Configuration Manual

MSc Research Project
MSc. Data Analytics

Neil Sahay
Student ID: x19238061

School of Computing
National College of Ireland

Supervisor: Martin Alain

College
Ireland

~

\ National

‘—
National College of Ireland \

National
MSc Project Submission Sheet College of
School of Computing Ireland
Student Name: Neil Sahay
Student ID: x19238061
Programme: MSc. Data Analytics Year: 2021/22
Module: Research Project
Lecturer: Martin Alain
Submission
Due Date: 31/01/2022
Project Title: Fake News Detection Using Deep Learning and Computational
Linguistics
Word Count: 1782 Page Count: 15

I hereby certify that the information contained in this (my submission) is information pertaining
to research I conducted for this project. All information other than my own contribution will be
fully referenced and listed in the relevant bibliography section at the rear of the project.

ALL internet material must be referenced in the bibliography section. Students are required to

use the Referencing Standard specified in the report template. To use other author's written or
electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature: Neil Sahay

Date: 30/01/2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple O
copies)
Attach a Moodle submission receipt of the online project O
submission, to each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both O
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed into the
assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Neil Sahay
x19238061

1 Introduction

This configuration manual contains detailed information about the different hardware
and software configurations that were required to set up the project build-up, and also
the crucial setup and libraries that needed to be imported and installed while setting up
the environment. As the code is executed in Google Collaboratory, thus this manual also
contains detailed information about the setup process. Moreover, it also contains the code
snippets and executed models architectures of the three experiments performed.

2 Hardware and Software Configurations

Due to the sheer influx of data and usage of extensive memory, Google colaboratory is
utilized as it has an inbuilt Graphical Processing Unit (GPU), and memory of 13 GB, which
makes the computation faster as compared to the normal processor. Table 1 and 2 shows
the tabular structure in which all the information regarding software and hardware
configurations is encapsulated.

Table 1: Hardware Configurations Adopted
Host Machine | HPE EliteBook with i5 Processor
RAM 8 GB

GPU Google Colaboratory integrated GPU with 80 GB free
storage and 13 GB RAM

Table 2: Software Employed

Programming Python
language

Cloud environment Google Collaboratory

Browser Google chrome

3 Colaboratory Setup

This section contains detailed steps for configuring the Google Collaboratory so as to
import the data efficiently and process the data while also performing computational
algorithms to build the model in scalable manner.
1. Initial step is to configure the google collboratory file by going into the file section
and clicking on New Notebook option as shown in Figure 1.

¢y Welcome To Colaboratory
= File Edit View Insert Runtime Tools Help

= T New notebook Code + Text 2 Copy to Drive
= Ta
Open notebook ctri+0
Q ¢ Upload notebook
t O What is Colaboratory?
<>
) . "
Saiaacopy i oive ‘olaboratory, or "Colab" for short, allows you to wr
)
£3 . .
i} ' Save a copy as a GitHub Gist = Zero configuration required
o Save a copy in GitHub * Free access to GPUs
] * Easy sharing

Save Ctri+s e
Vhether you're a student, a data scientist or an Al

ist get started below!
Download
Print Ctri+P o

jetting started

The document you are reading is not a static web

Figure 1: Creating New Notebook in Google Colab

2. The second step is to change the Runtime to the integrated GPU, which Google Colab
provides as shown in Figure 2.

Notebook settings

Hardware accelerator
None v
None

Cancel Save

Figure 2: Changing the runtime to GPU

3. The third step involves uploading the dataset in Colab environment to perform
operations.

co & Final_Thesis.ipynb
File Edit View Insert Runtime Tools
= Files X
o B (2
[+
5 i sample_data
® B combined_news_data_processed....
X
=

Figure 3: Uploading the input data in colab
4. The next step involves installing the required libraries. In this project, libraries such
as spacy which is an advanced NLP toolkit is used, also the library en_core _web_md
consists of components such as Lemmatizer and Tokenizer, which is also
downloaded using pip command as shown in figure 4.

Figure 4: Installing the libraries

4 Data Pre-processing

This section contains steps for data pre-processing, and also include code snippets in the
way, how the data is imported and cleaned.

1. The first step involves importing the data within Google Colab., by clicking Files
section as shown in Fig 5.

O £&. Final_Thesis.ipynb

File Edit View Insert Runtime Tools

= Files >
Q .
Upload to session storage
(+ N

<

> » Bm sample_data
o B combined_news_data_processed...
x
-

Figure 5: Uploading the dataset into the Colab environment

2. Next the data is imported and read into the system using pandas library, with
command pd.read _csv("File Name”) as shown in figure 6.

Reading The Data

data = pd.read_csv(’'/content/combined news_data_processed.csv’')
data.dropna(inplace=True)
data.info()

<class ’"pandas.core.frame.DatafFrame’>
Int64Index: 74011 entries, © to 74011
Data columns (total 3 columns):

= Column Non-Null Count Dtype

8 title 74211 non-null object
1 text 74211 non-null object
2 label 74011 non-null inté4
dtypes: int64(1), object(2)
memory usage: 2.3+ MB

Figure 6: Reading the data

3. The data is then needs to be pre-processed i.e. special characters and stop words
are removed, moreover lemmatization is also performed, which is as shown in Fig
7.

- Pre-processing text

[1 import re # regex library
import en_core_web_nd
from spacy.lang.en.stop_words import STOP_WORDS

nlp = en_core_web_md.load()
def preprocessor(text):

text = re.sub('<[*]*>', "', text) # Effectively removes HTML markup tags
emoticons = re.findall('(?::];|=)(2:-)2(2:\)|\(|D|P)", text)

text = re.sub('[\W]+', ' ', text.lower()) + ' '.join(emoticons).replace('-', '')
doc = nlp(text)

text = ' '.join([token.lemma_ for token in doc if token.text not in STOP_WORDS])
return text

Figure 7: Pre-processing the data

4. The data is then splitted into training and test data sets using the scikit learn library
and under the component mode selection, train test split is imported as shown in
Figure 8.

[] X =data['text']
y = data['label']

° from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=8.3, random_state=42)
X_train, X_valid, y_train, y valid = train_test_split(X_train, y_train, test_size=0.2, random_state=42)

data_processed = pd.DataFrame({'title': data['title'], 'text': X, 'label’: y})
data_processed.to_csv('/content/combined_news_data processed.csv', index=False)

+ Code + Text

Figure 8: Splitting the data
5 Defining the Model

This section gives detailed information regarding the defining and training of the implemented
Recurrent Convolutional Neural Network (RCNN) plus Long short term memory (LSTM) model.
The specific libraries are imported and tensorflow is invoked to implement the desired model.

5

1. The initial step involves, importing all the necessary libraries from keras module,
also including tensorflow.

~ Defining and Training the Model

° from sklearn.base import BaseEstimator, ClassifierMixin
from sklearn.metrics import accuracy_score
import tensorflow as tf
from keras.preprocessing.text import hashing_trick
from keras.preprocessing.text import text_to_word_sequence
from keras.models import Sequential, load_model
from keras.layers import Embedding, LSTM, Dense, ConviD, MaxPoolinglD, Dropout
from keras.preprocessing.text import Tokenizer
from keras.preprocessing import sequence
from keras.callbacks import EarlyStopping, ModelCheckpoint

Figure 9: Importing the libraries

2. After importing all the libraries, I created a class with name LSTM Text Classifier.

3. Once the class is declared, initialization of variables is done, wherein all the default
parameter values are also set as shown in Figure 10.

' v - -

° from sklearn.base import BaseEstimator, ClassifierMixin

from sklearn.metrics import accuracy_score

import tensorflow as tf

from keras.preprocessing.text import hashing_trick

from keras.preprocessing.text import text_to_word_sequence

from keras.models import Sequential, load_model

from keras.layers import Embedding, LSTM, Dense, ConviD, MaxPoolinglD, Dropout

from keras.preprocessing.text import Tokenizer

from keras.preprocessing import sequence

from keras.callbacks import EarlyStopping, ModelCheckpoint

class LSTM_Text_Classifier(BaseEstimator, ClassifierMixin):

def _ init_ (self, embedding_vector_length, max_seq_length, lstm_layers, batch_size=32, num_epochs=3, use_hash=False,
dropout=None, conv_params=None):

self.embedding_vector_length = embedding_vector_length
self.max_seq_length = max_seq_length
self.lstm_layer_sizes = lstm_layers
self.num_epochs = num_epochs
self.batch_size = batch_size
self.use_hashing_trick = use_hash
if not self.use_hashing_trick:
self.tokenizer = Tokenizer()
self.dropout = dropout
self.conv_params = conv_params

Figure 10: Initializing the variables in base class
4. Two methods are declared wherein the first method i.e. _get word index which is
used to retrieve the word token, while text _to int sequence is used to get the word
sequence for all the new words within the text as shown in figure 11.

def _get word_index(self, word):

try:
return self tokenizer.ord_indexwond]
except:

return None

def text to int sequence(self, text):
seq = [self, get word index(word) for word in text to word sequence(text)]
return [index for index in seq if index]

Figure 11: Function to retrieve word index and sequence

5. In the next step, another method "fit” is created , in which parameters are passed
such as Training data i.e. x train and y train along with validation data. This method
is also used to compile the model and with the help of this method, the entire
structure will be executed.

def fit(self,X, y, validation_data):
all X = pd.concat([X, validation_data[e]])
if self.use_hashing_trick:
all words = set()
for text in all X:

new_words = set(text_to_word_sequence(text))
all_words = all_words.union(new_words)
self.max_vocab = len(all_words)=1.3

for i in range(len(X)):
X[i] = hashing_trick(X[i], max_vocab, hash_function='mds")

X_pad = sequence.pad_sequences(X, maxlen-self.max_seq_length)

X_valid = validation_data[e]

for i in range(len(X_valid)):

X_valid[i] = hashing_trick(X_valid[i], max_vocab, hash_function="mds")
X_valid_pad = sequence.pad_sequences(X_valid, maxlen=self.max_seq_length)
y_valid = validation_data[1]

else:
print(’Fitting Tokenizer...')
self.tokenizer.fit_on_texts(all_X)
self.max_vocab = len(self.tokenizer.word_index) + 2@
X = X.apply(self._text_to_int_sequence)

X_pad = sequence.pad_sequences(X, maxlen=self.max_seq_length)

X_valid = validation_data[@].apply(self._text_to_int_sequence)
X_valid_pad = sequence.pad_sequences(X_valid, maxlen=self.max_seq_length)

y_valid = validation_data[1]

self.model = Sequential()

Figure 12: Fit method declaration

6. The model layers are then added, starting initially by adding the sequential layer,
along with Convolutional 1D layer, wherein kernel size along with activation
function is declared. Also, LSTM layer with sigmoid function, CNN layer with ReLU
activation, adam optimizer and callbacks are all defined in the fit method as shown
in figure 13.

for 1 in range(self.conv_params['n_layers']):
self.model. add(ConviD(filters=2* (i+1)*self. conv_params['filters'],
kernel_size=self.conv_params['kernel_size'],
padding='same’, activation="relu'))
if use_pooling:
self.model..add(MaxPoolinglD(pool_size=self.cony_params['pool_size']))

if len(self.lstm_layer sizes) » 1:
for 1stm_layer_size in self.lstm layer sizes[:-1]:
self,model. add(LST(1stn_layer_size, return_sequences=Trug))
self.model. add(Dropout (se1f.dropout))
self model. add(LSTH(self Lstm_layer_sizes[-1]))
elsel
self,model.add(LSTM(self 1stm_layer sizes[e]))
if self.dropout is not Nene:
self .mode]. add(Dropout(self . dropout))
self.model. add(Dense(1, activation='signoid'))
selfmodel. conpile(loss="binary_crossent!
early_stopping = EarlyStopping(monitol
nin_delta=e,
patience-1,
verbose=2, mode='max")

optimizer="adan', metrics=["accuracy","Recall”,tf keras.metrics.Precision()])
val_accuracy’,

checkpoint = ModelCheckpoint(filepath
monitor=
mode="max’ ,
save_best_only=Trug)

callbacks_list = [early_stopping, checkpoint]

nrint{celf. mdel. cimmary()

Figure 13: Adding the layers

In the next step, predict method to predict Fake and Real news on test data is
created along with predict classes method as shown in Figure 14., which will aid to
judge the different class, which is assigned for fake and real news thatis 0 and 1.

predict(self, X):

if type(X) == pd.core.frame.DataFrame or type(X) == pd.core.series.Series:

X = X.apply(self._text_to_int_sequence)
X = sequence.pad_sequences(X, maxlen = self.max_seq_length)
return self.model.predict(X)

else:

elif type(X) == str:
X = self._text_to_int_sequence(X)
X = sequence.pad_sequences(X, maxlen = self.max_seq_length)
return self.model.predict(X)
X = map(X, self._text_to_int_sequence)
X = sequence.pad_sequences(X, maxlen = self.max_seq_length)

return self.model.predict(X)

predict_classes(self, X):

if type(X) == pd.core.frame.DataFrame or type(X) == pd.core.series.Series:

X = X.apply(self._text_to_int_sequence)
X = sequence.pad_sequences(X, maxlen = self.max_seq_length)
return self.model.predict_classes(X)

elif type(X) == str:

X = self._text_to_int_sequence(X)
X = sequence.pad_sequences(X, maxlen = self.max_seq_length)
return self.model.predict_classes(np.array(X))

else:

X = map(X, self._text_to_int_sequence)
X = sequence.pad_sequences(X, maxlen = self.max_seq_length)
return self.model.predict_classes(np.array(X))

Figure 14: Method declaration to predict classes and documents

8. Once all the necessary classes and methods are declared, then finally two more

methods are created for loading the best model, along with retrieving the accuracy
score of the implemented model as shown in figure 15.

def load model(self, file path):

self.model = load model(file path)

def score(self, X, y):

pred = self.predict(X)

return accuracy score(y, pred)

Figure 15: Data Distribution of Length of the articles

6 Experimentation and Evaluation of the Models

Once the model buildup is completed, thus in the next phase 3 different models are built
by adjusting the hyper-parameters in each of the experiment. This section contains
execution of the 3 experiments performed and also details about the architecture
obtained for each experiment performed.

6.1 Experiment 1.

In the first experiment, the python notebook is articulated with variation in hyper

parameters along with code structure as discussed in the steps below:

1. The model is trained by putting in the initial values of the hyper-parameters such
as number of LSTM layers set to 100, while the number of CNN layers has been set
to 3, along with the dropout rate set to 0.1 in the function "LSTM _Text Classifier” ,as

depicted in table 3. Moreover figure 16, shows the model architecture.

Table 3: Executed Results for Experiment 1.

LSTM neurons

CNN layers

Dropout

Number of epochs

100

3

0.1

3,510

[inpuc [None., 51251 |
| output: | ((None, 51251 |

I embedding__1_input I Inputlayer

input: l (None, 512) |
output: | (None, 512, 128) |

| embedding_ 1 I Embedding

aput: | (None, 512, 128) |
X

convid 5 | ConvliD |
| tput: | (None, 512, 256)]

] input: [(None, S12, 256)]
max_poolingld S MaxPooling 11>
| eupue: | (None, 256, 256) |

n input: one, 256, 2
~ ing ~ 256, 256
convid 6 | ConviD —— -
l output: l (None, 256, 512)]
- < [input | (None, 256, 512) |
max_poolingld_6 MaxPooling 11> I e Tas izs. 512> |
output: one, 128, 2

il

convid 7 | convip |trput | (None, 128, 512) |
| output: l (None, 128, 768)]

i t: ~N . 128, 768
| max_poolingld_7 | MaxPooling 11D } el Sohen | (None p)

output: | (None, 64, 768) |

1o - ST [inpuc: | (None, 64, 768> |
o= | eutput: | (None, 64, 100) |

a = = [input: l (None, 64, 100)]
ropout__2 ropout
pONES E | ouwue: | (None, 64, 100> |

ia - SR [inpuc | (None. 64, 100> |
sem— | cutpue: | (None, 100) |

| inpuc | (None, 100> |

dropout_3 Dropout
| cutput: | (None, 100) |

[impuc | (None, 100> |

dense_ 1 Dense
[output: l (None, 1) |

Figure 16: Experiment 1. Model architecture

2. In the second stage of experiment , now as the model parameters are set in place,
thus in this step the model is compiled and executed using the function "fit”, under
which the model is executed as shown in figure 17.

In [19]: Istm_classifier = LSTM_Text_Classifier(embedding_vector_length=128, max_seq_length=512, dropout=@.1,
1stm_layers=[100, 100], batch_size=256, num_epochs=10, use_hash=False,
conv_params={'filters': 128, 'kernel_size': 5, 'pool_size': 2,'n_layers': 3})
1stm_classifier.fit(X_train, y_train, validation_data=(X_valid, y_valid))l

Epoch 1/10

37/37 |] - 64s 1s/step - loss: ©.8141 - accuracy: 0.5173 - val_loss: 8.6821 - val_accuracy: ©.559
6

Epoch 2/10

37/37 |] - 31s 845ms/step - loss: 0.6964 - accuracy: ©.5286 - val_loss: .6922 - val_accuracy: @.
5414

Epoch 3/10

37/37 [] - 31s 835ms/step - loss: ©.6920 - accuracy: 8.5364 - val_loss: 0.6913 - val_accuracy: @.
5414

Epoch 4/10

37/37 [] - 31s 835ms/step - loss: 0.6913 - accuracy: 8.5364 - val_loss: 0.6987 - val_accuracy: @.
5414

Figure 17: Experiment 1. Compiling and Fitting the model

3. Now as the model has been executed, thus the trained model is then validated over
the test set dataset and the results are obtained as a classification report which is
shown in figure 18.

10

In [21]: from sklearn.metrics import accuracy_score
y_pred_test = lstm_classifier.predict(X_test)
cf_matrix=confusion_matrix(y_test, y_pred_test.round())
print(cf_matrix)

print(classification_report(y_test, y_pred_test.round(), digits=4))

precision recall fl-score support

2] 1.00 0.50 0.67 500

T 2.00 0.00 0.00 2]

accuracy 0.50 500
macro avg .50 8.25 0.34 500
weighted avg 1.00 0.50 0.67 500

Figure 18: Testing the results on test data

4. To visualize the results, the confusion matrix is plotted using seaborn library.

6.2 Experiment 2.

After performing the first experiment, the hyper-parameters are tweaked by adjusting
the number of layers in CNN, LSTM, etc. Also the rationale for implementing the second
experiment is to avoid over fitting within the model while also increasing the accuracy of
the model.

1. The hyper-parameters such as the number of LSTM Layers and CNN layers, along
with dropout rate set to 0.25 as shown in table 2. Moreover the figure 20 shows the
model structure retrieved in second stage.

Table 4: Executed Results for Experiment 2.

LSTM neurons | CNN layers Dropout | Number of epochs
128 5 0.25 3,510

11

[impus | taNone, 51251 |
| cutpue: | [(None. 512)5] |

| embedding 2 _input I Inputlayer

5 = = - | impue] (None, 512)
embedding cmbedding
| cutput: | (None. 512, 128) |

o S oareliits [impuc | (None, 512, 128) |
- [eupurs: | (None, 512, 256) |

N - | inpuc | (None. 512, 256) |
max__poolingld_8 MaxPooling 11> cuwur. | (None. 356. 256> |
i [~N . 256, 256
convid 9 Conv1iD l e I LS one 2 I
[eupur: | (None, 256, 512) |
R . input: (None, 256, 512)
| max_poolingld_9 | MaxPooling 11D } T { CNone. 128 Siz> =

| inmpue: | (None, 128, 512) |
| cutpu: | (None. 128, 768) |

| convid 10 | ConviiD

input: | (None, 128, 768)
output: | (None., 64, 768)

| max_poolingld_ 10 I MaxPooling 1D {

cen A CQI‘IVIDI input: | (None, 64, 768) |
- | eurpur: | (None, 64, 1024a) |

input: [(None., 64, 1024)
curput: | (None, 32, 1024)

| max__poolingld_11 | MaxPooling 11> {

PR RS | inpuc: | (None. 32, 1024 |
- | eurpur: | (None, 32, 1280) |

i T None, 32, 1280
max_poolingld_12 MaxPooling 1D [[inpu | ¢ — = 2
ocutput: | (None, 16, 1280)

= input: (None, 16, 1280)
Istm_ 4 LSTM
- — | cutput: | (None. 16, 158> |

| inmpus: | (None, 16. 158) |
| outpur: | (None. 16. 158) |

| dropout_a I Dropout

i = SRR | inpuc | (None, 16, 158) |
s - [eumpue: | (None, 158> |

| inpuc | (None. 1585 |
dropout_5S Dropout
[cumpuc: | (None, 158> |

[inpuc [(None. 158> |
| eumpuc: | (None, 1) |

[dense 2 | Dense

Figure 20: Experiment 2 model architecture

2. The model is then compiled again by implementing the fit function as shown in figure
21, the model architecture is detailed with 5 CNN layers and 128 neurons in LSTM layers.

» Model Training

rvoBRRO
/ ° Istm_classifier = LSTM_Text_Classifier(embedding_vector_length=128, max_seq_length=512, dropout=2.25,
Istm_layers=[128, 128], batch_size=256, num_epochs=19, use_hash=False,
conv_parans={'filters': 128,
'kernel _size': s,
‘pool_size': 2,
'n_layers': 5})

/ ° 1stn_classifier.fit(X_train, y_train, validation_data=(X_valid, y_valid))

[» Fitting nodel...

Epoch 1/10
162/162 [== - 2135 1s/step - loss: 9,273 - accuracy: 9.8741 - recall: 0.8420 - precision: 0.8992 - val_loss: 8.1151 - val_accuracy: 0.9572 - val_recall: .9265 - val_preci
Epoch 2/10
162/162 [==: - 1815 1s/step - loss: .0683 - accuracy: 8.9772 - recall: 0.974@ - precision: .9802 - val_loss: ©.1094 - val_accuracy: .9587 - val_recall: .9559 - val_preci:
Epoch 3/10
162/162 [== - 1815 1s/step - loss: 9.0249 - accuracy: .9927 - recall: @.9916 - precision: @.9937 - val_loss: 9.2030 - val_accuracy: .9314 - val_recall: 0.9704 - val_preci:
Epoch 4/10
162/162 [==: - 1815 1s/step - loss: ©.8137 - accuracy: 0.9962 - recall: 0.9960 - precision: .9963 - val_loss: @.1895 - val_accuracy: .9589 - val_recall: .9548 - val_preci

Epoch 5/10
- 1815 1s/step - loss: @.0118 - accuracy: .9966 - recall: @.9967 - precision: @.9965 - val_loss: .1696 - val_accuracy: .9578 - val_recall: 9.9603 - val_preci:

- 1825 1s/step - loss: ©.0089 - accuracy: 9.9974 - recall: @.9972 - precision: 9.9976 - val_loss: @.1689 - val_accuracy: .9598 - val_recall: .9531 - val_preci:

Epoch 7/10
162/162 [==: - 1825 1s/step - loss: ©.0866 - accuracy: 9.9980 - recall: €.998@ - precision: .9981 - val_loss: 8.2292 - val_accuracy: @.9554 - val_recall: 0.9249 - val_preci:
Epoch 8/10
162/162 [== - 1825 1s/step - loss: 0.0056 - accuracy: .9986 - recall: @.9985 - precision: 8.9988 - val_loss: ©.2458 - val_accuracy: .9460 - val_recall: 0.9967 - val_preci:
Epoch 9/10
162/162 [==: - 1815 1s/step - loss: ©.0895 - accuracy: 0.9968 - recall: 0.9967 - precision: 0.9969 - val_loss: 8.1894 - val_accuracy: .9557 - val_recall: 0.9641 - val_preci:
Epoch 19/10
162/182 [== - 1815 1s/step - loss: 0.0079 - accuracy: .9973 - recall: @.9970 - precision: @.9976 - val_loss: @.1651 - val_accuracy: @,9589 - val_recall: 0.9595 - val_preci:

Figure 21: Experiment 2. Compiling and Fitting the model
12

3. The executed model is evaluated on test set and the results are then arranged in a
confusion matrix as shown in figure 22.

v @ grovp_names = ['True Neg',"False Pos’,'False Neg’, True Fos’)

Figure 22: Experiment 2 confusion matrix

6.3 Experiment 3.

After the execution of 2nd experiment, a third and final experiment is performed to
achieve maximum accuracy and precision from the model.

1. The hyper-parameters are adjusted again with dropout rate set to standard value of
0.5, moreover the number of neurons are increased in LSTM layers to228 as shown
in table 3, also the architecture is plotted as shown in fig 23, with the final model
architecture.

Table 5: Executed Results for Experiment 3.

LSTM neurons | CNN layers Dropout | Number of epochs
228 5 0.5 3,510

13

I embedding_input I InputLayer

| impuc | tcNone, 51251 |
| oupur: | L(None, 51257 |

[wmpue |

(None, 512) |

I embedding | Embedding

| eutput: | (None, 512, 128) |

input

: | (None. 512, 128) |

| convia | ConviD |

| eumput | (None, 512, 256) |

I max_poolingld I MaxPooling 11

| impuc [(None, 512, 256) |
| eumpuc [(None, 256, 256) |

input:

[(None, 256, 256) |

Iconvld 1 lConle [

| eutpur: | (None, 256, 512) |

ek _HeONHETaT _— — | impuc | (None. 256, 5125 |
— = | euwue: [(None, 128, 512 |
| [(None, 128, 5125 |

| convid_2 | ConviD

| eupur: | (None, 128, 768) |

| max_poolingld 2 I MaxPooling 11D

[(None, 128, 768) |

[inpuce
(None, 64, 768) |

[Guwur: |

itz | (None, 64, 768) |

; | inpu
seavaal s | ceRan) s

ut: | (None, 64, 1024) |

max_poolingld_3 I MaxPooling 11>

[inpuc | (None, 64, 1024
| eutput: | (None, 32, 1024,

| inpuc

| (None. 3210245]

convlid 4 Convl1D
[eow

ut: | (None, 32, 1280) |

max_poolingld_4 I MaxPooling 1D

[input: | (None. 32, 1280)
| eutput: | (None, 16, 1280)

ia s | inpuc | (None, 16, 1280) |
st S | outbut: | (None. 16, 228> |

) N 9 | inpue | (None, 16, 228) |

| ar | or | ocutput: | (None, 16, 228) |
[inpue: | (None. 16. 228> |

1stm_1 TS SV [[oumpur: | (None, 228> |

| impuc: | (None, 228) |

I dropout_1 I Dropout

| eutpuc: | (None, 228) |

inpu

©: | (None, 228) |

[aenze [Dense |

[Suwue |

(None, 1) |

Figure 23: Experiment 3. Model architecture

~ Model Training

7 [14] lstm_classifier = LSTH_Text_Classifier(enbedding_vector_length=128, max_seq_length=512, dropout=e.s,

2. The model is compiled for the last time as shown in figure 24.

1stm_layers=[228, 228], batch_size=258, num_epochs=18, use_hash=False,

cony_params={'filters'; 128,

'n_layers': 5})

4 Q) Istn_classifier fit(H train, y_train, validstion data=(X valid, y_valid))

[lstad (M) (None, 228) 416784
dropout_1 (Dropout) (None, 228) Ll
dense (Dense) (None, 1) 29

Total params: 41,437,125
Trainable params: 41,437,125
Non-trainable params: @

None
Fitting model...
Epoch 1/10
162/162 [=:
Epoch 2/10
162/162
Epoch 3/10
162/162 [=:
Epoch 4/10
162/162 [=

- 1555 g52ms/step - loss: 0.2882 - accuracy: 8.8597 - recall!

- 1335 821ms/step - loss: 0.8706 - accuracy: 0.9764 - recall

- 1335 821ms/step - loss: @.8389 - accuracy: ©.9918 - recall!

- 1335 82Ims/step - loss: 8.8152 - accuracy: 8.9957 - recall:

Figure 24: Experiment 3. Compiling and fitting the model

14

1 8.8731 - precision: 8.8496 - val 10ss: 0.1086 - val accuracy: 8.9617 -
18,9720 - precision: 8.9885 - val_loss: 8.1383 - val_accuracy: @.9562 -
+0.9982 - precision: @.9917 - val loss: 0.1264 - val accuracy: 0.9520 -

+ 0,995 - precision: 0.9963 - val_loss: €.1332 - val_accuracy:

9.9614 -

val_recall: 0.95e8 - val_pre
val_recall: 8,9227 - val_pre
val_recall: 0.9762 - val_pre

val_recall: ,%489 - val_pre

3. The results obtained after executing the final model is depicted in figure 25. with confusion
matrix plotted and accuracy obtained as 95%.

Figure 25: Plotting experiment 3. Confusion matrix

15

