~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Programme Name

Abhijit Sahasrabuddhe

Student ID: x20180799

School of Computing
National College of Ireland

Supervisor: Dr.Christian Horn

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Abhijit Sahasrabuddhe
Student ID: x20180799
Programme: Programme Name
Year: 2021
Module: MSc Research Project
Supervisor: Dr.Christian Horn
Submission Due Date: 16/12/2021
Project Title: Configuration Manual
Word Count: 1233
Page Count: [

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 16th December 2021

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Abhijit Sahasrabuddhe
x20180799

1 Introduction

The goal of this documentation is to compile a list of all the tasks that must be completed
throughout the project implementation stage. Software and hardware requirements are
outlined in order to recreate the project in the future. The coding and deployment
processes are covered in this article, as well as the procedures that must be followed in
order to run the code.

2 System Configuration

2.1 Hardware Configuration

Table below shows the hardware configuration of the system used to implement code

Table 1: System Configuration

System Configuration
Operating System Windows 10 Home Single Language 64-bit

Memory 16.0 GB RAM

CPU AMD Ryzen 7 4800H

Cores 16

GPU AMD Radeon RX 5600M Series

2.2 Software Configuration

This section includes details regarding software used during execution of this project.

2.2.1 Python

For implementation of this project python is used as coding language with python version
as 3.9.5 using jupyter notebook to execute the code as shown in Fig[1]. It is one of the
leading interface for python coding.

2.2.2 Other Software

Google chrome was used to access jupyter notebook and overleaf which is cloud-based
collaborative LaTeX editor. For report writing latex has been used to format and align

Z Jupyter Stanford_2 Last Checkpoint: 8 hours ago. (unsaved changes) A | Logout

File Edit View Insert Cell Kemel Widgets Help usted | Python 3 @

B o+ BB 4% PRn B C W o vom

n [1]: #importing Libr
inp

import xml.etre
import matplotl.

from PIL import Image # to read images
import os.

import glob

mport os.

import matplotlib.pyplot as plt
import numpy as np

ches inport Rectangle
io inport loadmat

from fastai import *

from fastai.vision import *

mport time
import tqdm
import IPython.display as ipd
i seab ns

port manifold, datasets
nifold import TSNE

from matplotlib.offsetbox import OffsetImage, AnnotationBbox

Figure 1: Jupyter notebook

the document. It supports supports document creation using Latex. It is very user
friendly and user interface for same is as shown in below figure Fig[2].

oroven oo @ ot D sy et
L@e ;

2\ Nationa) CoTlege of trend

Witiopagetex

> fieoutine

Figure 2: Overleaf LaTex Editor

3 Data Preparation

Data set used as part of this research is taken from Stanford Cars Data set
. It is an open source data set provided by Stanford University. Dr. Jonathan
Krause and his Stanford University team created the Stanford Automotive Data Col-
lection, which is a large, fine-grained car data set. The public Stanford vehicles data
collection contains a total of 16,185 automotive images. There are 196 vehicle classes
in this data collection. The authors utilized an unidentified automobile website to build
a list of all cars from 1990 to 2012 in order to create a list of car labels. The data is
separated into two categories: training and testing. The metadata for all photographs
includes class names and bounding boxes. Year, production, and model categories are
common classifications (for example, 2012 Tesla Model S or 2012 BMW M3). Each image
has its own dimensions. Bounding boxes are used in the pre-processing step to create
initial images that focus on the things of interest, which in this case are the vehicles.

After downloading data set and related MAT files, once MAT file is converted to data
frame data can be accessed easily using the created data frame.

Cars Dataset

Overview

The Cars dataset contains 16,185 images of 196 classes of cars. The data is split into 8,144 training images and 8.041 testing images, where
each class has been split roughly in a 50-50 split. Classes are typically at the level of Make, Model, Tear. e.g. 2012 Tesla Model S or 2012 BMW
M3 coupe.

Figure 3: Stanford Cars Data Set

4 Implementation

As part of implementation multiple tasks needs to carried out in sequence as given below
after which the data pre-processing, model build and implementation can be reproduced.

4.1 Converting MAT Files

MAT files are provided with data set and used to create data frame. using this data
frame data can be accessed easily. For converting MAT file to data frame below code is
used.

Reading .MAT files and creating Data frame

In [2]: #reading mat files to import bounding box and Labels data
devkit_path = Path(’C:\\Users\\Aniruddha\\Downloads\\cars\\devkit')
train_path = Path('C:\\Users\\Aniruddha\\Downloads\\cars\\cars_train')
test_path = Path('C:\\Users\\Aniruddha\\Dounloads\\cars\\cars_test')

In [3]: cars_meta = loadmat(devkit_path/'cars_meta.mat’)
cars_train_annos = loadmat(devkit_path/’cars_train_annos.mat’)
cars_test_annos = loadmat(devkit_path/'cars_test annos.mat')

In [4]: #creating data frame from mat files
labels = [c for c in cars_meta['class_nemes'][6]]
labels = pd.DataFrame(labels, columns=[‘labels'])
frame = [[i.flat[@] for i in line] for line in cars_train_annos['annotations’][0]]
columns = ['bbox_x1', 'bbox_y1', 'bbox x2', *bbox_y2', ‘class’, 'fname']
df train = pd.DataFrame(frame, columns=columns)
df_train['class'] = df train[‘class']-1 # Python indexing starts on zero.
df_train['fname'] = [train_path/f for f in df train['fname']] # Appending Path
df_train.head()

Out[4]:

bbox_x1 bbox_y1 bbox x2 bbox_y2 class fname
0 39 116 569 375 13 C:\Users\Aniruddha\Downloadsicars\cars_train\00001.jpg
1 36 116 868 587 2 C\Users\Aniruddha\Downloads\cars'cars_train\00002 jpg
2 85 109 601 381 90 C:\Users\Aniruddha\Dewnloadsicars\cars_train\00003 jpg
3 621 393 1484 1096 133 C-\Users\Aniruddha\Dewnloadstcars\cars_train\00004 jpg
4 14 36 133 9 105 C-\Users\Aniruddha\Dewnloadstcars\cars_train\00005 jpg

Figure 4: MAT File Conversion

File path need to be adjusted accordingly before running this code. once data frame
is created labels and classes are added by merging along with null data check as shown
in below figure.

In [5]: #Merging labels in dataframe
df_train = df_train.merge(labels, left_on='class', right_index=True)
df_train = df_train.sort_index()
df_train.head()

out[5]:
bbox_x1 bbox y1 bbox x2 bbox y2 class fname labels
0 39 116 569 3375 13 C:\Users\Aniruddha\Downloads\cars\cars_train'00001 jpg Audi TTS Coupe 2012
1 36 116 868 587 2 C\Users\Aniruddha\Downloads\cars\cars_train'00002.jpg Acura TL Sedan 2012
2 85 108 601 381 80 C:\Users\Aniruddha\Downloads\cars\cars_train'00003 jpg Dodge Dakota Club Cab 2007
3 621 393 1484 1096 133 C:\Users\Aniruddha\Downloads\cars\cars_{rain'00004.jpg Hyundai Sonata Hybrid Sedan 2012
4 14 36 133 99 105 C:\Wsers\Aniruddha\Downloads\cars\cars_{rain'00003.jpg Ford F-450 Super Duty Crew Cab 2012

In [6]: #checking Null data
df_train.isnull().sum()

0ut[6]: bbox_ x1 @
bbox_yl 6
bbox_x2 @
bbox_y2]
class]
fname]
labels]
dtype: int64

Figure 5: Data Frame Merge To Add labels

After the new data frame created is exported to CSV file so that it can be used easily
instead of creating data frame from MAT files each time.

Creating CSV from dataframe

In [8]: # exporting dataframe created from mat files to €SV
df_train.to_csv('C:\\Users\\Aniruddha\\Downloads\\cars\\train.csv', indexzFalse)

Figure 6: Exporting Data frame To CSV

4.2 Converting Source Images to Gray Scale

Once merged data frame is done and exported to CSV it can be used for handling data
easily. Next step is to convert data to gray scale as instead of using only one color channel
in model ,model is retaining all three color channels and gray scale images are given as
input to the model as shown in figure below Fig[7]. So once this code is run images will
be converted to gray scale and stored at given path as given in data frame under fname
column.

Converting Data to Black and White

In [9]: | ###Data is converted to black and white and stored at new Location
import cv2
from os import listdir,makedirs
from os.path import isfile,join

iruddha\\Downloads\\cars\\cars_train’ # Source
\Aniruddha\\Downloads\\cars\\BAW' # Destination

path = r'C
dstpath = r'C:\\Us

try:
makedirs(dstpath)
except:

Figure 7: Converting Data To Grey scale

4.3 Cropping Images As Per Given Bounding Boxes

Bounding boxes are given for all images along with data set highlighting the car. Using
this data raw images are cropped and stored at new location using code shown in below

figure Fig[7].
be stored.

Destination path needs to be updated in code where cropped images will

Cropping images using bounding boxes

In [18]: ### Cropping images as per bounding box sizes provided in MAT files and saving at new Location
import pandas as pd
import cv2
import numpy as np
from PIL import Image |
from PIL import open
dp= "C:\\Users\\Aniruddha\Downloads\\cars\\test"
df = df_train
for i in range(len(df)):

name = df.loc[i]["fname"]
nl=str(name)
n2=nl.replace('cars_train', 'test')
im= Image.open(name)
print(i)
image = im.crop((df.loc[i]['bbox x1'], df.loc[i][bbox_y1'], df.loc[i][bbox x2'], df.loc[i]['bbox y2'1))
pix = np.array(image)
cv2.imurite(n2,pix)

Figure 8: Image Crop

4.4 Class Merge

Original Data set contains 196 classes defining make model and year of the car. TO
reduce the classes classes are manually merger by Brand ignoring year and model as goal
of this research is to identify car brand.After manually merging classes in CSV document
previously exported this new class distribution is used for further analysis. Code snippet
shown in below figure is used to get class distribution in original data.

Class Distribution

In [7]: #Checking class distribution in data using bar plots
import seaborn as sns

plt.
sns.

plt.
plt.
plt.

Fprl et & (G, 92

Gl 5 ks, dhen = 7 i, crlr = G Erefn T e wrlm el At
palette = "husl")

title('Barplot of Model in the Re-split Stanford Cars Training Set', y = 1.82)

xlabel('Count'), plt.xticks(rotation = 90)

show()

Barplot of Model in the Re-split Stanford Cars Training Set

GMC Savana Va
Shryster 300 SR

T Sedar
Mercedes-| Benz ZUU Class Eunvlmhl
uar

XKR
Cnevmle urvet[e ZR.
izuki Kizashi Sedal

Bentley CBu aner%a\ fage é’ﬁ

Mercedes-| EEn C C\ass dan 2

SEDRS &5
o PN g
S S B B DS S

O S B B B DS S DL ES Ao
o G D A Db GBI IS

Eagle Ta\nn Ha chha:k 1

ford X Coupe

Audi 56 Sedan

Volkswagen Golf Hatchback 1!
(h:vruﬁBL Eia?\%ij ‘éeﬁﬁ’ i

oo Must a{lgccurrvemhle 28
E“'? o ‘iﬂe%m?a'n"e?‘é‘ﬁ ES
rm Enl’l mble 2‘3

Chrysler PT rmszrgcnve 3 ;
vrolet CRmaro Convel
Aston Martin V8 Vanu Corwe |I:\= 20
g SUV 20
Bentl [ke 1t IHd hgmk ?1”\’2
entle: nénta) Flying apur zedan
¥ irengas e VAR SEa2n 5

o~

Figure 9: Class Distribution In Original Data

Once classes are merged to check new class distribution code shown in below figure
Fig[10]. New class distribution is displayed using seaborn library horizontal bar plot. The

5

Matplotlib library was used to create the seaborn package. It’s used to make statistics
graphs that are more appealing and instructive.

Merging Classes present in dataset

In [11]: #importing CSV containing Label names
train_label=pd.read_csv("C:\\Users\\Aniruddha\\Downloads\\cars\\train_tod.csv")

In [12]: train_label['fname'] = train_label['fname'].str.replace('cars train', test')

In [13]: #Class Distribution for Reduced Classes
import seaborn as sns
plt.figure(figsize = (5, 32))
sns.countplot(y = 'labels’, data = train_label, order = train_label['labels'].value_counts().index,\

palette = "husl")

plt.title('Barplot of Model in the Re-split Stanford Cars Training Set', y = 1.02)
plt.xlabel('Count’), plt.xticks(rotation = 96)
plt.shou()

Barplot of Model in the Re-split Stanford Cars Training Set

Chevrolet

Dodge

Figure 10: Class Distribution After Merge

4.5 Train Validation Test Split

Python code shown in below Fig[11] splits data in training , validation and testing set.
This is done prior to building model to ensure model is correctly implemented on expected
data.

Train Test Split |

In [14]: #splitting data for train,vaidotion ond test
train_gen-tf.keras.preprocessing.image. ImageDataGenerator(
validation_split=@.15)

test_gen=tf.keras.preprocessing.image . ImageDataGenerator()

Train_Set=train_gen.flow_from dataframe(train_label,
¥_col="fname",
y_col="labels",target_size=(224,224),
color_mode="rgb",class_mode="categorical”,batch_size=21,shuffle=True,seed=3,subset="trair

Walidation_Set=train_gen.flow_from_gataframe(train_label,x_col="fname",
y_col="labels",target_size=(224,224),
color_mode="rgb",class_mode="categorical”,batch_size=21,shuffle=False,subset="validation®

Test_Set=test_gen.flow from_dataframe(test_df,
x_col="fname",|
y_col="labels", target_size=(128,128),
color_mode="rgb",class_mode="categorical”,batch_size=32, shuffle=False,seed=42)

Figure 11: Train Test Split

4.6 Model Build

As part of this research ResNet50 is used as base model along with added dense layers.
Code shown in below figure imports the necessary libraries and and base ResNet50 model
is imported and stored in variable "resnet”.

In [15]:

In [16]:

In [17]:

In [18]:

Model-l Resnet50

import pickle
import numpy as np
from keras import backend as K

from keras.applications import ResNet5e,VGGIS
from tensorflow.keras.applications.resnet5e import ResNetse

from keras.preprocessing.image import ImageDataGenerator
from keras.optimizers import Adam,RMSprop

from keras.preprocessing import image

from keras.preprocessing.image import img_to_array

from keras.layers import Flatten
from sklearn.linear_model import LogisticRegression
from keras.layers import Dense, Dropout, InputLayer
from keras.layers import Input,BatchNormalization
from keras.models import Sequential,Model

from keras.regularizers import 12

import matplotlib.pyplot as plt

import keras_metrics as km

#creating base model for ResNet50
IMAGE_SIZE = [224, 224]

resnet = ResNet58(input_shape=IMAGE_SIZE + [3], weights='imagenet', include top=False)

for layer in resnet.layers:
layer.trainable = False

Figure 12: Model Build

Adding Full Connected Dense Layers

,kernel_regularizer=12(0.61), bias_regularizer=l2(6.01)
flatten = Flatten()(resnet.output)

dense = Dense(256, activation = 'relu')(flatten)

dense = Dense(128, activation = 'relu')(dense)
prediction = Dense(32, activation = 'softmax')(dense)

model = Model(inputs = resnet.input, outputs = prediction)
model. summary ()

convs_block3_add (Add) (None, 7, 7, 2048) @

conv5_block3_ out (Activation) (Nene, 7, 7, 2048) ©

flatten (Flatten) (lNone, 100352) °

dense (Dense) (None, 256) 25690368
dense_1 (Dense) (None, 128) 32896
dense_2 (Dense) (None, 32) 4128

['conv5_block2_out[e][e]",
"cenvs_block3_3_bn[e][e]"]

[*conv5_block3_add[0][0]"]
[conv5_block3_out[0][0]']
[*flatten[0][2]']
['dense[B][6]']

['dense_1[0][0]"]

Total params: 49,315,164
Trainable params: 25,727,392
Non-trainable params: 23,587,712

Figure 13: Model Build Adding Dense Layers

4.7 Model Compile and Run

Once base model code is run and model is built model need to be compiled and imple-
mented on training and validation data to train the model and validate with small subset
of the data. Number of epochs and validation steps need to defined while fitting the
model.

In [19]: model.compile(loss = ‘categorical_crossentropy’, optimizer = "adam’, metrics = ['accuracy'])

In [28]: history = model.fit_generator(Train Set, validation_data - (Validation_Set),validation_steps-12,
steps_per_epoch = 12, epochs = 99, verbose = 1)
I 722

Epoch 94/99
12/12 [] - 28s 2s/step - loss: ©.8983 - accuracy: 8.9722 - val _loss: 2.5949 - val_accuracy: 8.4
o021
Epoch 95/99
12/12 [] - 285 2s/step - loss: ©.1620 - accuracy: 8.9543 - val_loss: 2.6794 - val_accuracy: ©.4
485
Epoch 96/99
12/12 [] - 285 2s/step - loss: ©.2286 - accuracy: ©.9524 - val_loss: 2.7929 - val_accuracy: 0.4
603
Epoch 97/99
12/12 [] - 285 2s/step - loss: ©.2180 - accuracy: 8.9365 - val_loss: 2.8745 - val_accuracy: ©.4
484
Epoch 98/99
12/12 [] - 285 2s/step - loss: ©.253@ - accuracy: ©.9206 - val_loss: 2.7583 - val_accuracy: 0.4
281
Epoch 99/99
12/12 [] - 38s 3s/step - loss: ©.2192 - accuracy: 8.9286 - val loss: 2.8500 - val_accuracy: 8.4
643

Figure 14: Model Compile And Run

Once model fitting is done accuracy and loss graphs are plotted using code shown in
below Fig[15]

In [21]: |##loss Graph plotting
plt.plot(history.history['loss'],label = ‘'train_loss')
plt.plot(history.history['val loss'], label = ‘testing loss')
plt.title('loss')
plt.legend()

plt.shou()
loss

»

%
E

5

0

s\,

b s
0 —— .
[0))) 100

In [22]: |##Accuracy Graph plotting
plt.plot(history.history['accuracy'],
plt.plot(history.history[’
plt.title(*Accuracy')
plt.legend()

p1t.show()
Accuracy
10
waining accuracy Mol
AN
vatigotion accuracy a4 /MY
08 A\,
AN
ol
06)
w
04 N
/
/,
02{
/
v o @ @ o !

Figure 15: Accuracy- Loss Plots

4.8 Changing Input Data

4.8.1 Gray Scale Input Data

Once model created in implemented on normal colored training data next run input data
is changed to gray scale. To do so file path under column fname need to be changes so
that it is pointed to correct directory containing grey scale images converted previously
Fig[16]. Once changes are done models is implemented on this data as shown in compile

and run section of this document.

Model-Il Resnet50 - Black & White Images

In [25]: #Image closses are reduc
df_train=pd.read_csv{"C: \

In [26]: df_train['fname’] =

¢f_train['Fname"]

rat

\\Anirudd

df_train[*fname’].astype(str)

ng cars of same brand
a\\Downloads\ \carsi\train_Hod.csv

)

= df_train[‘fname’].str.replace(' cars_train®, 'BAM')

same class irrespective of the model and make

df_train
Out[26]:
Unnamed: 0 bbox_x1 bbox_yi bbox x2 bbox_y? class fname labels
0 0 S 18 568 375 13 CUsersiAniruddhalDownloadsicars BAWIO000T.jeg Audi
1 1 kL 118 568 587 2 CiUsersianirucdnaDownicacsicars EAWID0002 5 Acurs
2 2 35 100 501 381 80 CiUsersidniruddhs!Downloadsicars\BAWIO0003 jeg Dodge
3 3 521 303 1484 1008 133 CiUsersidniruddhaiDownloadsicars BAWID0004 jeg Hyundsi
4 4 1 £ 133 89 105 CiUsersidniruddhs\Downloadsicars\BAWID0005 jeg Ford
703 8138 1 84 583 403 187 CiUsersiAniruddhs!Downloadsicars BAWIOE138 jeg Toyota
7032 8130 3 a4 423 33 77 CiUsersidniruddhsiDownloadsicars BAWIES140 jeg Chrysler
7033 8141 26 248 580 49 182 CiUsersiAniruddhaiD Y 142]pg Mercades-5:
7034 s142 8 526 1480 803 111 GiUsersiAniruddhslDownloadsicars BAWIDS143 jog Ford
7038 8143 20 240 862 877 18 GCiUsersiAniruddhalDownloadsicars BAWIDE144 jog Aud
7036 rows x & columns
In [27]: Train_df=df_train.copy()
Train_df[fname’] = Train_af['fname’].astype(str)
Train_df['fname’] = Train_df['fname’].str.replace(’BA', ‘test_BW')
Train_df
out[27]:
Unnamed: 0 bbox_x1 bbox_y1 bbox x2 bbox y2 class fname labels
0 0 20 18 560 375 13 GiUsersiAniuddhaDownloadsicarsitest_BWI00001 jog Aud
1 1 i 18 368 587 2 GiUsersiAniuddhaDownloadsicarsitest_BWI00002 jog Acura
2 2 35 108 501 381 80 GiUsersiAniuddhaDownloadsioarsitest_BWI00002 jog Dodge
3 3 621 303 1484 1086 133 GlUsersiAniuddha\Downloadsioarsitest_SW00004 jog Hyundsi
4 4 1 3% 133 89 105 GiUsersiAniudghalDownloadsicarsitest_BWI00005 jog Ford
e 8138 1 84 583 403 187 Ci\UsersiAniruddha\Downloadslears fest_BWI02130.jog Toyota
7022 130 3 4 423 W 77 CiUsersiAniruddhaDownloadsicarsitest_BWI08140g Chrysler
7023 2141 26 249 830 449 182 CiUsersiAniruddhalDownloadsioarstest BWW0S142jpg Mercedes-Benz
7034 8142 8 526 1480 @3 111 CiUsersiAniruddhaDownloadsicarsitest_BWI08142 g Ford
7035 8143 20 240 362 677 18 CiUsersiAninuddhalDownloadsicarsitest_BWI08144/0g e

4.8.2 Front/Rear View Input Data

For next step same model is used with selected input data showing front or rear view of
the car. From cropped images, selected images showing front and rear view of the car
are placed in new folder and path is changed accordingly in fname column of the data
frame. Using this code (Fig[17]) model in implemented on images showing only front
view or rear view of the car. Once changes are done models is implemented on this data

Figure 16: Gray Scale Input Data

as shown in compile and run section of this document.

Changing fname to use selected subset of data

In [35]

import pandas as pd
train_label=pd.read_csv("C:\\Usersi\Aniruddha\\Downloads\\cars

In [36]: train_label

et Unnamed: 0 bbox_x1 bbox_y1 bbox_x2 bbox_y2 class fname labels.
0] £ e 508 375 13 CoUsers\Aninuddha'Downloadsiearsicars_rainl00001 jog Aud

1 1 3% 18 588 587 2 Cr\Users\Ariruddhs'Downlosdsicarsicars_irsinl00002 jog Acura

2 2 £ 100 601 381 00 CoUsers\ninuddha'Downloadsicarsicars_rainl00002.jog Dodge

3 3 821 293 1484 1008 133 CrlUsersAniruddhsDownlosdsicarsicars_traini00004 jog Hyunds

1 4 1 £ 133 00 105 CiUsersAniruddha Downloadslearsicars_traini00005.jpg Ford
7021 8138 ny 4 583 403 187 CoUsers\Aniruddha'Downloadsicarsicars_rain08130.jog Toyota
7032 8139 3 44 423 338 77 CUsers\riruddhs'Downlosdsicarsicars_irsin08140 jog Chrysier
7033 2141 2 248 650 440 162 CiUsers\Aniruddha'Downloadsicarsicars_rainl02142jog Mercedes-Benz
7034 8142 k) 528 1480 908 111 Cr\Users\niruddhs'Downlosdsicarsicars_irsin08142 jog Ford
7035 8142 20 250 802 877 18 CoUsers\Aniruddha'Downloadsicarsicars_rain08144.jog Aud

7036 rows x 8 columns

In [37]: train_labell'fname'] = train_label['fname'].astype(str)|

In [38]: train_label['fname'] = train_label['fname'].str.replace('cars_train','FE')

In [39]: | train_label

ot Unnamed: 0 bbox_x1 bbox_y1 bbox_x2 bbox_y2 class fname labels
0 o 39 8 560 375 13 Cr\Users\Anirugdhs\Downiosdsicsrs\FBI00001 jog Aud
1 1) L] 208 587 2 Co\Users\niruddha'Downloadsicars\FE100002 jog Acurs
2 2 a5 108 801 381 90 CoUsers\Anirugdhs\Downiosdsicsrs\FBI00003 jog Dodge
3 3 a1 203 1484 1006 133 CUserstAniruddhaDownloadslears FEN00004 jog Hyundai
a 4 14 £ 133 99 105 CrlUserstAnirugdhs\Dewniosdsiesrs\FEII000S jog Ford

Figure 17: Front/Rear View input Data

4.8.3 Selected Class Input Data

After class merge there is class imbalance in data so to reduce it classes are limited to
AUDI, Hyundai, Ford, Dodge and BMW which is done manually in CSV file. In this
step model with same build is implemented on above mentioned car classes alone. Once
changes are done models is implemented on this data as shown in compile and run section
of this document.

In [2]: import pandas as pa

Ls
train_label=pd.read_csv("C:\\Users\\Aniruddha\\Downloads\ \cars\\train_Mod_Class.csv")
In [3]: train_label['fname'] = train_label['fname’].astype(str)
train_L name '] 2 replace(‘cars_tr
In [4]: train_label.count
Out[4]: <bound method DataFrame.count of Unnemed: ® bbox_x1 bbox_yl bbox_x2 bboxy2 class
) 118 s69 7513
1 2 39 2 233 1m0 13
2 3 61 35 566 488 12
3 4 28] 759 468 24
4 5 161 191 425 307 14
2704 3610 24 7 616 345 137
2705 3611 43 123 788 450 137
2706 3612 a2 97 614 438 138
2707 3613 20 6 576 ag0 131
2708 3614 1 58 as1 312 18
fname labels
e Ci\Users\Aniruddha\Downloads\cars\cars_train\@88ol.jpg Audi
1 Ci\Users\Aniruddha\Downloads\cars\cars_train\@8817.jpg Audi
2 C:\Users\Aniruddha\Downloads\cars\cars_train\@8841.jpg Audi
3 C:\Users\Aniruddha\Downloads\cars\cars_train\@8845. jpg Audi
& Ci\Usersyaniruddna\Donlosds\cars\cars_train\008s3.jog Audi

2784 C:\Users\Aniruddna\Downloads\cars\cars_train\0se19.jpg Hyundai
2785 C:\Users\Anirugdna\Downloads\cars\cars_train\@se34.jpg Hyundai
2706 C:\Users\Aniruddha\Downloads\cars\cars_train\08e4s.jog Hyundai
2787 C:\Users\Aniruddha\Downloads\cars\cars_train\08e64.jog Hyundai
2788 C:\Users\Aniruddha\Downloads\cars\cars_train\08ess.jog Hyundai

[2769 rows x 8 columns]>

Figure 18: Reduced Classes Data

10

References

Krause, J., Stark, M., Deng, J. and Fei-Fei, L. (2013). 3d object representations for
fine-grained categorization, 4th International IEEE Workshop on 3D Representation
and Recognition (3dRR-13), Sydney, Australia.

11

	Introduction
	System Configuration
	Hardware Configuration
	Software Configuration
	Python
	Other Software

	Data Preparation
	Implementation
	Converting MAT Files
	Converting Source Images to Gray Scale
	Cropping Images As Per Given Bounding Boxes
	Class Merge
	Train Validation Test Split
	Model Build
	Model Compile and Run
	Changing Input Data
	Gray Scale Input Data
	Front/Rear View Input Data
	Selected Class Input Data

