
Configuration Manual

MSc Research Project

Programme Name

Abhijit Sahasrabuddhe
Student ID: x20180799

School of Computing

National College of Ireland

Supervisor: Dr.Christian Horn

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Abhijit Sahasrabuddhe

Student ID: x20180799

Programme: Programme Name

Year: 2021

Module: MSc Research Project

Supervisor: Dr.Christian Horn

Submission Due Date: 16/12/2021

Project Title: Configuration Manual

Word Count: 1233

Page Count: 11

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 16th December 2021

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Configuration Manual

Abhijit Sahasrabuddhe
x20180799

1 Introduction

The goal of this documentation is to compile a list of all the tasks that must be completed
throughout the project implementation stage. Software and hardware requirements are
outlined in order to recreate the project in the future. The coding and deployment
processes are covered in this article, as well as the procedures that must be followed in
order to run the code.

2 System Configuration

2.1 Hardware Configuration

Table below shows the hardware configuration of the system used to implement code

Table 1: System Configuration

System Configuration
Operating System Windows 10 Home Single Language 64-bit
Memory 16.0 GB RAM
CPU AMD Ryzen 7 4800H
Cores 16
GPU AMD Radeon RX 5600M Series

2.2 Software Configuration

This section includes details regarding software used during execution of this project.

2.2.1 Python

For implementation of this project python is used as coding language with python version
as 3.9.5 using jupyter notebook to execute the code as shown in Fig[1]. It is one of the
leading interface for python coding.

2.2.2 Other Software

Google chrome was used to access jupyter notebook and overleaf which is cloud-based
collaborative LaTeX editor. For report writing latex has been used to format and align

1



Figure 1: Jupyter notebook

the document. It supports supports document creation using Latex. It is very user
friendly and user interface for same is as shown in below figure Fig[2].

Figure 2: Overleaf LaTex Editor

3 Data Preparation

Data set used as part of this research is taken from Stanford Cars Data set Krause et al.
(2013). It is an open source data set provided by Stanford University. Dr. Jonathan
Krause and his Stanford University team created the Stanford Automotive Data Col-
lection, which is a large, fine-grained car data set. The public Stanford vehicles data
collection contains a total of 16,185 automotive images. There are 196 vehicle classes
in this data collection. The authors utilized an unidentified automobile website to build
a list of all cars from 1990 to 2012 in order to create a list of car labels. The data is
separated into two categories: training and testing. The metadata for all photographs
includes class names and bounding boxes. Year, production, and model categories are
common classifications (for example, 2012 Tesla Model S or 2012 BMW M3). Each image
has its own dimensions. Bounding boxes are used in the pre-processing step to create
initial images that focus on the things of interest, which in this case are the vehicles.

After downloading data set and related MAT files, once MAT file is converted to data
frame data can be accessed easily using the created data frame.

2



Figure 3: Stanford Cars Data Set

4 Implementation

As part of implementation multiple tasks needs to carried out in sequence as given below
after which the data pre-processing, model build and implementation can be reproduced.

4.1 Converting MAT Files

MAT files are provided with data set and used to create data frame. using this data
frame data can be accessed easily. For converting MAT file to data frame below code is
used.

Figure 4: MAT File Conversion

File path need to be adjusted accordingly before running this code. once data frame
is created labels and classes are added by merging along with null data check as shown
in below figure.

3



Figure 5: Data Frame Merge To Add labels

After the new data frame created is exported to CSV file so that it can be used easily
instead of creating data frame from MAT files each time.

Figure 6: Exporting Data frame To CSV

4.2 Converting Source Images to Gray Scale

Once merged data frame is done and exported to CSV it can be used for handling data
easily. Next step is to convert data to gray scale as instead of using only one color channel
in model ,model is retaining all three color channels and gray scale images are given as
input to the model as shown in figure below Fig[7]. So once this code is run images will
be converted to gray scale and stored at given path as given in data frame under fname
column.

Figure 7: Converting Data To Grey scale

4



4.3 Cropping Images As Per Given Bounding Boxes

Bounding boxes are given for all images along with data set highlighting the car. Using
this data raw images are cropped and stored at new location using code shown in below
figure Fig[7]. Destination path needs to be updated in code where cropped images will
be stored.

Figure 8: Image Crop

4.4 Class Merge

Original Data set contains 196 classes defining make model and year of the car. TO
reduce the classes classes are manually merger by Brand ignoring year and model as goal
of this research is to identify car brand.After manually merging classes in CSV document
previously exported this new class distribution is used for further analysis. Code snippet
shown in below figure is used to get class distribution in original data.

Figure 9: Class Distribution In Original Data

Once classes are merged to check new class distribution code shown in below figure
Fig[10]. New class distribution is displayed using seaborn library horizontal bar plot. The

5



Matplotlib library was used to create the seaborn package. It’s used to make statistics
graphs that are more appealing and instructive.

Figure 10: Class Distribution After Merge

4.5 Train Validation Test Split

Python code shown in below Fig[11] splits data in training , validation and testing set.
This is done prior to building model to ensure model is correctly implemented on expected
data.

Figure 11: Train Test Split

4.6 Model Build

As part of this research ResNet50 is used as base model along with added dense layers.
Code shown in below figure imports the necessary libraries and and base ResNet50 model
is imported and stored in variable ”resnet”.

6



Figure 12: Model Build

Figure 13: Model Build Adding Dense Layers

7



4.7 Model Compile and Run

Once base model code is run and model is built model need to be compiled and imple-
mented on training and validation data to train the model and validate with small subset
of the data. Number of epochs and validation steps need to defined while fitting the
model.

Figure 14: Model Compile And Run

Once model fitting is done accuracy and loss graphs are plotted using code shown in
below Fig[15]

Figure 15: Accuracy- Loss Plots

8



4.8 Changing Input Data

4.8.1 Gray Scale Input Data

Once model created in implemented on normal colored training data next run input data
is changed to gray scale. To do so file path under column fname need to be changes so
that it is pointed to correct directory containing grey scale images converted previously
Fig[16]. Once changes are done models is implemented on this data as shown in compile
and run section of this document.

Figure 16: Gray Scale Input Data

4.8.2 Front/Rear View Input Data

For next step same model is used with selected input data showing front or rear view of
the car. From cropped images, selected images showing front and rear view of the car
are placed in new folder and path is changed accordingly in fname column of the data
frame. Using this code (Fig[17]) model in implemented on images showing only front
view or rear view of the car. Once changes are done models is implemented on this data
as shown in compile and run section of this document.

9



Figure 17: Front/Rear View input Data

4.8.3 Selected Class Input Data

After class merge there is class imbalance in data so to reduce it classes are limited to
AUDI, Hyundai, Ford, Dodge and BMW which is done manually in CSV file. In this
step model with same build is implemented on above mentioned car classes alone. Once
changes are done models is implemented on this data as shown in compile and run section
of this document.

Figure 18: Reduced Classes Data

10



References

Krause, J., Stark, M., Deng, J. and Fei-Fei, L. (2013). 3d object representations for
fine-grained categorization, 4th International IEEE Workshop on 3D Representation
and Recognition (3dRR-13), Sydney, Australia.

11


	Introduction
	System Configuration
	Hardware Configuration
	Software Configuration
	Python
	Other Software


	Data Preparation
	Implementation
	Converting MAT Files
	Converting Source Images to Gray Scale
	Cropping Images As Per Given Bounding Boxes
	Class Merge
	Train Validation Test Split
	Model Build
	Model Compile and Run
	Changing Input Data
	Gray Scale Input Data
	Front/Rear View Input Data
	Selected Class Input Data



