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Configuration Manual

Saranya Varshni Roshan Karthikha
x20154801

1 Introduction

The aim of this configuration manual is to demonstrate different steps involved in the
research project implementation. The research project is based on forecasting energy
generation from different renewable energy sources using ARIMA and neural network
models. This project will require Python packages that are to be installed in the local
machine. A jupyter environment created using Anaconda is required.

2 System Configuration

The project has been performed on the below specified Hardware configuration Figure

itk
Device specifications

Device name DESKTOP-M1PFCT3

Processor Intel(R) Core(TM) i5-10210U CPU @ 1.60GHz 2.10
GHz

Installed RAM 8.00 GB (7.78 GB usable)

Device ID 0479375D-A861-4B42-BB20-610EOE0055A9

Product ID 00327-35910-55972-AA0EM

System type 64-bit operating system, x64-based processor

Pen and touch No pen or touch input is available for this display

Figure 1: Device Configuration

3 Software Specification

This project was implemented using ’Anaconda Jupyter Notebook’
1. Anaconda - It is an open source free to use software. It had python 3.8.8 by
default. The Jupyter notebook was used to execute the project code.



Hardware Specification
Operating System |Windows 10
Processor Intel(R) Core(TM) i5-10210U
RAM 8 GB

Hard Disk 1TB
Software Versions
Anaconda 1.7.2

Python 3.95
Numpy 1.19.4
Matplotlib 3.3.4
Sklearn 0.24.1

Figure 2: Versions

4 Installation

4.1 Anaconda

e Anaconda software can be downloaded from Link
e Basic installation instructions are adequate for complete installation

e Once the environment is up, Python is to be installed from  Click Here

5 Package required

Figure [3|shows the python libraries required for data cleaning

) Jupyter Research Project - Data Cleaning Last Checkpoint: 12/09/2021 (autosaved) e Logout
File Edit View Insert Cell Kernel Help Not Trusted ‘ Python3 C
B+ x @B A ¥ PRin B C » coe v =

In [1]: import pandas as pd
import numpy as np

Reading the dataset from the .csv file

In [2]: df = pd.read_csv('energy_dataset.csv’, parse_dates=['time'])

Droping un-needed columns

1: columns_required = ['time’, ‘generation biomass', 'generation hydro water reservoir', ‘generation fossil hard coal’, 'generatic
df = df[columns_required]

Figure 3: Packages for Data Clean

Figure {|shows the python libraries required for model implementation


https://www.anaconda.com/
https://www.python.org/downloads/

" Jupyter Research Project - Model implementation Last Checkpoint: 121062021 (autosaved) A Logon

File  Edit  View Inset  Cell  Kemel  Help Not Trusted | Python3 O

B+ x @B & % PRn B C » coe v &2

In [2]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

import tensorflow as tf

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense, LSTM, Flatten, Dropout, ConviD

from tensorflow.keras.metrics import q 5 Root! a , MeanAbsoluteError

from statsmodels.tsa.seasonal import seasonal_decompose
from matplotlib import pyplot

from random import randrange

from pandas import Series

from matplotlib import pyplot

from statsmodels.tsa.arima.model import ARIMA
from statsmodels.tsa.stattools import adfuller
from sklearn.preprocessing import MinMaxScaler

tf .executing_eagerly()

Out[2]: True

Figure 4: Importing the necessary Libraries

6 Project Development

e All the standard libraries and packages were installed using pip install command
in the Anaconda Library including numpy, pandas, matplotlib, sklearn, statsmodel
etc.,

e Data Gathering:

The primary step with data aggregation was to find on the granularity of the data.
It was found to be an hourly granularity. The initial data pre processing and
implementation required Anaconda environment. With the help of Pandas library,
the CSV file was loaded as a data frame.

A

Feature Extraction Data Clean
Biomass, Check for outliers Data Integrate -
Data Solar, Fill missing value Merge clean data Modified

Explore Hydro, Fill NA values Decompase
Nuclear, Remove

Fossil Fuel inappropriate data

Data

Stationarity check

Figure 5: Data processing Flow

e Data Preprocessing:

Once the dataset was uploaded to the anaconda environment, the csv file was
imported into python jupyter notebook. Figure [0 shows that the time feature in
the dataset was set as index as it is associated in temporal order with other features.

There were 64 features in total, but only solar, hydro water reservoir, nuclear, and
fossil hard coal were required for the research implementation. Hence, the remaining
other columns were dropped as show in Figure [7]



Making the 'time' column as index

: df['time'] = pd.to_datetime(df['time'], utc=True, infer_datetime_format=True)
df.set_index('time', inplace=True)

Figure 6: Setting time feature as index

Droping un-needed columns

columns_required = ['time’, ‘generation biomass', ‘generation hydro water reservoir’, ‘generation fossil hard coal’, ‘generatic
df = df[columns_required]

»

Figure 7: Removing unnecessary features

As the first step in data cleaning, the dataset is examined for missing values as
show in Figure |8 . In total record count, 90 missing values were identified.

Now that the dataset in required format, we will start cleaning the data

print(
f"Number of missing values in our dataset: {df.isnull().values.sum()}

)

MNumber of missing values in our dataset: 9@

Figure 8: Examine for missing values

All the missing values, almost all belongs to similar record. Hence, data manipula-
tion is carried out.

one of the following can be performed:

— fill these missing values with average values of the column
— drop these entire rows

— find a better way of filling them

The first method of filling entire rows with averages will not generate meaningful
data, but will only create outliers. The second way will create a discrepancy in
the time differences of the dataset. So, fill the missing values using time-based
interpolation Figure [9] which pandas already provides us.

Figure shows that after data manipulation there are no missing values.

Figure depicts that the cleaned dataset is extracted for further modelling.

Model Implementation

e Figure Total data size is measured

e Basic visualization is done on all 5 renewable energy sources Figure
e Observed seasonality is regulated for all 5 sources Figure

4



In [8]: |df.interpolate(method="time"', limit_direction="forward', inplace=True, axis=8)

Figure 9: Using interpolate function for data manipulation

Lets check for missing values in the dataset now

df.isnull().sum(axis=0)

generation biomass

generation hydro water reservoir
generation fossil hard coal
generation nuclear

generation solar

dtype: inted

[ I I I o R o]

Figure 10: Checking on the count of missing values once again

As it can be seen above, the dataset is clean and now it can be saved.

In [11]: df.to_csv('energy_dataset_cleaned.csv', index_label="time")

Figure 11: Cleaned dataset extracted

Reading the data
In [18]: |df = pd.read_csv('energy_dataset_cleaned.csv', parse_dates=['time"'], index_col="time")
First of all lets see how many days worth of data do we have

In [11]: df.index[-1] - df.index[@]

Out[11]: Timedelta('146@ days 23:00:00")

Figure 12: Check on the data Size



Lets plot visualize every generation type

In [13]: figure, axes - plt.subplots(z, 3, figsize-(2e, 12))

df['generation biomass'].plot{ax=axes[@][@], title='generation biomass')

df['generation hydro water reservoir'].plot(ax=axes[@][1], title='generation hydrc water reservoir'})
df['generation fossil hard coal'].plot(ax=axes[@][2], title='generation fossil hard coal')
df['generation nuclear'].plot(ax-axes[1][e], title-'generation nuclear')

df['generation solar'].plot(ax=axes[1][1], title='generation solar')

Out[13]: <Axessubplet:title={'center':'generation sclar'}, xlabel='time'>

generation bamass generation hydra water reservair generatian fossd hard coal
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tme
‘generation nuclear
o0
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@
0
x00
000
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s e mr w18
me

Figure 13: Plots of different generation type

In [18]: |# Season Periods for every generation type

biomass_seascn_pericd = 38 * 24 # 38 days
nuclear_seascn_perlocd = 38 * 24  # 38 days
solar_season_periocd =1 * 24 § 1 day
fossilHardCoal_seascon_period = 38 * 24 # 38 days
hydroWaterfRescrvolr_season_pericd =1 * 24 & 1 day

Figure 14: Observed Seasonality



e Correlation heat map to analyse the relation between each other of the columns
Figure

Finally lets check the correlation between different generation types

In [11]: corr = df.corr()
plt.imshow(corr)
corr

Out[11]: generation biomass  generation hydro water reservoir jon fossil hard coal nuclear ion solar
generstion biomass 1.000000 -0.032307 0.433724 0.021053 -0.004720

generation hydro water reservoir 0033307 1.000000 -0.157031 0048227 o018l

generation fossil hard caal 0.433734 -.187021 1.000000 0.0z2150 0.045008

generstion nuclear 021052 -0.0482%7 -0.022150 1.000000 0.0038M

generstion solar -0.004730 0081681 0.045808 0.0036H 1.000000

Figure 15: Correlation heat map

e Augmented Dickey Fuller test performed to check on the stationary behaviour of
the data Figure

In [£2]: result = adfuller{df['generation nuclear'][:24*3@%12])
print{"apF Statistic: Ef" ¥ result[e]}
print{"p-value: ¥f' X result[1])
print{"critical walues:")
for key, value in result[4].items():
print{"\t¥s: X.3f' ¥ (key, value})

ADF Statistic: -2.628778
p-value: 2.200822
Critical values:

1%: -3.431

tk: -2.882

18%: -2.567

Figure 16: Augmented Dickey Fuller test

8 LSTM implementation

e Takes in a 2d array like object and returns a windowed feature (3d) array and it’s
corresponding label array (3d) Figure ?7?

e Figure Dataset is split into train, validation and Test set.
e Figure used to visualize the train and validation set.

e [Iigure LSTM model creation and model architecture.

e Figure LSTM model training.



in

in

[12]:

[13]:

In

In

In

Data Preprocessing

def window(arr, nPast, nFuture}:

arr: 20 array like object
nPast: window size of the reguired feature array
nFuture: how far in the future the required label is

takes in a 2d array like object and returns a windowed feature (3d} array and it's corresponding label array (3d)
winsize = mFuture + nPast
data - np.stack([

arr[i:i-winsize]

for i in range{winSize)}

1
).transpose([1,2,2])

data - data[
np.random.permutation{data.shape[e])}

]

X = data[:, :nPast, copy()

y = data[:, -nFuture:, :].cepy()

return X, y

colMames = df.columns

generationTypes = [ 'biomass', 'hwr®, 'fhc’, ‘'nuclear', "solar’ ]
nPast = 24

nFuture = 1

winsize = nPast + nFuture

num_attr 1

input_shape

[15]

[1€]:

(nPast, num_attr)

Figure 17: Data Processing

Splitting Data into Train, Validation and Test sets

train size = 24 ¥ 365 * 3 # first 2 years of data
val_size = int{24 * 365 * 8.5) # first & months of Llast vear of data
test_size = int{24 * 355 * B8.5) # Last & months of last year of data
train = df[:train_size]
val = df[train_size: train_size + val_size]
test = df[train_size + wval_size:]
print{f'"'’
Total data is {len(df) /4 (24%365)} years
Training is  {len(train) // (24%*365)} years of data
wvalidation is {len(val) { (24%*385)} years of data
Testing is {len(test) / (24%385)} years of data

Tiay

Total data is 4 years

Training is 3 years of data

validation is @.5 years of data

Testing is B8.5@27397268273972 years cf data

Figure 18: Dataset Split



Neural Networks

loss
metrics

tf.keras.losses.MeansguaredError] )
[RoOTtMeansquaredError{), Meanabsclutesrror()]

# Lr_schedule — tf.Reras.collbacks.LearningRates

- Lambda epoch: 1e-3 * 18=*(epoc
=

early_stopping = tf.keras.callbacks.EarlyStopping({patience=1a)

edutero
£ 282

In def plot_save_history{history, path):

# eEvaluate train and wvalidation accuracies and

histery.histery[ root_mean_sguared_erro

train_rmse — 1
= nisteory.history[ val_reot_mean_sguared_srror

wal_rmse

train_mae = history.history[ 'msan_sbsol

te_error’ 1L
wal_mae = history.historw[ mean_ab o

lute_

train_loss
wal_loss

history.history["
nistory.history[ v

loss'1[1:]
1_1oss°101:]

# WVisualize epochs wvs. train and

plt.figure(figsize=(38, 18)}
plt.subplot(i, 3, 1)

plt.plot{train_rmse, labe
plt.plot{wal_rmse, label
plt.legend()
plt.titlec

Training
lidation

pochs ws. Training and walidation

plt.subplot(il, 3, 23
plt.plotitrain_loss. labe
plt.plot{wal_loss, label
plt.legend()

plt.titleg

Training Loss"®
lidation Loss"®

pochs ws. Training and walidation

plt.subplot(il, 2, 2}
plt.plot(train_mas, labsl
plt.ploti{val _mae, label
plt.legend()

plt.title( 'Epochs ws. Tr.

raining MAE"

plt.savefigi{path)
Plt.show()

Figure 19: Code for visualization

LST™M

Creating models

In [25]: |1stm_meodels = {}
for type in generationTypes:

model = tf.keras.Sequential([
LsTM(18@, input_shape=input_shape, return_seguences=True),
Flatten(),
Dense(2@a, activation="relu'},
Dropout(a.1),
Dense(num_attr)
1,
name= f'lstm_{type}'

)

model_checkpoint
optimizer

+f.keras. callbacks.Modelcheckpoint (f'models/1stm_{type}.h5', monitor=("
tf.keras.optimizers.adam(learning_rate=ge-2, amsgrad=True}

val_loss'), save_best_only=True)

model. compile{loss=loss, optimizer=optimizer, metrics=metrics)

1stm_models[type] = model

Displaying models

In [3&]: for type, model in lstm_medels.items{):
print()
print{ *188)
print{f"the model for {type} generation: ')
model. summary ()

the model for biomass generation:
Model: "lstm _biomass"

Layer (type) output Shape Param #
1ste_1 (LSTM) (Mone, 24, 12@) 20588
flatten_1 (Flatten) (None, 24e@) 2
dense_2 (Dense) (None, 20@) 4zpze2
dropout_1 (Dropout) (None, 2@8) @
dense_2 (Dense) (MNone, 1) 201

Total params: 521,201
Trainable params: 521,281
Non-trainable params: @

Figure 20: LSTM model



training models

In [37]:  lstm_models_history = {}
for type in generationTypes:
tf.keras.backend.clear_session() #& Clearing session to avoid any discrepency
model = lsim models[type]

¥_train = datasets[type]["train’]
y_train = datasets[type]["train’]

X

['x']
['y']

X val = datasets[type]['val']['x']
y_val = datasets[type]["val'l['y']

history = model.fit{
¥_traim, y_train,

epochs =5,
validation_data = ( X_val, y_val ),
callbacks = [early_stopping, model_checkpoint]

}
1stm_models_history[type] = history

Figure 21: LSTM train

9 LSTM-CNN implementation

e Figure CNN- LSTM model creation and model Architecture.

10 Stacked LSTM implementation

e Figure Stacked- LSTM model creation and model Architecture.

11 ARIMA implementation

e Figure 24 ARIMA model creation.

12 Evaluation

e Figure Evaluation of all the 4 models implemented.

10



In

Ma

7]:

CNN-LSTM

Creating models

can_lstm_models = {}
for type in generationTypes:

model = tf.keras.medels.Sequential([

ConviD{filters-18e, kernel_size-2, strides=1, padding-'causal', activation='relu', input_shape-input_shape),

LETM(188, return_sequences=True),
Flatten(),

Dense(5e, activation="relu'},
Dense(num_atir)

1

model_checkpoint = tf.keras.callbacks.MedelCheckpoint(f 'models/cnn_lsim_{type}.hz", moniter=('val_loss'), save_best only=Trui

optimizer = tf.keras.optimizers.adam{learning_rate-ce-2, amsgrad=True}
model.compile(loss=1oss, optimizer-optimizer, metrics=metrics)

cnn_lstm_models[type] = model

Displaying models

for type, model in cnn_lstm_models.items():
print()
print('="*108)
print{f'the model for {type} generation: ')
model. summary )

the model for bicmass generaticn:
Model: "segquential"

Layer (type) Qutput Shape

o
w
w
w

convld (ConvlD) {None, 24, 128

1stm (LSTM) (None, 24, 188) sa488
flatten (Flatten) (None, 248@) a
dense (Dense) (Hone, 58) 120052

dense_1 (Dense) {Mone, 1) 51

Total params: 2@@,301
Trainable params: 209,381
Non-trainable params: @

Figure 22: CNN- LSTM model creation and model Architecture.
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Stacked-LSTMs

Creating models

stacked_lstm_models = {}
for type in generationTypes:

model = tf.keras.medels.sequential([
LSTM{188, input_shape=input_shape, return_sequences=True},
LSTM{52, return_sequences=True),
Flatten(},
pense{15@, activation='relu'),
propout{e.1),
Dense{num_attr)

model_checkpoint = tf.keras.callbacks.MedelCheckpoint(f'models/stacked_lstm_{type}.h5', monitor=('val_loss
optimizer = tf.keras.optimizers.Adam(learning_rate=Ge-2, amsgrad=True}

, save_best_only-

model.compile(less=1oss, optimizer-optimizer, metrics=metrics)

stacked_lstm_mcdels[type] = model

»
Displaying models
In [35]: for type, model in stacked_lstm_models.items():
print()
print(‘="'+180)
print(f'the model for {type} generation: ')
model. summary ()
-
the medel for biomass generation:
Model: “sequential”
Layer (type) output Shape Param #
lstm (LSTM) (None, 24, 1@} 28308
lstm_1 (LSTM) (Mone, 24, 5@) 38208
flatten (Flatten) (Mone, 12e@) ]
dense (Dense) (None, 15@) 188158
dropout (Drepout) (Mone, 15@) ]
dense_1 (Dense) (Mone, 1) 151
Total params: 251,301 -

Figure 23: Stacked LSTM model

Creating Dataset and Making Train Test Split

In [18]: |arima_df df[:24+355]

size

int(arima_df.shape[e] = (18/12))
train, test i

arima_df[:size], arima_df[size:]

Arima

training and evaluating

In [21]: |arima_preds = {}
for X_train, X_test, type in zip(train.values.T, test.values.T, generationTypes):

nistory = list(x_train)
predictions =

# wolk-forward validation
Ffor row in x_test:

model — ARIMA(history, order= (5,1,8))
model_fit = model.fit(})
pred »= model_fit.forecast()

predictions.append(pred)
history.append(row)
history.pop(e)

# evaluate forecasts
mse = mean_squared_error{¥_test, predictions)
mae mean_absclute_error{x_test, predictions}
rmse = mse ** .5

evals[f'ARIMA_{type}"] = [ mse, rmse, mas ]
arima_preds[type] = predicticns
# print( here"}

Figure 24: ARIMA model

12



analysing and saving the evaluations

In [£9]: ewvaluations = pd.DataFrame({evals, index= errors).T

# evalugtions.to_csv( 'model_evaluotions.csv')

In [51]: evaluations = pd.read_csv( 'model_evaluations.csv', index_col-2})
evaluations

Out[51]: MSE RMSE MAE

cnn_lstm_biomass 842701404 0.020703 0.018231
cnn_lstm_hr  1.758821e-02 01328497 0104852
cnn_lstm_fhe 4.795335e-02 0.218005 0.185880
cnn_lstm_nuclear 3 235312e-04 0LE130 0.005545
cnn_lstm_solar 8.201557e-02 0.225384 0.244504
Istm_biomass 1.415877e-03 0.037825 0.024388
Istm_hwr 1726432202 0.124033 0108201

Istm_fhe 5.282865e-02 0.221579 0.185228
Istm_nuclear 1.244823=-02 0.111575 0.086310
Istm_solar 1.421844=-02 0.02377080 0029225
stacked_lstm_biomass 3.375810e-03 0.058103 0.038273
stacked_|stm_hwr 1.728150e-02 0121459 0080325
stacked_lstm_fhe 3.3347238e-02 0.183875 0152868
stacked_|stm_nuclear 8713348204 0.025010 0.016577
stacked_Istm_solar 8.217511e-02 0.235662 0.245887
ARIMA_biomass 3.018281e+07 5404728182 4472078787
ARIMA_hwr 5.085832=+07 7132203994 5507973425
ARIMA_fhe 5.382488=+07 TI41.288123 G157.516887
ARIMA_nuclear 2.660342e+07 5157.850542 3B877.560485
ARIMA_sclar 2583580=+07 5063220223 3705724432

Figure 25: Evalutaion
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