV crossvalidation (Browne, 2021) approach, we were able to
determine which parameters would work best for the mlp classifier.

4.8.1 Getting best parameters

mlp_gs = MLPClassifier(max_iter=18@)
parameter_space = {
"hidden_layer sizes': [{18,28,18),(28,)]1,
"activation': ["tanh', 'relu'],
"solver': ['sgd", "adam'],
"alpha’: [@.9281, @.85],
"learning_rate': ['constant®,'adaptive'],

a

from sklearn.model_selecticn import GridSearchlv

clf = GridsearchCv{mlp_gs, parameter_space, n_jobs=-1, cv=5)

clf.fit(xtrain_laser, train_y['ICD Code']) # X is troin samples and y is the corresponding Labels
& mlp_model. fit{Xtrain_Laser, train v['ICD Code'])

Figure 5: GridSearch Cross Validation

5.3 MLP Classifier:

As a pickle file, we have stored our trained model (Patil and Yardi, 2012) based on the best
parameters that we have found. As a result, every time we run the model, it will automatically
choose the file and provide the forecasts.

4.8.3 Model building

from sklearn.model_selection import train_test_split

from sklearn.metrics import classification report,confusion_matrix,accuracy score

from sklearn.neural_network import MLPClassifier

from sklearn.datasets import make_classification

X troin, X test, y train, y test - train_test split{tset['text'], tset] 'category'],test size = 8.81, random state = 1)
Xtrain_laser = laser.embed sentences{train_x['Synmonyms®],lang="en"'}

print(X_troin,Xtrain_Laser)

Xtest_laser= laser.embed_sentences(test x['synonyms'],lang="en")

mlp_medel.Ffit¢x troin_tfFidf, train y["ICD Code'])

8 i JJ

mlp model = MLPClassifier(hidden_layer_sizes={2@,},solver="adam",activation="tanh",max_iter=758,random_state-a,shuffle=True)

mlp model.fit(Xtrain_laser, train_y["ICD Code'])

MLPClassifier{activation="tanh"', hidden_layer_sizes=(E@,)}, max_iter=7%a,
random_state=a)

primt{mlp_model.predict{laser.embed sentences{["mon cataract Bilateral related"],lang="en'}))

['H26.9"]

Figure 6: MLP Classifier

References:

Browne, M. (2000) "Cross-Validation Methods", Journal of Mathematical Psychology, 44(1), pp.
108-132. doi: 10.1006/jmps.1999.1279.

Aluru, S.S., Mathew, B., Saha, P. and Mukherjee, A., 2020. Deep learning models for multilingual
hate speech detection. arXiv preprint arXiv:2004.06465.

Botta-Dukat, Z., 2008. Validation of hierarchical classifications by splitting dataset. Acta Botanica
Hungarica, 50(1-2), pp.73-80.

Patil, M. and Yardi, A., 2012. MLP Classifier for Dementia Levels. International Journal of Modeling
and Optimization, pp.567-569.

Maier, W., Philipp, M. and Zaudig, M., 1990. Comparison of the ICD-10-Classification with the ICD-9-
and the DSM-IlI-Classification of Mental Disorders. Pharmacopsychiatry, 23(S 4), pp.183-187.

