‘*
\ National

College
Ireland

Configuration Manual

MSc Research Project
MSc in data Analytics

Suryakanta Sahu
Student ID: X20141513

School of Computing
National College of Ireland

Supervisor: Dr. Majid Latifi

‘*
National College of Ireland \ National

MSc Project Submission Sheet
School of Computing

Student Name: Suryakanta Sahu

Student ID: X20141513

Programme: Master’s in Data Analytics Year: 2021
Module: MSc Research Project

Lecturer: Dr. Majid Latifi

Submission Due

Date: 31/01/2022

Project Title: Contextual Healthcare Chatbot using Deep Neural Network -

Configuration Manual

Word Count: 1229 Page Count: 15

College
Ireland

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.
ALL internet material must be referenced in the bibliography section.

Students are

required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.
Signature: Suryakanta Sahu
Date: 16/12/2021

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple
copies)

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Sighature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Suryakanta Sahu
Student ID: X20141513

1 Introduction

This configuration manual report provides a detailed synopsis of the hardware, software,
library packages, and programming languages used to implement the project i.e., “Con-
textual Healthcare Chatbot using Deep Neural Network”. In addition to the hardware and
software specifications, the document also shows the functions and procedures used to
develop the deep learning model and pre-process the raw training data. By referring to this
document, the future researchers will be able to simply replicate this research for further
analysis, review, and extension.

This guidebook is divided into the sections below: The section 2 explains the hardware
and software configuration of the system on which the project was executed. Methods and
procedures executed to clear, transform the input data is outlined in the section 3. The
section 4 illustrates the way models are implemented and finally the section 5 shows the
evaluation and performance of the models.

2 System Configuration

In this section, the system configurations required to implement and execute the project are
described.

2.1 Hardware Specification

Operating System macOS Monterey (Version 12.1 (21C52))
Processor 3.5 GHz Dual-Core Intel Core i7

RAM 16 GB 2133 MHz LPDDR3

System Type 64-bit CPU

No. of Processor 1

Total no. of Cores 2

2.2 Software Specification

¢ Programming Language: Python

e Language Version: Python 3.8.5

e Editor Used: Jupyter Notebook (Google Colab)
e Distribution: Anaconda Distribution

Libraries used:

Library Name Usage

Numpy To perform a wide variety of mathematical operations on arrays

Pandas For loading the data and performing numerous statistical
analysis

random To shuffle the input dataset

Json To load and work with JSON file

re To clean the input dataset

nltk Used to work with natural language, and for per- forming
actions like tokenization, stemming, lemmatization on the text
data

tensorflow Numerous sub-packages from tensorflow package were
imported to create, fit and predict the Sequential model

datetime To work with system date and time

0s To work with system folder structure in order to load and save
data

sklearn To create Machine Learning models and evaluate them

#Importing all the required Packages

import nltk

nltk.download('punkt')

from nltk.corpus import stopwords

from nltk.stem import PorterStemmer

stemmer = PorterStemmer()

from nltk.stem import WordNetLemmatizer

wordnet lemmatizer = WordNetLemmatizer()

import tensorflow as tf

import numpy as np

import pandas as pd

import random, json, re, datetime, os

from tensorflow import keras

from keras.models import Sequential

from keras.layers import Dense, Activation, Dropout
from keras.optimizers import gradient descent v2
from tensorflow.keras.layers import Dense

from tensorflow.keras import Sequential

from tensorflow.keras.optimizers import SGD

from tensorflow.keras.callbacks import TensorBoard
from tensorflow.python.framework import ops

from sklearn import metrics

from sklearn.metrics import fl score, recall score, precision_score

Figure 1: Libraries Imported

3 Data Handling

The dataset was sourced from various open-source websites like Wikipedia, WebMD etc and
then stored in JSON format.

{"tag": "Fever",

"patterns": ["How do you treat a mild Fever?", "what to do if i get a mild fever?", "Which medicine to take if I get a mild fever?
", “fever"],
"responses": ["To treat a fever at home: 1)Drink plenty of fluids to stay hydrated. 2)Dress in lightweight clothing. 3)Use a light
blanket if you feel chilled, until the chills end. 4)Take acetaminophen (Tylenol, others) or ibuprofen (Advil, Motrin IB, others).
5) Get medical help if the fever lasts more than five days in a row."l,
"context_set": "fever"
},

{"tag": "Symptoms",
"patterns": ["what are it's symptoms", "symptoms of cold", "symptoms"],

"responses": ["Symptoms of fever are : 1)Temperature rise 2)Headache 3)Body pain"],
"context_filter": "fever"

I8

{"tag": "Nasal Congestion",

"patterns": ["How do you treat nasal Congestion?", "what to do if i get a nasal congestion?", "Which medicine to take if I have a

nasal congestion?", "what to do if i have a blocked nose?", "How do you treat a blocked nose?", "How long does nasal congestion
last?"],

"responses": ["When youﬂre stuffed up, focus on keeping your nasal passages and sinuses moist. To keep your nasal passages moist,
you can: 1)Use a humidifier or vaporizer. 2)Drink lots of fluids. This will thin out your mucus, which could help prevent blocked

sinuses. 3)Place a warm, wet towel on your face. It may relieve discomfort and open your nasal passages."l,
"context_set": "Nasal Congestion"
+

{"tag": "Symptoms",

"patterns": ["what are it's symptoms", "symptoms of Nasal Congestion", "symptoms"],

“responses": ["Symptoms of Nasal Congestion are : Nasal inflammation, Thick, discolored discharge from the nose (runny nose),
Drainage down the back of the throat (postnasal drainage), Blocked or stuffy (congested) nose causing difficulty breathing through
your nose, Pain, tenderness and swelling around your eyes, cheeks, nose or forehead, Reduced sense of smell and taste. Other signs

and symptoms can include: Ear pain, Headache, Aching in your upper jaw and teeth, Cough or throat clearing, Sore throat, Bad
breath, Fatigue"l],

"context_filter": "Nasal Congestion"
}

{"tag": "Cough",

"patterns": ["How to cure cough?","How do you treat cough?", "what to do if i get a cough?", "Which medicine to take if I get
cough?", "How do you get rid of cough?"l,

"responses": ["1) Honey:- Use honey to treat a cough, mix 2 teaspoons (tsp) with warm water or an herbal tea. Drink this mixture
once or twice a day. Do not give honey to children under 1 year of age. 2) Ginger:- Brew up a soothing ginger tea by adding 20540
grams (g) of fresh ginger slices to a cup of hot water. Allow to steep for a few minutes before drinking. Add honey or lemon juice

Figure 2: Data stored in JSON format

3.1 Loading Dataset

The JSON data file was loaded into the project space using json.load() function.

In [2]: v # Loading the dataset JSON file
v with open('HealtcareQA.json', 'r') as full:
fullintents = json.load(full)

fullintents
executed in 74ms, finished 21:24:37 2021-12-15
r 'responses': ['Symptoms of Cough are : A runny or stuffy nose, A feeling of liquid running down the back of your t 1
hroat (postnasal drip), Frequent throat clearing and sore throat, Hoarseness, Wheezing and shortness of breath, Heart
burn or a sour taste in your mouth Rarely, coughing up blood'],

‘context_filter': 'cough'},

{'tag': 'Sore Throat',
‘patterns': ['How do you treat sore throat?',
'what to do if i get a sore throat?',
'Which medicine to take if I get a sore throat?',
'How to cure sore throat?'],

‘responses': ['l) Make sure you get plenty of rest and drink a lot of fluids. 2)Inhale steam,Run hot water in a si
nk.Drape a towel over you to trap the steam, and have the person lean over the sink with the water running. Tell him
to breathe deeply through his mouth and nose for 5 to 10 minutes. Repeat several times a day. 3)Have him sip chicken
broth or warm tea with honey. Don’t give honey to a child under 12 months of age.'],

‘context_set': ''},

{'tag': 'Symptoms',
'patterns': ["what are it's symptoms",
'symptoms of Sore Throat',
'symptoms'],
| ‘responses': ['Symptoms of Sore Throat are : Pain or a scratchy sensation in the throat, Pain that worsens with sw

A1Vl mrrinm Aav balline NIEEimnlie mrallaciine Cava ~rvallan ~landa {in srane manl Aw dace Creallan wad banaila Whida wads o

Figure 3: Loading the data into project space

3.2 Data Description

Each tag of the loaded json data was iterated through, and all the tags, classes are stored in
list format.

In [12]: v def create_document(intents):
all words = []
all tags = []
documents = []
ignore = ['!',".", 20,0, "]

Iterate through each intent in the intents file
v for intent in intents['intents']:
for pattern in intent['patterns']:
w = nltk.word_tokenize(pattern) # Tokenization
w = [stemmer.stem(word.lower()) for word in w if not word in set(stopwords.words('english'))] # Stemming
all words.extend(w)
documents.append((w, intent['tag']))
v if intent['tag'] not in all_tags:
all_tags.append(intent['tag'])

all words = [w.lower() for w in all words if w not in ignore] # Remove punctuations
all words = sorted(list(set(all_words))) # Remove duplicate words
all tags = sorted(list(set(all_tags))) # Remove duplicate tags

return all words, all_tags, documents
executed in 6ms, finished 20:50:33 2021-12-15

Figure 4: Creating a Document with all the words, tags

As shown in the Figure 5, a total of 307 distinct words, 196 distinct tags and the whole
document contained 1493 records.

In [106]: v # Length of total words, tags, and documents
print("Total no. of distinct words:",len(total_words))
print("Total no. of distinct tags:", len(total_tags))
print("length of the Document:", len(total_documents))

executed in 5ms, finished 20:39:18 2021-12-15

Total no. of distinct words: 307
Total no. of distinct tags: 196
length of the Document: 1493

Figure 5: Total number of words, tags, and length of the document

In the Figure 6: word cloud of the Tags and in the Figure 7: world cloud of the words are
shown.

In [104]:

In [105]:

import matplotlib.pyplot as plt
from wordcloud import WordCloud

unique_string=(" ").join(total_tags)

wordcloud = WordCloud(width = 1000, height = 500).generate(unique_string)
plt.figure(figsize=(15,8))

plt.imshow(wordcloud)

plt.axis("off")

plt.savefig("your_ file name"+".png", bbox_inches='tight')

plt.show()

plt.close()

executed in 1.54s, finished 20:37:27 2021-12-15

InfeCtli[jou

radac

Figure 6: Word Count of Tags

import matplotlib.pyplot as plt
from wordcloud import WordCloud

unique_string=(" ").join(total_words)

wordcloud = WordCloud(width = 1000, height = 500).generate(unique_string)
plt.figure(figsize=(15,8))

plt.imshow(wordcloud)

plt.axis("off")

plt.savefig("your_ file name"+".png", bbox_inches='tight')

plt.show()

plt.close()

executed in 1.49s, finished 20:37:39 2021-12-15

t3 -
autism anp. a C utbettenu,e

d
bye

l)‘i tjE? diagno

bruils

bitten blood

aiden

alzheim

coronaviru

Figure 7: Word Count of Words

3.3 Data Pre-Processing and Transformation

As shown in the Figure: 8, the input text data was first tokenized, stemmed, and
Lemmatized. Then a Word Vector using Bag of Word (BoW) technique was created. The
word vector sparse matrix was then segregated into Independent and Target variable. The
independent variable (X) has 1493 rows and 307 columns. Similarly, the target variable (Y)
has 1493 rows and 196 columns.

def create_input_data(all_words, all_tags, documents):
training = []
output = [] # For target variable of DNN model
output_empty = [0] * len(all_tags)
#print("output empty: ",output empty)
op = [] # For target variable of Naive Bayes model
for doc in documents:
bag = [] # Create an empty bag
pattern words = doc[0]
Stemming and Stopwords removal
pattern_words = [stemmer.stem(word.lower()) for word in pattern words if not word in set(stopwords.words('eng
pattern_words = [wordnet_ lemmatizer.lemmatize(word) for word in pattern_words]
for w in all_words:
bag.append(1l) if w in pattern_words else bag.append(0) # Create BoW Array by appending 1 for each instanc

output_row = list(output_empty)
output_row[all_ tags.index(doc[1])] =1
training.append([bag, output_row])
op.append(doc[1])

training = np.array(training)

train_x = list(training[:,0])
train y = list(training[:,1])
. .

executed in 6ms, finished 20:55:37 2021-12-15
full x, full_y, full op = create_input_data(total_words, total_tags, total_documents)
print(np.array(full_x).shape, np.array(full_y).shape, np.array(full_op).shape)

executed in 936ms, finished 20:55:39 2021-12-15

(1493, 307) (1493, 196) (1493,)

Figure 8: Create a Word Vector for training

3.4 Train and Validation split

The input data is then split into train and validation set as shown in Figure: 9.

v #Perform encoding of the target variable to be used in Naive Bayes Model
le = preprocessing.LabelEncoder ()
full y encoded = le.fit_ transform(full op)

full x = np.array(full_x)
full y = np.array(full_y)
full op = np.array(full_y encoded)

train_x full x[:1380,] # Independent variables for DNN and Naive Bayes model
train_y full y[:1380,] # Dependent variables for DNN model
train_op = full op[:1380,] # Dependent variable for Naive Bayes model

test_x = full x[1380:,] # Independent variables for DNN and Naive Bayes model
test_y = full _y[1380:,] # Dependent variable for DNN model
test_op = full op[1380:,] # Dependent variables for Naive Bayes model

print(np.array(train_x).shape, np.array(train_y).shape, np.array(train op).shape)
print(np.array(test_x).shape, np.array(test_y).shape, np.array(test_op).shape)

executed in 9ms, finished 21:03:15 2021-12-15

(1380, 307) (1380, 196) (1380,)
(113, 307) (113, 196) (113,)

Figure 9: Create Training and Validation Dataset for the DNN and Naive Bayes model

4 Model Initialisation and Implementation

A multi-layered deep neural network with 4 layers (Figure:10) was created. A total of 64,580
trainable parameters initialized (Figure: 11) in the model.

model DNN = tf.keras.models.Sequential() #Initiating the neural network

model DNN.add(Dense(128, input_shape=(len(train_x[0]),), activation='relu')) # First Layer
model_ DNN.add(Dropout(rate = 0.5)) # Adding dropout layer

model DNN.add(Dense(64, activation='relu')) # Second layer with ReLU activation

model_ DNN.add(Dropout(rate = 0.5)) # Adding dropout layer

model DNN.add(Dense(64, activation='relu')) # Third Layer

model_ DNN.add(Dropout(rate = 0.5)) # Adding dropout layer
model DNN.add(Dense(len(train_y[0]), activation='softmax')) # Final layer with SOftmax activation

Initiating stochastic gradient descent
sgd = tf.keras.optimizers.SGD(learning rate=0.01, momentum=0.9, decay=le-6, nesterov=True)

Compile the model
model DNN.compile(loss='categorical crossentropy', optimizer=sgd, metrics=['accuracy'])

logdir = os.path.join("SURYAlogs", datetime.datetime.now().strftime("$Y%m%d-$HEMSS"))
tensorboard_callback = tf.keras.callbacks.TensorBoard(logdir, histogram_freqg=1)

#Fit the model
v history = model DNN.fit(np.array(train_x), np.array(train_y), epochs=200, batch_size=8, verbose=1,
callbacks=[tensorboard_callback], validation_data = (test_x,test_y))
print("Model trained successfully..")

executed in 46.6s, finished 21:26:29 2021-12-15

Figure 10: Deep Neural Network Model initialization and Fitting

model DNN.summary ()
executed in 9ms, finished 21:26:53 2021-12-15

Model: "sequential"

Layer (type) Output Shape Param #
dense=(Dense) (None, 1;8) 39424 i
module wrapper (ModuleWrappe (None, 128) 0
dense_1 (Dense) (None, 64) 8256
module wrapper 1 (ModuleWrap (None, 64) 0
dense_2 (Dense) (None, 64) 4160
module_wrapper 2 (ModuleWrap (None, 64) 0
dense_ 3 (Dense) (None, 196) 12740

Total params: 64,580
Trainable params: 64,580
Non-trainable params: 0

Figure 11: Deep Neural Network Model Summary

For comparing the performance and accuracy, a Naive Bayes model was created and trained
(Figure: 12) with the same input data.

from sklearn.naive bayes import GaussianNB

#Create a Gaussian Classifier

modelNB = GaussianNB()

Train the model using the training sets
modelNB.fit(train x, train op)

executed in 48ms, finished 21:27:37 2021-12-15

GaussianNB(priors=None, var_smoothing=le-09)

y_pred train = modelNB.predict(train x)
y_pred = modelNB.predict(test_x)

executed in 317ms, finished 21:27:38 2021-12-15

print("Train Accuracy:",metrics.accuracy_score(tr_op, y_pred_train))
print("Test Accuracy:",metrics.accuracy score(te op, y pred))

score = fl score(te op, y pred, average='weighted')
print('F-Measure: %.3f' % score)

precision = precision_score(te _op, y pred, average='weighted')
print('Precision: %.3f' % precision)

recall = recall score(te_op, y pred, average='weighted')
print('Recall: %.3f' % recall)

executed in 13ms, finished 21:27:39 2021-12-15

Train Accuracy: 0.9797101449275363
Test Accuracy: 0.7787610619469026
F-Measure: 0.805

Precision: 0.885

Recall: 0.779

Figure 12: Naive Bayes Model

5 Evaluation

Figure: 12 shows that after running for 200 epochs the DNN model attained training
accuracy of 97.25 % and validation accuracy of 80.53 %. Similarly, after 200 epochs the
training loss was 0.04 and validation loss was 2.02. Figure: 13 illustrates the Deep Neural
Network Model’s Accuracy vs Epoch plot and Figure: 14 displays the Loss vs Epoch plot.

5.1 Evaluating the DNN model with Accuracy metrics

#Fit the model

v history = model DNN.fit(np.array(train_x), np.array(train_y), epochs=200, batch_size=8, verbose=1,

callbacks=[tensorboard_callback], validation data = (test_x,test_y))

print("Model trained successfully..")

executed in 46.6s, finished 21:26:29 2021-12-15

Epoch 195/200
1380/1380 [

c: 0.8407
Epoch 196/200
1380/1380 [

c: 0.8319
Epoch 197/200
1380/1380 [

c: 0.8407
Epoch 198/200
1380/1380 [

c: 0.8407
Epoch 199/200
1380/1380 [

c: 0.8407
Epoch 200/200
1380/1380 [

] - Os
] - 0s
] - Os
] - Os
] - O0s
] - Os

c: 0.8053

Model trained successfully..

Figure 13: DNN Model Accuracy Vs Epoch

168us/sample

152us/sample

148us/sample

153us/sample

170us/sample

149us/sample

import matplotlib.pyplot as plt
plt.plot(history.history['acc'])

plt.plot(history.history['val acc'])

loss:

loss:

loss:

loss:

loss:

loss:

plt.title('Model Accuracy Vs Epochs')
plt.ylabel('Accuracy')
plt.xlabel('Epoch')

plt.legend(['Training',

executed in 233ms, finished 21:26:56 2021-12-15
<matplotlib.legend.Legend at 0x7££24558£940>

Accuracy

Model Accuracy Vs Epochs

'Validation'],

0.0426 -

0.0418 -

0.0444 -

0.0426 -

0.0418 -

0.0420 -

loc='lower right')

10 1
A | WL MALSY vV
0.8 1 WA M
0.6 1
0.4 1
0.2 1
= Training
0.0 - Validation
0 25 50 75 100 125 150 175 200
Epoch

Figure 14: DNN Model Accuracy Vs Epoch

10

acc:

acc:

acc:

.9754

.9754

.9761

.9761

.9761

.9725

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

.9975

.9657

.8789

.9141

.8811

.0229

val_ac

val_ac

val_ac

val_ac

val_ac

val_ac

plt.plot(history.history['loss'])
plt.plot(history.history['val loss'])

plt.title('Model Loss Vs Epochs')

plt.ylabel('Loss')

plt.xlabel('Epochs')

plt.legend(['Training', 'Validation'], loc='upper left')
plt.show()

executed in 184ms, finished 21:26:57 2021-12-15

Model Loss Vs Epochs

-~ Training
Validation

Loss

-

L T

0 25 50 75 100 125 150 175 200
Epochs

Figure 15: DNN Model Loss Vs Epoch

5.2 Evaluating the DNN model with real-time user queries

At first the incoming user query sentence was cleaned, pre-processed and converted into a
Bag of Words (Figure: 16).

v # Clean and Pre-process the incoming user queries
v def clean_up_userQuery(sentence):
sentence_words = nltk.word_tokenize(sentence) #Tokenize the incoming query sentence
sentence_words [stemmer.stem(word.lower()) for word in sentence_words] #Stem the tokens
sentence_words [wordnet_lemmatizer.lemmatize(word.lower()) for word in sentence_words] #Lemmatize the stemmed w
return sentence_words

Create a Word Vector of the preprocessed words
v def create_BoW(sentence, words, show_details=False):
sentence_words = clean_up_userQuery(sentence)
bag = [0]*len(words)
for s in sentence_words:
for i,w in enumerate(words):
v if w == s:
bag[i] = 1
if show_details==True:
print("Word found in the Bag: %s" % w)

return(np.array(bag))

Figure 16: Clean and transform the User Input

11

Secondly, the user query was predicted by the trained DNN model, and the prediction was
matched against the intent tags. Once a matching tag found, a sample response from that
intent is sent to the user. Also, the contextualization capability was added to the chatbot
using python dictionary data structure (Figure: 17).

#Enable contextualization
context = {} # Deictionary to hold the context
ERROR_THRESHOLD = 0.65

words = total_ words
classes = total_tags
def classify(sentence):

def

p = create_BoW(sentence, words,show_details=False) #create BoW
results = model DNN.predict(np.array([p]))[0]

results = [[i,r] for i,r in enumerate(results) if r>ERROR_THRESHOLD] #Remove predictions less than the threshold
results.sort(key=lambda x: x[1], reverse=True) #Sorting the predictions
return_list = []

for r in results:

return_list.append((classes[r[0]], r[1]))

return return_list # Return the matching tags list

response(sentence, userID='NCI', show details=False):
results = classify(sentence)
if results:

while results:
for i in intents['intents']:
if i['tag'] == results[0][0]: #Search for a matching tag
if 'context_set' in i:
if show_details: print ('context:', i['context set'])
context[userID] = i['context_set'] # if tag matched, set the context set it as Context

Verify if the context filter is present and matching with the Context value

if not 'context_filter' imn i or \
(userID in context and 'context filter' in i and i['context filter'] == context[userID]):
if show_details: print ('tag:', i['tag']) # For debugging purpose
return (random.choice(i['responses'])) # Return a random choice belong to the same tag

iﬁiiiiiliﬁi(0)

Figure 17: Classify and add Contextualization capabilities

The customized function chat() (Figure: 18) simulates the interaction between the chatbot
and user by providing a input box.

S |

<

def chat():
print("Start Talking with the bot(type quit/qg/bye to stop!)")
while True:

inp = input("You: ")
inp = inp.lower()
if inp == "quit" or inp == "q" or inp == "bye":

break

else:
res = response(inp, show _details=False)
cls = classify(inp)

if res is not None:
print("bot: ",res)
#print(cls)
else:
print("I didn't get that, please try again ..")
print('\n")

Figure 18: Function to interact with User

12

As shown in Figure:19, the user is able to ask healthcare related queries to the chatbot, and
the model is providing the user appropriate responses.

In [*]: chat()
execution queued 22:05:16 2021-12-15

Start Talking with the bot(type quit/q/bye to stop!)
You: hi
bot: Hello, Hope you are doing well!!

You: How to treat diabetes ?

bot: Diabetes is a number of diseases that involve problems with the hormone insulin. Normally, the pancreas (an org
an behind the stomach) releases insulin to help your body store and use the sugar and fat from the food you eat. Diab
etes can occur when the pancreas produces very little or no insulin, or when the body does not respond appropriately
to insulin. As yet, there is no cure. People with diabetes need to manage their disease to stay healthy. 1)If you hav
e type 1 diabetes, you’ll need to use insulin to treat your diabetes. You take the insulin by injection or by using a
pump. 2)If you have Type 2 diabetes, you may have to use insulin or tablets, though you might initially be able to tr
eat your diabetes by eating well and moving more. 3)If you have another type of diabetes, your treatment options may
be different. Speak to your healthcare professional. 4)Weight loss surgery- There are lots of obesity surgery procedu
res to the stomach or intestine that you can get to help you lose weight. There have been lots of studies that have f
ound that this can help to put Type 2 diabetes into remission. 5)Diet and exercise- Lots of people with Type 2 diabet
es don’t take any medication, and they instead treat their diabetes by eating well and moving more.

You: What are its symptoms

bot: Symptoms of Diabetes are : Urinate (pee) a lot, often at night, Are very thirsty, Lose weight without trying, A
re very hungry, Have blurry vision, Have numb or tingling hands or feet, Feel very tired, Have very dry skin, Have so
res that heal slowly, Have more infections than usual

You: || |

Figure 19: Sample conversation with the user

Figure: 20 shows a user defined GUI function which takes user input through and interactive
window (Figure: 21) and provide suitable responses.

13

v #Creating GUI with tkinter
import tkinter
from tkinter import *

v def send():
msg = EntryBox.get("1.0", 'end-1lc').strip()
EntryBox.delete("0.0" ,END)

v if msg != '':
ChatLog.config(state=NORMAL)
ChatLog.insert(END, "You: " + msg + '\n')

ChatLog.config(foreground="#442265", font=("Verdana", 12))

#res = chatbot_ response(msg)
res = response(msg)
ChatLog.insert(END, "Bot: " + res + '\n')

ChatLog.config(state=DISABLED)
ChatLog.yview(END)

base = Tk()

base.title("HealthCare Chatbot")#by default
base.geometry("400x500")
base.resizable(width=FALSE, height=FALSE)

#Create Chat window
ChatLog = Text(base, bd=0, bg="white", height="8", width="100", font="Arial",)

ChatLog.config(state=DISABLED)

#Binding scrollbar to Chat window
scrollbar = Scrollbar(base, command=ChatLog.yview, cursor="heart")
ChatLog['yscrollcommand'] = scrollbar.set

#Create Button to send message
v SendButton = Button(base, font=("Verdana",12, 'bold'), text="Send", width="12", height=5,
bd=0, bg="#32de97", activebackground="#3c9d9b" ,fg="#Efffff"’,
command= send)

#Create the box to enter message
EntryBox = Text(base, bd=0, bg="white",width="29", height="5", font="Arial")
#EntryBox.bind("<Return>", send)

#Place all components on the screen;you can change its heightand width
scrollbar.place(x=376,y=6, height=386)

ChatLog.place(x=6,y=6, height=386, width=500)

EntryBox.place(x=128, y=401], height=90, width=265)
SendButton.place(x=6, y=401, height=90)

base.mainloop ()

Figure 20: Function to create a Chatbot GUI

14

® HealthCare Chatbot

You: hello

Bot: Hi There!!

You: how to cure cold?

Bot: 1)Keeping hydrated is absolutely vital to help 'flush' out tt
break down congestion and keep your throat lubricated. 2)Vita
elpful when fighting infection, so at the first sign of a cold be si
ntake by eating plenty of berries, citrus fruits, papayas, brocco
hich will help keep you protected. 3)When it comes to combati
s essential in helping to regulate immune response.

You: what are its symptoms

Bot: Synptoms of Cold are : 1. blocked or runny nose 2. sore t
. muscle aches 5. coughs 6.sneezing 7. a raised temperature 8
rs and face 9. loss of taste and smell

c(

1

)
g

Figure 21: Sample conversation with the user in chatbot GUI

15

