"'—-
\ National

Configuration Manual

MSc Research Project
Data Analytics

Raul Damian Sainz Calderon
Student ID: 19158696

School of Computing
National College of Ireland

Supervisor:  Paul Stynes

~

College
Ireland




National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Raul Damian Sainz Calderon
Student ID: 19158696
Programme: Data Analytics
Year: 2021
Module: MSc Research Project
Supervisor: Paul Stynes
Submission Due Date: 16/12/2021
Project Title: Configuration Manual
Word Count: 782
Page Count: B

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Raul Sainz

Date: 16th December 2021

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):




Configuration Manual

Raul Damian Sainz Calderon

1 About this Manual

19158696

The objective for configuration manual is provide details of the system setup, software
specification and the required instructions to run and replicate the experiments in Google

Colab.

2 Resources and Equipment

The following tools and components were used for the implementation of this research,
Table. [I]" describes required resources, software and services used during the project.

Table 1: Resources, Software and Services

Category Item Description
RAM 8GB (16GB are recommended)
Computing Processor 64-bit multi-core processor (Intel i5 or superior)
Storage 250+ GB of available space in hard disk
Operating System  Ubuntu, macOS or Windows
Python Main Programming language.
Anaconda Distribution of to simplify package management.
Software Tensorflow & Keras Library to develop and train models.

Jupyter Notebook
VS code

ML and data processing and modeling.
Programming IDE.

Cloud Services

Google Colab
Github

Run Notebooks for Neural Networks.
Code repository and version control.

3 Code Version control Repository- Github

For the pourpuse to have a better control and track of the changes made into the code,
a git repository was created, the data files, notebooks and python code used during this
research can be found in the following public Github links:

e Repository URL: https://github.com/raulsainz/MSCDAD_JAN21A_Research

e Clone URL: https://github.com/raulsainz/MSCDAD_JAN21A_Research.git


https://github.com/raulsainz/MSCDAD_JAN21A_Research
https://github.com/raulsainz/MSCDAD_JAN21A_Research.git

4 Using Google Colab

To run the notebook using google Colab follow the next steps:

1. Open a browser and go to google colab https://colab.research.google.com

2. Go to File, Open Notebook” menu option as shown in “Fig. 2]

Welcome To Colaboratory

File Edit View Insert Runtime Tools Helf

New notebook

| I_
Open notebook Si.-fctrH—EI

Upload notebook

Save a copy in Drive
Save a copy as a GitHub Gist
Save a copy in GitHub

Save 38/Ctrl+S
Download
Print #/Crl+P

3. Open Notbook Final.ipynb” from Github “Fig. 3]
(a) Select the Github tab
(

)
b) Search for raulsainz” user
(c) Select the repository raulsainz/MSCDAD_JAN21A_Research.
(d) Click on Final FDO0O1.ipynb file.

Enter a GitHub URL or search by organization or user Include private repos
Iraulsainz ! Q
i v Branch: [
raulsainz/MSCDAD_JAN21A_Research & main ¥
Path
O Experiment2.ipynb B &
O Experiment3.ipynb B &
0 Final ipynb (]
O Upload.ipynb B &
Cancel

4. Make sure to run the first cell to setup the environment “Fig. [’
5. Run The rest of the cells.


https://colab.research.google.com

O ty:
import google.colab
COLAB = True
print("Note: using Google Colab")
#Clone the repository
!git clone https://github.com/raulsainz/MSCDAD_JAN21A Research.git
# Install package dependencies
!pip install keras-tcn
# adding repo folder to the system path
import sys
sys.path.insert(®, '/content/MSCDAD_JAN21A Research/"')
except:
print("Note: Using Local enviroment")
COLAB = False

Note: using Google Colab
Cloning into 'MSCDAD_JAN21A_Research'...
remote: Enumerating objects: 66, done.
remote: Counting objects: 108% (66/66), done.
remote: Compressing objects: 100% (47/47), done.
remote: Total 66 (delta 18), reused 59 (delta 15), pack-reused @
Unpacking objects: 100% (66/66), done.
Checking out files: 188% (37/37), done.
Collecting keras-tcn

Downloading keras_tcn-3.4.@-py2.py3-none-any.whl (13 kB)
Requirement already satisfied: numpy in /usr/local/lib/python3.7/dist-packages (from keras-tcn) (1.19.5)
Requirement already satisfied: tensorflow in fusr/local/lib/python3.7/dist-packages (from keras-tcn) (2.7.0)
Collecting tensorflow-addons

Downloading tensorflow_addons—@.15.8-cp37-cp37m-manylinux_2_12_x86_64.manylinux2@10_x86_64.whl (1.1 MB)

| | 1.1 ME 16.2 ME/s

Requirement already satisfied: six>=1.12.@ in /usr/local/lib/python3.7/dist-packages (from tensorflow->keras-tcn) (1.15.0
Requirement already satisfied: termcolor>=1.1.@ in fusr/local/lib/python3.7/dist-packages (from tensorflow->keras-tcn) (1.1.0)
Requirement already satisfied: astunparse>=1.6.0 in /usr/local/lib/python3.7/dist-packages (from tensorflow->keras-tcn) (1.6.3)
Regquirement already satisfied: google-pasta>=0.1.1 in /usr/local/lib/python3.7/dist-packages (from tensorflow->keras—tcn) (8.2.8)
Requirement already satisfied: protobuf>=3.9.2 in /usr/local/lib/python3.7/dist-packages (from tensorflow->keras-ten) (3.17.3)

5 Repository File Structure

The project files are divided into 2 folders: root and datasets

5.1 Root

The Root of the folder contains the jupiter notebooks used during the research, but the
one containing the final code is named Final.ipynb”. Also whithin the root folder the
file Models.py contains the functions used to construct the models architecture along
with other the functions to run, train and evaluate them.

5.2 Datasets

Contains the files downloaded from the Turbofan Engine Degradation Simulation Data
Set |A. Saxena , K. Goebell (2008):

e train_FDO001.txt, train_FD002.txt, train_FD003.txt, train_FD004.txt
o test_FDO001.txt, test_ FD002.txt, test_ FDO003.txt, test_FD004.txt
e RUL_FDO001.txt, RUL_FD002.txt, RUL_FD003.txt, RUL_FDO004.txt, readme.txt

6 Enviroment Setup

The flowing code snippet is placed at the beginning of the notebook to detect the envir-
onment (local or Google Colab). If the environment is Google Colab, it will clone the
repository, install the package dependencies and add the repository folder to the system
path to be able to run the notebook.

try:
import google.colab
COLAB = True
print ("Note: using Google CoLab")
#Clone the repository



mgit clone https://github.com/raulsainz/MSCDAD_JAN21A_Research.git
# Install package dependencies
[@ip install keras-tcn
# adding repo folder to the system path
import sys
sys.path.insert(0, '/content/MSCDAD_JAN21A_Research/')
except:
print ("Note: Using Local enviroment")
COLAB = False

7 Generating Train and Test Datasets

To create the data to be feed into the neural networks LSTM and TCN, we need to
format the data into sequences, we do this by generating sliding window sequences, with
this script “Fig. [’ we generate X_train and X_test

# Generate sliding window segquences for training dataset

seq _gen = (list({gen_sequence(df_train[df_train['machine_id']==id], window_size, sequence_cols))
for id in df train[ 'machine_id'].unique())

# generate sequences and convert to numpy array

seq_array = np.concatenate(list(seg_gen)).astype(np.float32)

print(seq_array.shape)

(48799, 50, 16)

=®_train, x_test = [], []
for machine id in df train.machine id.unique(}:
for sequence in gen sequence(df train[df train.machine id==machine id], windew size, segquence cols):
x_train.append(seguence)
for sequence in gen sequence(df test[df test.machine id==machine id], window size, sequence cols):
x_test.append(sequence)
X train = np.asarray(x train)
X_test = np.asarray(x_test)

print("X Train shape:", x train.shape)
print("X Test shape:", x test.shape)

X_Train shape: (487399, 50, 16)
X Test shape: (29188, 50, 16)

Figure 1: Snippet to generate sliding window sequences

For the CNN we need to generate the recurrence plots wit the code show in “Fig. 2

Generate recurrence plots for CNN

# Create new array with recurrence plot training

x_train_img = np.apply_along_axis(gen_rec_plot, 1, x_train).astype('floatlf')
print(x_train_img.shape)

# Create new array with recurrence plot testing

x_test_img = np.apply_along_axis(gen_rec_plot, 1, x_test).astype( floatl6')
print(x_test img.shape)

(48799, 50, 50, 16)
(29188, 50, 50, 16)

Figure 2: Snippet to generate recurrence plots for CNN

8 Custom Functions

All the models architecture and other functions are included in the file models.py. This
script contains and loads most of the python packages required to run the experiments.
The following custom functions are included:



e Istm_classification: This function creates the architecture for LSTM model “Fig.[3]

119  def lstm_classification(seq_array, label_array, seguence_length):

12@ # The first layer is an LSTM layer with 188 units followed by another LSTM layer with 5@ units.
121 # Dropout is also applied after each LSTM layer to control overfitting.

122 # Final layer is a Dense output layer with single unit and linear activation since this is a regression problem.
123 nb_features = seq_array.shapel[2]

124 nb_sut = label_array.shapel[1]

125

126 model = Seguential()

127 model.add(LSTM(

128 input_shape=(sequence_length, nb_features),

129 units=1@@,

138 return_sequences=True))

131 model. add{Dropout(8.2))

132 model.add(LSTM(

133 units=58,

134 return_sequences=False))

135 model. add{Dropout(8.2))

136 model.add{Dense(2, activatien='softmax'})

137 model.compile(loss='categorical_cressentropy', optimizer='adam', metrics=['accuracy'])

138 return model

Figure 3: LSTM Model architecture

e cnn _classification: This function creates the architecture for CNN model “Fig. [’

159 def cnn_classification(seq_array,label_array):

168 model = Sequentiall)

161

162 model.add(Conv2D(32, (3, 3), activation='relu',

163 input_shape=(seq_array.shape[1l], seq_array.shape[2], seq_array.shape[3])))
164 model.add(Conv2D(32, (3, 3), activation='relu"))

165 model.add(MaxPooling2D(pool_size=(2, 2)))

166 model . add(Dropout(@.25))

167

148 model.add(Conv2D(64, (3, 3), activation='relu'))

1469 model.add(Conv2D(64, (3, 3), activation='relu'))

178 model.add(MaxPooling2D(pool_size=(2, 2)))

171 model.add(Dropout(8.25))

172

173 model.add(Flatten())

174 model.add(Dense(256, activation='relu'))

175 model . add(Dropout(@.5))

176 model.add(Dense(label_array.shape[l], activation='softmax'))
177

178 model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
179

188 return model

Figure 4: CNN Model architecture

e tcn_classification: This function creates the architecture for TCN model “Fig. [’

e run_model: trains and test the provided model with the provided data and labels,
and calculates the evaluation metrics and plots “Fig. [6]’.



141  from tcm import TCN, ten_full_summary

142  from tensorflow.keras.layers import Dense

143 from tensorflow.keras.models import Sequential

144  def ten_classification(seq_array, label_array, sequence_length):

145 batch_size, time_steps, input_dim = Mone, sequence_length, 1

146 ten_layer = TCN{input_shape=(seq_array.shape[1], seqg_array.shape[2]1))

147 # The receptive field tells you how far the model can see in terms of timesteps.
148 print('Receptive field size =', ten_layer.receptive_field)

149

158 model = Sequentiall(l

151 ten_layer,

152 Dense(label_array.shape[l], activation='softmax')

153 1)

154

155 model.compile{optimizer="'adam', loss='categorical_crossentropy',metrics=["'accuracy'])
1546 return model

Figure 5: TCN Model architecture

258 def run_modelimodel, X_train, y_train, X_test, y_test, verbose=True, desc = 'No Name',6 labels = ['True', 'False'l],class_weight=None,
251

252 This function trains and test the provided model with the given datasets and labes, and calculates the evaluation metrics :
253 Returns: Results Dictionary

254 e

255 # Defines random seed

256 seed = 7

257 np.random. seed(seed)

258 # Checks if weights were passed to the function

259 if class_weight is MNone:

268 # Train with no weights

261 history = model.fit(X_train, y_train,

262 epochs=epochs, batch_size=batch_size,

263 validation_split=8.1, verbose=1,

264 callbacks=[EarlyStoppingl)

265 else:

266 # Train with weights

267 print("training with weights")

268 history = model.fit(X_train, y_train,

269 epochs=epochs, batch_size=batch_size, validation_split=e.1,
278 verbose=1, callbacks=[EarlyStopping]l,class_weight=class_weight)
271

272 # calculate accuracy

273 training_loss, training_acc = model.evaluate(X_test, y_test, verbose=a)
274 # Obtain the predictions

275 y_pred = model.predict(X_test)

276 y_test = np.argmax(y_test, axis=1, out=None)

277 # convert categorical probability to binary label

278 y_pred = np.argmax(y_pred, axis=1)

279

288 # Calculate Overall Acuracy

281 model_acc = metrics.accuracy_scorely_test, y_pred )

282 # calculaten ROC Curve

283 fpr , tpr , thresholds = roc_curve ( y_test , y_pred)

284 class_report = classification_report(y_test,y_pred,digits=2,output_dict=True)
285 roc_auc = roc_auc_score(y_test, y_pred)

286 model_kappa = cohen_kappa_score(y_test, y_pred )

287 matrix = confusion_matrix(y_true=y_test, y_pred=y_pred)

288

Figure 6: Custom Function to tran and test the model performance.



9 Performance Plots

After running the models through the custom functon the results include: Train Accuracy
and Loss, Accuracy, ROC_AUC, Precision, Recall and F1 Score. The three resulting plots
returned by the function are Training vs Validation, ROC curve plot and confusion matrix
as shown in “Fig. [7].

Model Results for: TCN Default

Training Accuracy ROC Curve Flot Confusion Matrix

097 -
096
92.32% 0.38%

095

094

Accuracy

093

True Positive Rate

092 4

081 1.80% 5.50%

o
L
Failure

090

— accuracy

089 —— val_accuracy
00

T T T T
[ 1 H 3 5 6 T8 00 0z

| |
08 10 Healthy Failure

04 o
False Positive Rate

Figure 7: Three resulting plots to evaluate the performance of the model.

10 Comparison Plots

Because multiple models and experiments are implemented whithin the notebook, each
time we call the run_model function the resulting dictionary is stored in a variable called
model_results, at the end of the experiments we use the function printClassification Results
to print a heatmap of the results with all the performance values and the ROC_AUC data
of each model to compare between them, the resulting plots are shown in “Fig. [§’. The
results are ordered by accuracy but we can use the other parameters to evaluate their

performance in depth.

Model Comparisson

TCN with Waights % 8% 2% 104 W
095 - . =
o -
TCN Default 8% 9%, — ..-‘-—",'- - ,
08 [ ?’ o - ; -
. = -
TCN batch size 9% = - ~ - ”
1 -
-080 - -~
LSTM bach sizs % 8% L - '
06 -~
c 1. -
2 -~
2 CNN batch size 8% I
]
4 -085 ]
04 4
LSTM Default 8% 0
1 == LSTM Default-AUC:96.36%
CNN Default 7% = LSTM with Weights-AUC:95.60%
02 (] === LSTM bach size-AUC:96.86%
- 080 1 === CNN Default-AUC:96.25%
NN with Weights 89% 85% 89% 8% === CNN with Weights-AUC:96.25%
i == CNN batch size-AUC:96.57%
TCN Default-AUC:97.82%
LSTM with Weights % 82% 91% 86% wd U === TCN with Weights-AUC:97.86%
TCN batch size-AUC:9T.67%
T

i i T
model_acc  foc_auc Precision Recall f1_score 04 06 08 1.0

=
=1
=
5]

Figure 8: Heatmap and ROC curve plot for comparing the performance of all the models



References

A. Saxena , K. Goebel (2008). Turbofan engine degradation simulation data set, http:
//ti.arc.nasa.gov/project/prognostic-data-repository. Accessed: 2018-12-06.


http://ti.arc.nasa.gov/project/prognostic-data-repository
http://ti.arc.nasa.gov/project/prognostic-data-repository

	About this Manual
	Resources and Equipment
	Code Version control Repository- Github
	Using Google Colab
	Repository File Structure
	Root
	Datasets

	Enviroment Setup
	Generating Train and Test Datasets
	Custom Functions
	Performance Plots
	Comparison Plots

