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Useful Life Classification on IoT Enabled Devices
using Neural Networks

Raul Damian Sainz Calderon
19158696

Abstract

The unprecedented technological advances in the fields of the Internet of Things
(IoT), Artificial Intelligence (AI) are at the heart of the new industrial Revolution
known as “Industry 4.0” which has pushed improvements in the manufacturing in-
dustry, especially in predictive maintenance research and technologies. With the
simplistic premise of fixing a machine before it fails, companies and organizations
can achieve great improvements in productivity by reducing downtime and machine
failures. Remaining Useful Life (RUL) is a metric used to forecast the performance
of the system to predict the time (cycles) left before the machine fails. However, the
prognosis RUL can be a challenge, many researchers have used many model-based
and data-driven models for trying to solve these issues. The proposed framework
compares the performance of most widely used data-driven machine learning mod-
els LSTM and CNN versus the state of the art TCN to predict and classify if a
machine will fail within a certain time range. The popular dataset CMAPSS from
NASA is used for running the experiments of this research. The results show prom-
ising results for the proposed model TCN even with noisy and complex conditions
datasets. Additionally, techniques for dealing with imbalanced data are compared
throughout the experiments, the use of weights when training the models resul-
ted in more stable training/accuracy plots and improvement of classification for
imbalanced label classification.

1 Introduction

Downtime is one of the most significant contributors to production inefficiency in the
manufacturing industry, the cost generated by it is a key factor for many decisions on
planning, projects and budgets. A manufacturing system usually contains a series of
machines or workstations and operations required to be performed sequentially. Thus,
without a proper maintenance program to timely repair and avoid downtime, a single
machine failure can potentially spread throughout the system and consequently halt the
production of goods causing great economic losses.Chang et al.| (2012)

Predictive Maintenance (PM) aims to monitor machine’s conditions and sensors to
actively determine maintenance schedules, strategies and budgets. According to |Wang
et al| (2019) researchers have defined the two most important perspectives for PM: 1)
Remaining useful life (RUL), that consist of estimating the time until the next failure or
end of useful life; 2) failure prediction, aims to predict the probability of a machine



failing within a specified time frame. In this research, we will focus on the failure
prediction problem but the probability will be based on the RUL index.

Existing methods for PM problems are grouped into three main categories: model-
based, data-driven and hybrid. A model-based approach can be more accurate for com-
plex systems, however, they require extensive knowledge about the systems. Because
of the development of Industry 4.0 and the Internet of Things (IoT) many machines
have been equipped with sensors for monitoring the operational behaviour and health
conditions of machines, favouring the heavy adoption of data-driven models for this task
because of their ability to model the degradation characteristics based on historical sensor
data. |Li et al.| (2018)

1.1 Research Question and Objectives

The aim of this research is to perform a review of the most widely used neural networks
algorithms like Long short-term Memory (LSTM) and Convolutional Neural Networks
(CNN) that have shown good results when approaching RUL prediction problems and
compare their performance against the state of the art model architecture for sequential
data: Temporal Convolution Networks (TCN), but instead of approaching the problem
as a regression we will first perform a binary classification based on a failure threshold to
perform binary classification and thus, responding the following research question:

e To what confidence level can we perform failure classification and pre-
diction of a machine based on their underlying operational conditions
and sensor data using Temporal convolution Networks?

Furthermore, this paper also discusses some measures to improve the performance of the
models when dealing whit imbalanced classification labels.

The major contribution of this research is the introduction of a classification frame-
work for predicting the failure of a machine using neural networks.

Section [2| provides an overview of the literature on the most widely used data-driven
models for RUL prediction. Section 3| shows the methodology followed for this research
and the steps to replicate the experiments. In[5]and [6]and the implementation and evalu-
ation process is described along with the experiment results. Finally in [7|the conclusions
of this research are stated.

2 Related Work

An extensive literature review was performed to understand the context and limitations
of the application of the most widely used machine learning models for preventive main-
tenance and to discover the state of the art model and their benefits for RUL prediction
problems.

2.1 Preventive Maintenance

Industral revolution (I4.0), Internet of Things (IoT) and the novel machine learning
techniques has created the perfect environment for research and innovation for major
improvements for preventive maintenance strategies. according to (Barlow; 2015) it is es-
timated that a comprehensive predictive maintenance program can decrease maintenance
cost by up to 30%, cut downtime by 45% and reduce machine failures by up to 75%.



In maintenance, there are four categories, corrective, preventive and prescriptive.
Predictive maintenance is the focus of this study because it uses time-based information
and knowledge to detect a possible failure and consequently avoiding down times.

2.2 Remaining Useful Life (RUL)

Different machine learning models, especially neural network-based have been used to
solve RUL problems. The advantage of neural networks over other legacy ML models is
that they can model complex, non-linear and multi-dimensional systems without prior
expertise and their ability to handle raw sensor data directly feed into them |Li et al.
(2018)).

Since the data usually comes from sensors collecting readings at each point in time, the
nature of the data is of time series, A time series is a sequence of vectors, z(t),t = 0,1, ...,
where ¢ stands for elapsed time and x is a series of discrete data points, equally spaced in
time. [Frank et al. (2001)). Therefore, In order to accurately estimate RUL the models to
be used need be able to capture sequential information from a multi-variable time series.

According to|Wan et al.| (2019), one of the key challenges for multivariate time series is
non-linearity and aperiodicity of data originated by short-term and long-term dynamical
behavior, because of this, legacy models such as auto-regressive integrated moving average
(ARIMA) are prone to overfitting in high-dimensional scenarios like RUL. Convolutional
Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) have been successfully
applied but recently the use of Temporal Convolution Network (TCN) has been gaining
popularity Wan et al.| (2019) for problems related to sequential modeling.

2.3 Long short-term Memory (LSTM)

LSTMs are a special type of recurrent neural network (RNN), designed to solve the
problem of vanishing and exploding gradients, they are characterized by an architecture
that includes long and short term states that change based on three control gates: forget
gate, input gate and output gate |Li et al| (2019). Consequently, the memory cell is able
to preserve its state over long duration’s, that is learning long-term dependencies
that may influence future predictions. Sequence learning models such as Recurrent
Neural Networks (RNNs) have problems for modeling sequence information with long-
term dependencies in the data. To solve this issues a Long short-term Memory (LSTM)
approach is proposed in|Zheng et al.| (2017) for RUL estimation because it can potentially
take into consideration the full sensor sequence data and detect hidden patterns even
under multiple operating conditions. Obtaining better accuracy results based on RMSE
(1862) over other compared models like CNN, SVR and MLP.

LSTM algorithm is usually the preferred model for many tasks involving sequential
signal processing, however, its computational requirements are relatively high
when compared with similar neural network architectures |Li et al. (2018]). Moreover, as
stated by Wang et al.| (2019) LSTM depends on strong assumptions such as the
mathematical mappings from current and prior sensor readings in regards to the RUL
label are the same along the sequence but this assumption can introduce biases.



2.4 Convolutional Neural Networks (CNN)

The usage of convolutional neural network
(CNN) for RUL prognosis was proposed ' e
in |Li et al| (2018), using an sliding win- |, R
dow time approach for feature extraction
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i
2.6} this approach showed the effectiveness ,..-*’" \"\ i
when applied to the C-MAPSS dataset for 2 S/ \
aero-engine [A. Saxena , K. Goebel (2008) = / \ 1000
achieving high accuracy when compared -
to other architectures such as RNN and n : 'w
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CNN are the most popular machine Methods
learning models for image data processing.
Two key characteristics of CNNs are: spa-
tially shared weights and spatial pooling
Krishna and Baghaei| (2019)), however, recently CNNs have also been used for time series
forecasting because of their capability of handling raw input data that makes them less
dependent on prior knowledge. The first implementation of CNN for predicting RUL of
jet engines was proposed in Babu et al| (2016]), the model performed better than all the
state-of-art papers at that time.
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Figure 1: performance by different methods.

2.5 Temporal Convolution Networks (TCN)

(Koh et al.; 2021)) proposed a novel approach for estimating RUL using deep convolutional
neural networks with the premise that by exploiting the compositional locality of the
time series, the invariant features can be extracted layer by layer. Real world time series
problems such as RUL estimation and prognosis are plagued with issues like noisy, non-
stationary, non-linear data. By using TCN architecture the author aimed to handle the
highly variant time series, so that, shift-invariant features could be extracted layer by
layer in order to boost the performance. The TCN’s architecture seen in “Fig. 2] aims
to solve the following issues: representation and distribution of a temporal context and
the ability to learn from many layers.

TCN introduces the usage of causal convolutions  rede:y
Wan et al|(2019), in which an output at time ¢ with g gi; g;i? gi; ii; ;;
elements from an earlier time in the previous layer, i o - : - -

this layer is used to create one to one relationships Wock?

d={1....24

in chronological order. The other component of the swpsi——{/b/—l/-l/ly‘l/—l/ VA7 A7 A
TCN are dilated convolutions, that contrary to the i s

d={l,..,2}

traditional convolutions don’t require a pooling pro- " VAV TAA VANV TA
cess in which some sequential information could be o
lost, instead , each convolution contains rich inform- iészfz)
ation for long-term tracking, making it ideal for long B

information dependence of sequences. Injzecy
1' performed various experiments using TCN Figure 2: The TCN architecture is
that demonstrating their ability to capture com- composed of a stack of deep delated
plex patterns like time-delays, duration and com-  conyolutions to capture long range
positions, outperforming other models like LSTM. temporal patterns |Lea - al.| (]2 0l 7D




2.6 Sliding window technique

Neural networks are used for time series forecasting us- Time Window |
S —

ing a sliding window approach as the standard method W‘«/\A/«/W
for performing time series prediction Frank et al.| (2001)). E
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This method consist in using a set of N tuples as in- o\ b
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puts and a single output as target value of the network : f

“Fig. B
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RUL estimation uses multi-variable time series data, l i
better information can be obtained from a temporal se- | ‘
|
quence sampled at a single time step using a time win- =" T T

dow of size Ny, to collect high-dimensional feature vec- i e s 5 i

Features

tors. FAAAAAAAN AN
As reviewed by |Li et al.| (2018), the size window Ny, R R B N
Time Cycles

can have an effect on the performance of the models, the
author performed a comparison between different time Figyre 3:  Training sample
windows (1 to 60), finding that estimations were better within a time window of length
as the window size increased but no further improve- 30 [ ¢t al| (2018).
ment was shown after N, is above 30.

This technique is used in the reviewed architectures LSTM Zheng et al.| (2017)) and
TCN (Koh et al.; [2021)).

2.7 Failure Threshold Estimation for Remaining Useful Life
Classification

It is the scope of this research to approach the RUL prediction problem based on discrete-
event as proposed by [Li et al.| (2019) by defining and labeling the samples into two classes
making it a binary classification problem:

e Healthy: patterns and conditions in which a healthy condition remains after the
same time interval

e Failure: patterns and conditions will lead to a failure after the defined time period.

The time interval ?,,.q is a fixed length RUL that needs to be defined as the min-
imum time required for performing a maintenance action (plan, schedule, prepare and
execute) to avoid failure and operational disruption. The limitation of this concept is
that ¢,,.q must be defined depending on the characteristics of the organization systems,
maintenance crew capacity and other requirements that will need to be considered as the
optimal warning time to perform a maintenance operation. The author [Li et al.| (2019)
approaches this issue by applying a Extreme learning machine (EML) with a single hid-
den layer because of the speed advantage for retraining the model, allowing the parameter
to be defined dynamically based on the organization needs.

On the other hand, Chehade et al.| (2017)) states that most of the existing research
on this failure threshold simply assumes that the ¢,,.q4 or threshold is defined a priory
and set to be constant and deterministic for all units. However, it points out that this
can be problematic, to solve this, the authors propose to calculate and find random
optimal threshold. The results showed that accuracy was improved when the number of
observations was greater than or equal to 40 when the proposed method was used on the
same C-MAPSS dataset used in this paper. |A. Saxena , K. Goebel| (2008).

bt



2.8 Recurrence Plots

A recurrent plot (RP) is a technique of nonlinear data analysis. It is used to reveal the
times when the phase space trajectory of the dynamical system visits roughly the same
area in the phase space. RP’s help to perform a visual inspection of higher dimensional
space trajectories, providing hints about the evolution of these trajectories over time |N
et al.| (n.d.).

RP’s are a highly efficient and widely used tools for the analysis of time series data,
they provide the possibility to estimate invariants and can be used to analyze non-
stationary data because of their ability to quantify hidden structures and patterns.
On their research [Thiel et al.| (2004), the authors performed experiments to demonstrate
how much data is contained in this plots by trying to reconstruct the time series from the
plots, they were able to successfully reconstruct them even from time series with stochastic
components or corrupted by noise confirming their ability to encode information.

Recurrence plots have been used by Hsueh et al.| (2019)) to perform rotation machine
condition monitoring in which the time series signals were converted into two dimensional
images (2D) and feed into a neural network (CNN) to extract the key features and
diagnose fault conditions by performing classification of the images, showing competitive
performance.

2.9 Related Work Summary

As we can see, all three neural network architectures used for RUL prediction have been
successfully used by researchers, each architecture has it’s own benefits and drawbacks
but the main point in common they all share is the ability to process raw non-linear
and multi-dimensional features commonly found in IoT enabled machines with multiple
sensors. This data-driven algorithms can be used to make estimations based on time series
data but the most important characteristic is their ability to find patterns based on long
term dependencies, therefore, it makes sens that the TCN architecture can perform better
because of the dilation layers. However, this models require special techniques such as
sliding windows and recurrence plots, that depend on parameters that can affect the
performance of the models.



3 Methodology

The research methodology consist of five main stages shown on “Fig. [’

Data Collection }—b Data Preparation — Maodeling —h{ Evaluation > Interpretation
© ] A N =
© =

. 1
] Mode! Architecht
loT Sensors Data Cleaning o0 Arcaiechiure E\.ralluale Report and conclusions
. . Model Training Compare

Feature Engineering

Data Transform

Figure 4: 5 stages methodology approach.

3.1 Data Collection

This stage involves acquire and collect set of data representing healthy and faulty con-
ditions, perform exploratory visualizations analysis, clean and verify the quality of the
data (remove outliers and feature selection).

3.1.1 Data Source

In this research, the proposed method is evaluated using the [Li et al.| (2019) the famous
dataset Commercial Modular Aero-Propulsion System Simulation CMAPSS
, K. Goebel| (2008). The dataset contains a column to identify the engine (machine_id)
and the cycle number that represents a time step of the life of the engine. The main
features include: three operational settings along with 21 sensor data including low and
high pressure compressor (LPC & HPC), fan, nozzle, high and low pressure turbine (HPT
& LPT).

This dataset is divided into four different sub-sets simulating different combinations
of operational conditions and fault modes along with sensor channels to represent fault
evolution. The six different flight conditions include a range of values for the three
operational conditions: Altitude (0 to 42K ft.), Mach Number (0 to 0.84) and TRA (20-
100), these margins can change as the engine degradation progresses Saxena et al.| (2008).

Fault conditions can include HPC Degradation and Fan degradation.
Table 1: The C-MAPSS dataset

Sub-Set FD001 FDO002 FDO003 FDO004
Time series training set 100 260 100 249
Time series test set 100 259 100 24
Operating conditions 1 6 1 6
Fault conditions 1 1 2 2

FDO0O1 contains sampled data from 100 engines operated under a single operating
condition and only one degradation cause of engine’s failure. On the contrary, FD004 is
a more complex dataset since it includes a larger number of sample engines (249), each
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engine may be employed under 6 operating condition combinations from one cycle to
another and the two types of fault conditions can occur.

The selection of FD001 and FD004 sub-sets for this research experiments is intended
to compare the performance of the model between the simplest conditions of FD001
versus the more complex scenarios of FD004.

3.2 Data Preparation
3.2.1 Data Cleaning

The C-MAPSS dataset contains multiple
engines measurements from 21 sensors, all
columns contain numerical values, no NaN
or missing values detected, but as seen on
“Fig. [ some features have constant out-
puts meaning that they do not provide
any valuable information for the predic-
tion, thus, they will be dropped from the
data frame, the resulting dataset contains
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16 features that will be used for the follow- N e

3.3 Feature Engineering
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Each one of the selected features from
sensors and settings data will be normal-
ized used MinMax Scaler from sklearn lib-
rary, each feature is scaled to a default
range between zero and one.
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Figure 5: Plot of time series of machine Id 1



3.4 Data Transformation

3.4.1 RUL Classification

RUL Classification on Train Dataset Because of the binary classification ap-
proach proposed and as reviewed in section
a failure threshold will be applied to
the RUL column of each engine to generate
a new label to the dataset that indicates
whether the sequence of a given machine
cycle presents a “Failure” or “Healthy”
condition, to generate this label we first
need to calculate the remaining cycles of
each machine at each time step, to do this,
we add a new column named “rul” and cal-
Healthy Failure culate the value by grouping the dataset
by the machine id and resting each cycle
to the max number of cycles of each ma-
chine, for example, machine #1 has a max-
imum number of cycles of 192, meaning
that there are the same number of data samples, we proceed to assign the current cycle
minus the max number of cycles to estimate the number or remaining useful cycles of the
machine at each step.

Once the column “rul” is created, we proceed to apply the threshold reviewed on
of to create a new binary column “rul” to categorize weather the condition is healthy (0)
of failure (1). As we can see in “Fig. [f]’ the distribution of the generated classes is
imbalanced and we will need to apply corrections in the training of the model to try to
compensate for this condition using class weight’s on the training process.

Figure 6: Training dataset FDOO1 has the
following label distribution 80.1% of healthy
(0) and 19.9% of Failure (1) samples.

3.4.2 Time Sequence Processing

As covered in the methodology section and using the same method used by ,
the multi-variate time series is better approached by obtaining a temporal sequence using
a time window [2.6] technique, as proposed by the author we will use the same windows
size of 30 cycles.

3.4.3 Recurrence plots (RP)

CNN models are used for image classification, thus,
we will need to transform the time series to im-
ages using the recurrence plots technique discussed
in , for this we generate sequences (17,631 for
training and 10,096 for testing using FD001) and
store them into an new array, we can see a random
example of the generated images in “Fig. [7]

9 Figure 7: RPs contain rich informa-
tion on spatio-temporal dimensions.



3.5 Modeling and training

For implementing the evaluated models in this research we will use TensorFlow & Keras
as the framework to build and train the architectures .

For the LSTM model will use two stacked “LSTM layers” which is a pre-build layer,
in first layer receives an input shape given by the pre-defined window-size of 50, and the
number of selected features of the dataset (16), both layers configured to return sequences
parameters that forces the layer to return the hidden state output for each input time
step. Each layer is followed by a dropout layer of 20% to set the input units to 0 at the
given rate, this is a regularization technique for helping reduce over-fitting. Final layer
is a dense layer with activation function “softmax”.

The CNN architecture uses two stacked “Conv2D” layer with a relu activation with
a filter of 3x3 followed by a “MaxPooling2D” layer to choose the best features. A fully
connected dense layer is then used to extract the relevant data and finally another dense
layer with activation “softwax” is used to extract the output probabilities.

The TCN model architecture is created using Sequential model with a TCN layer
that is part of the keras-tcn API published by |Remy| (2020) followed by a Dense Layer
with “softmax” activation function. The model is compiled using “Adam” optimizer and
“accuracy” as metric.

3.6 Training and Testing

All three models are executed through out a custom function “run_model” that trains and
test the provided model with the provided data and labels, and calculates the evaluation
metrics and plots. The training step of the function is configured with an early stopping
function.

3.6.1 Early Stopping

All three models that are fed into the run_model function are configured with a callback
function to stop training at the point when performance on a validation dataset has
stopped improving.
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4 Design Specification

Data Storage Layer Bussines Logic Layer Presenation Layer
| | | Maintenance Dashboard
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Figure 8: Tree-Tier tier design architecture, includes storage, business logic and present-
ation layers.

The proposed design considers using Github as version control of the source code and
required files, a local version of the repository is used for local changes, and the early
stages of the methodology, but google colab will be used for the training and testing
stages because of the computing resources like GPU, Additionally the use of Google
Colab will make it easier to run the notebook and replicate the experiments. Therefore,
The process will be to produce local Jupyter notebooks, push any changes and open the
notebooks in Google Colab for training and evaluation of results, the final notebook
includes functionality to automatically detect the environment and set up the required
variables and install any package dependencies.

5 Implementation

5.1 Resources and Equipment

The following tools and components were used for the implementation of this research,

“Table. [2]" describes required resources, software and services used during the project.
Table 2: Resources, Software and Services

Category Item Description
RAM 8GB (16GB are recommended)

Computing Processor 64-bit multi-core processor (Intel i5 or superior)
Storage 250+ GB of available space in hard disk
Operating System  Ubuntu, macOS or Windows
Python Main Programming language.
Tensorflow & Keras Library to develop and train models.

Software Anaconda Distribution of to simplify package management.
Jupyter Notebook ML and data processing and modeling.
VS code Programming IDE.

Cloud Services Google Colab Run Notebooks for Neural Networks.
Github Code repository and version control.

11



5.2 Enviroment Setup

Automatic detection of the running environment is the first step of the notebook, this
to make sure to configure the right variables and packages when running locally or in
Google Colab.

5.3 Exploratory Analysis

We use the correlation heat-map to show pairwise correlations among the variables
“Fig. 0a]’ it can be observed high positive and negative correlation between the sensor
features. In “Fig.[Ob] we can review the maximum number of cycles (RUL) per machine,
the minimum value is 128 and the maximum is 362 with an average of 206.31.
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(a) Correlation heatmap of features in
FDOOL1. (b) Max RUL per machine in FDO0O01.

5.4 Data Cleaning

After initial inspection no null or NaN values detected, but some sensor channels have
constant values with no predictor value, remove the following columns: ”setting3”,”s1”,
”85” 77S677 7781077 ”816” 7781877 7’819’7

5.5 Data splitting for training, validation and testing

The C-MAPSS dataset is already splitted into training and testing subsets, each sub files

contains the following number of samples:
Table 3: The C-MAPSS dataset training and testing samples

Sub-Set FD001 FDO004
Training Samples 17,731 57,522
Testing Samples 100 248

Additional to the training and test dataset, a validation split of 10%, this parameter
is used to hold back the corresponding number of samples of the training dataset from
the training of the model and is then used to give an unbiased estimate of the skill of the
final tuned model.
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5.6 Data Wrangling
5.6.1 Sequence Generation

Using the sliding window technique to generate a sequence on both training and testing
datasets by obtaining the last 30 cycles for each machine_id with the selected features,
the resulting variable is a three-dimension NumPy array with 15,631 training samples, of
30 cycles and 16 features each, the testing variable contains 8,162 samples.

5.6.2 Feature Normalization

Firstly, the selected features are normalized using MinMaxScaler that scales and trans-
lates each feature individually into a range between zero and one. As stated by [Li et al.
(2018), no additional signal /feature processing such as kurtosis or skewness is required.

Then the normalized training and test datasets are transformed using the sliding
window technique to create a NumPy array X_train and X_test variables that will be
fed into LSTM and TCN, additionally, the variable X _train_img and X _test_img with
recurrence plot images is generated for CNN.

5.7 Training and Evaluating

To run the experiments a custom function is implemented to train and test the models,
this function takes the train and test data and labels, fits them into the model, the model
is trained and the metrics and plots 5.8 are automatically generated and stored into
results variable for later comparison of the models.

5.8 Methods of Evaluation

The criteria we will use as a metric for evaluating the performance of the models will be
the following:

e Confusion Matrix: Plot describes how many times the target variable groups
were properly identified by the model.

e ROC Curve: Plot showing the performance of a classification model.
e AUC: Measures the entire underneath the ROC curve.
e Precision: Ratio between the True Positives and all the Positives.

Recall*: Ratio of total positive cases correctly classified.

e Accuracy: Number of correct predictions over all the predictions.

e F1-Score*: Is a metric which combines Precision and Recall.

*Because of the imbalanced class distribution of the dataset’s RUL classification we
will put higher weight on metrics that measure the negative/positive observations like
the Precision and F1-Score metrics when comparing the model’s performance.
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6 Evaluation

Once the corresponding data has been formated and transformed to be feed into the
neural networks, the following experiments are performed to evaluate and compare the
performance of the three models with different settings and data.

In each one of the experiments the results are shown in a table format containing the
model applied, the dataset used and the resulting metric in a percentage format including
Accuracy, ROC_AUC, Precision, Recall and F1 score.

6.1 Experiment / Case Study 1

The baseline experiment consists on training and testing the three architectures LSTM,
CNN and TCN with default values. All three models are processed by a custom function
“run_model” that fits the training features and labels in the model, performs the pre-
diction of the testing dataset and generates the discussed performance metrics Three
models are trained and fit using a default number of epochs of 25 with an early stopping
callback function to stop the training once the model’s performance has stopped improv-
ing. Using a validation split or 90:10 and default batch size of 200. The results can be
seen in “Table.[d” and the evaluation plots on “Fig.[d]’ show an overall good performance

of the TCN model, with higher accuracy and F1 score in the FD001 dataset.
Table 4: Experiment 1 Results (Default parameters)

Model Dataset Accuracy ROC AUC Precision Recall F1 Score
LSTM FDO001 96.36% 75.16% 97.95%  75.16%  82.48%
CNN FDO001 96.25% 89.86% 84.77%  89.86%  87.10%
TCN FDO001 97.81% 87.46% 95.81%  87.46% 91.14%
LSTM FD004 96.87% 87.91% 82.65%  87.91%  85.05%
CNN FD004 94.08% 50.00% 47.45%  50.00%  48.69%
TCN FD004 96.39% 80.30% 81.63%  80.30%  80.95%

6.2 Experiment / Case Study 2

Because of the imbalanced class distribution detected on the data transformation stage
the second experiment consists of using the class_weight parameter in the fit process
of the model to evaluate if that helps to improve the prediction rate of the unbalanced
class.

The results can be seen in “Table. B’ and show that in all 3 models the use of the
weight parameter did improve the performance of the models, it is also worth noticing
that TCN outperformed again the other models in F1 score in both datasets.

6.3 Experiment / Case Study 3

Another way to improve the performance of the classification models for imbalanced data
is to train the model using a larger than default batch size to ensure that each batch has a
higher chance of containing positive samples. Experiment 3 consist on training the three
models using a larger batch size, the results shown on “Table. [0]’, were we can see that
the performance only showed a marginal improvement in the precision, as in experiment
2 TCN outperformed the other models.
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Table 5: Experiment 2 Results (Using Class Weights)

Model Dataset Accuracy ROC AUC Precision Recall F1 Score
LSTM FDO001 95.56% 90.82% 82.00% 90.82% 85.74%
CNN FDO001 96.25% 89.47% 84.89% 89.47% 87.01%
TCN FDO001 97.85% 88.71% 94.82% 88.71%  91.50%
LSTM FDO004 96.31% 73.09% 83.92% 73.09% 77.34%
CNN FDO004 94.90% 50.00% 47.54% 50.00% 48.69%
TCN FD004 95.69% 84.83% 77.20% 84.83%  80.46%

Table 6: Experiment 3 Results (Larger Batch Size)

Model Dataset Accuracy ROC AUC Precision Recall F1 Score
LSTM FDO001 96.86% 79.52% 96.66% 79.52% 85.86%
CNN FDO0O01 96.56% 89.49% 86.37% 89.49% 87.85%
TCN FDO001 97.67% 86.99% 95.06% 86.99% 90.56%
LSTM FD004 95.76% 66.17% 81.68% 66.17% 71.10%
CNN FDO004 94.90% 50.00% 47.45% 50.00% 48.69%
TCN FDO004 95.75% 66.24% 81.59% 66.24% 77.11%

6.4 Discussion

After performing the 3 experiments on the datasets FD001 we use the comparison plots
shown on “Fig.[11], it is clear that TCN outperformed LSTM and CNN, especially
considering the F1 score. It can also be noticed that the use of class weights was bene-
ficial for increasing the recall performance of the model, this is especially important for
imbalanced label distributions.

On the other hand, when comparing the results of the experiments using FD004
“Fig.[12]", which is a more complex data scenario with multiple conditions we can observe
that performance was reduced in almost all the models, but it was especially noticeable
for the CNN models in which almost all the performance metrics drop down drastically,
however, TCN again showed a more consistent and improved performance among the
three experiments, despite not being the best model just below LSTM.

In the 3 experiments, TCN consistently outperformed the other compared models
more notoriously under the less complex data in FDO0O01, especially considering accuracy
and F1 score, which was an important factor given the unbalanced state of the resulting
classes, however, when given a more complex set of data FD004 TCN outperformed
only the CNN model that shows overall very poor results, but LSTM did showed better
results, this could imply that TCN is the best model only for certain operating conditions
and is only able to perform more accurately for single fault scenarios, although it did
not outperformed TSLM on FDO004 dataset, the results are still very competitive and
considered satisfactory in terms of accurately predict failure.

In practice this results show that both TCN and LSTM can be confidently applied
for predicting failure of a machine with a given range, since both models show consistent
good performance in all experiments.
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7 Conclusion and Future Work

The aim of this research was to compare the state of the art deep neural networks archi-
tectures for the classification of Remaining Useful Life. This research proposes the usage
of TCN as a better model for this task because of their dilated convolutions to capture
long-range temporal patterns. The results demonstrate that TCN outperforms in almost
all cases the other two models reviewed LSTM and CNN in the single fault scenarios,
however, for the more complex data that includes multiple operating and fault conditions
LSTM did outperformed TCN. Additionally, because of the imbalanced distribution of
the resulting classification labels, additional experiments were performed, demonstrating
that the usage of class weighs when training the model helps to increase the precision
and F1 score of the model.

7.1 Future Work

The implemented machine learning algorithms implemented in this research LSTM, CNN
and TCN all show excellent performance when compared with traditional prognosis al-
gorithms for RUL prediction. All the techniques can work without any prior knowledge,
allowing researchers to focus on the selection and tuning of models instead of feature
engineering. However, these models heavily depend on supervised learning, meaning that
they require large amounts of labelled data for training purposes. Thus, their prediction
accuracy relies heavily on the quality of the data and their measurements. The usage
of unsupervised learning models could help to extract high-level features from raw data
automatically.
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