

Configuration Manual

An Approach to Identify and Classify

Banana leaf pests using Machine Learning

and Deep Learning Neural Networks

MSc Research Project

Data Analytics

Yogesh Ravindra Rokade

Student ID: 19214057

School of Computing

National College of Ireland

Supervisor: Abubakr Siddig

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

Yogesh Ravindra Rokade

Student ID:

x19214057

Programme:

MSc Data Analytics

Year:

2021-2022

Module:

Research Project

Supervisor:

Abubakr Siddig

Submission Due

Date:

19th September 2022

Project Title:

An Approach to Identify and Classify Banana leaf pests using

Machine Learning and Deep Learning Neural Networks

Word Count:

1943 Page Count 21

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

Yogesh Ravindra Rokade

Date:

19th September 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project,

both for your own reference and in case a project is lost or mislaid. It is

not sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Classification of Banana Leaf pests using Machine

Learning and Deep Learning Techniques

Yogesh Ravindra Rokade

x19214057

1. Introduction

This configuration manual describes the resources, the required packages and the hardware

setup required as well as the explanation of the overall code written in implementation of the

research project:

An Approach to Identify and Classify Banana leaf pests using Machine Learning and Deep

Learning Neural Networks

2. Environment Configuration

2.1 Hardware Configuration – The Hardware configuration required for the

research is shown below in Table 1:

Hardware Specifications

System name Acer Aspire

System RAM 8 GB

Operating System Windows 11, 64 Bit

Processor Intel Core i7 8th Gen

GPU Nvidia GeForce GTX 1650

Table 1: Hardware Configurations

2.2 Software Requirement –

• Jupyter Notebook – For the entire research jupyter notebook is used which is

downloaded from Anaconda Navigator (version 1.9.7). Anaconda Navigator is a

Graphical User Interface which has various environments like Spyder, Jupyter etc.

Jupyter Notebook was downloaded to implement machine learning models and

techniques. The anaconda navigator environment is shown in Figure 1:

• Microsoft Excel – Microsoft Excel was used to display plots and charts.

Figure 1: Anaconda Navigator

3. Implementation and Results

The Implementation section gives the information of all the steps carried out from data

gathering, data cleaning, model training, testing and evaluation.

3.1 Data Gathering –

• Kaggle Repository – The dataset from Kaggle was downloaded and stored at local

device within a folder 1. Some images had camera watermark, it was removed by

cropping that part so the model wont learn unwanted noise part.

Figure 2: Kaggle Dataset

• Mendeley Repository – Similar to Kaggle dataset, the dataset from Mendeley was

downloaded and stored in local system 2. The dataset was in compressed format. It was

uncompressed and data was extracted.

1
https://www.kaggle.com/datasets/kaiesalmahmud/banana-leaf-dataset

2
https://data.mendeley.com/datasets/rjykr62kdh

https://www.kaggle.com/datasets/kaiesalmahmud/banana-leaf-dataset
https://data.mendeley.com/datasets/rjykr62kdh

Figure 3: Mendeley Repository

After downloading the data, both the dataset is merged into a single folder so that the data size

will increase also the model will get to train more images of that particular disease.

3.2 Data Preparation –

As the datasets are downloaded from two different source, so renaming of each file is done to

make it easier to read. In the Figure 4, the file name is changed to cordana(1), cordana(2) and

so on from some random name.

Figure 4: Renaming of each class of Images

Important libraries for the research are imported and used. To install a library -pip command

is used to get that package. The main libraries which are used are numpy, pandas, keras,

tensorflow, matplotlib, sklearn, skimage and cv2 to read and process the images.

Figure 5: Importing Packages

First the data is read from the local system

 Figure 6: Loading data

The number of images in each Directory is displayed so its easy to see the which class of image

has highest count.

Figure 7: Number of Images in each Class

 To read the images I have created a Dataframe of Directory and Label

Figure 8: Creating a DataFrame of directory and label

The Name labels are replaced with numeric labels

Figure 9: Numeric Labels

3.3 Data Pre-Processing –

Displaying the Original Image and converting the original image to grey scale.

Figure 10: Original Image to grey scale

The Greyscale image is then subjected to Thresholding which is a method of Image

Segmentation. Thresholding converts the image in Black and White which is 0 and 1 pixels

respectively. 0 is for background image and 1 is the infected part of the banana leaf. The image

obtain is also called as Binary Image.

Figure 11: Threshold Image

From the Threshold image, we get the required Region of Interest which is the infected part of

image.

Figure 12: Region of Interest

The sample images for each class are displayed and the images are resized. Resizing is done as

zooming may result into distortion of image while resizing to lower size contains all the pixel

information which are required.

Figure 13: Image Resizing

A Function is created which is used to extract features of images. GLCM was used to extract

the features of image which are contrast, correlation, homogeneity and Energy. The

greycomatrix function is used which is set at distance 10 and angle 90. Thus, all grey images

will be return by the function within the specified distance and angle.

Figure 14: Feature Extraction using GLCM

Creating an array of all the features by looping all the images of all the diseases.

Figure 15: Array of features

Creating a DataFrame of Extracted Features

Figure 16: DataFrame of Features

Feature Scaling Using MinMax Scaler – After Creating a DataFrame of features, feature

scaling is used on the independent variables. Feature scaling is important because the data with

grater variation may change the prediction of the outcomes. It basically converts all the data in

the range [0,1] which means no feature have high variance.

Figure 17: Feature Scaling

3.4 Implementation –

a) Classification using traditional machine learning techniques

The Normalized data is then assigned into x and y variables and the data is split into training

and testing set. The data is split in the ratio 75% and 25% for training and testing respectively.

Figure 18: Data Split

After splitting the data models are implemented, the three models which are evaluated are K-

NN, SVM and Random Forest.

While running these models, Hyperparameter tuning is done to find the best optimal parameters

for the models. The Hyperparameter tuning is performed by using GridSearchCV. The

GridSearchCV finds the best parameters from the parameters passed as input to the model. The

GrisSearchCV is imported from the sklearn package.

• Support Vector Machine

The best Kernel parameters is found for SVM using GridSearchCV. The SVM is in the

sklearn package which is imported at the start of work.

Figure 19: Support Vector Machine

SVM prediction on test data

Figure 20: SVM predicted labels

The confusion matrix and classification report of the model are then displayed.

Figure 21: Confusion Matrix

Figure 22: Classification Report SVM

As the f1-score was low which is around 45%, next model is implemented.

• K-Nearest Neighbor

GridSearchCV is used to find the best possible value for ‘K’ which decides the number of

neighbors.

Figure 23: K-Nearest Neighbor

Model Accuracy

Figure 24: Accuracy of KNN

Prediction on test set

Figure 25: Prediction on Test set (KNN)

The Confusion matrix and Classification Report is shown below in Figure 26 and 27.

Figure 26: Confusion Matrix KNN

Figure 27: Classification Report KNN

The f1-score from SVM has improved and the model is giving good precision and recall as

compared to SVM but to again high f1-score we implemented Random Forest classifier.

• Random Forest Classifier

Similarly, Hyperparameter Tuning is done for Random Forest classifier using GridSearchCV.

The number of parameters is passed as input to GridSearchCV along with Random Forest

model. The GridSearchCV along with Random Forest is shown in Figure 28.

Figure 28: Random Forest Classifier

Accuracy of Random Forest classifier is shown below in Figure 29.

Figure 29: Accuracy of RF Classifier

Prediction of Random Forest Classifier on test dataset is shown below in Figure 30.

Figure 30: Prediction on Test Data

The confusion matrix and classification matrix is shown below:

Figure 31: Confusion Matrix

Figure 32: Classification report

From the classification report, we can see higher f1-score compared to KNN and SVM. Also,

precision and recall is higher for Random Forest classifier. The overall accuracy of Random

Forest is 70%.

b) Classification using Deep learning techniques

• EfficientNet-B1

Initially, the Dataframe of Directory and label is split into training and testing with stratification

as ‘y’.

Figure 33: Data split

A function is created to load the images, resize it, convert the images into array and store it in

a variable.

Figure 34: Image processing

The Data after processing is stored in images and label variables

Figure 35: Image and Label variables

After this, the EfficientNet-B1 model is implemented. The Height and width of the images is

fixed and is passed as input to the model. Data Augmentation is done by Flipping the images

horizontally and rotating the images by 20%. The EfficientNet-B1 model is trained on imagenet

database. This augmented data is loaded on the Sequential layer which is the initial layer of

model. Fine tuning is done by making the base_model.trainable variable as ‘TRUE’. A dropout

layer followed by dense layer are used in which activation functions are assigned ‘relu’ and

‘softmax’. Adam optimizer is used with learning rate set to 0.0005 and loss to

sparse_categorical_crossentropy. The model summary is shown below in Figure 36:

Figure 36: EfficientNet-B1 model summary

The training steps is assigned as 50, Validation steps to 25, Batch size=32 & epoch is set to 1.

The accuracy of EfficientNet-B1 is shown below in Figure 37

Figure 37: EfficientNet-B1 Accuracy

Sample Images are tested on the testing dataset from the original image dataset to analyse

how the model performs.

Figure 38: EfficientNet-B1 model Testing

• VGG19

Similar to EfficientNet-B1, for VGG19 the data is stored in a list and labels in another list. The

image are converted into array of images and are normalized by dividing it by 255. Further as

the input to convolution neural network is required in 3-D, the image is reshaped to (-1,

224,224,3). The Height and width od image is set to 224 which is required for VGG19.

Figure 39: Image reshaping

From sklearn, LabelBinarizer is loaded to encode the labels

Figure 40: Encoding the Labels

For executing the model, strategy.scope() methos is used for executing the model.

Figure 41: Creating strategy for execution

After this, the VGG19 model is implemented, the input shape is given as (224,224,3). The

model is trained on imagenet database. MAxPool2D layer is used which limits the

computational cost of the model. The learning rate is set to 0.000001. Adam optimizer is used

with loss as categorical crossentropy. The VGG19 model summary is shown below in Figure

42:

Figure 42: VGG19 model summary

Figure 43: VGG19 model training

The Accuracy and loss of the model is shown below:

Figure 44: VGG19 Accuracy and Loss

The Training and Validation accuracy and loss is shown below in Figure 45:

Figure 45: Training and Validation Accuracy, Loss

As the Validation Accuracy and loss is steady so we see that there is no overfitting of the model,

therefore the epoch is set to 12.

The classification report is shown in figure 46:

Figure 46: VGG19 Classification report

Sample testing of images on test dataset.

Figure 47: Sample Testing of images (VGG19 model)

• DenseNet201

Similar steps of image processing are undertaken for implementation of DenseNet201. The

input shape of the image is set to (224,224,3) and the DenseNet model is trained on imagenet

database. The model.trainable is set to ‘FALSE’. The model is compiled using ‘adam’

optimizer and learning rate is set to 0.000001.

Figure 48: DenseNet201 model

The model is trained with batch size equal to 64 and epochs equal to 12. As the learning rate is

reduced and as the validation accuracy and loss is steady along the training accuracy and loss,

we therefore say there is not much overfitting of the model and so the epoch is set to 12.

Figure 49: Training DenseNet201 model

The classification report is shown as follows in figure 50:

Figure 50: Classification report DenseNet201

As we can see, higher f1-score, precision and recall is achieved using DenseNet201. The

DensetNet201 showed has low computational time than EfficientNet-B1 and VGG19. The

training accuracy and loss v validation accuracy and loss is shown below:

 Figure 51: Training v Validation Accuracy

Figure 52: Training v Validation Loss

Figure 53(a): Training & Val Accuracy Figure 53(b): Training & Val Loss

The testing of banana leaf disease by DenseNet201 is shown below:

Figure 54: Testing using DenseNet201 model

Figure 55: Prediction of DenseNet201 model

