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Classification of Banana Leaf pests using Machine 

Learning and Deep Learning Techniques 

Yogesh Ravindra Rokade 

x19214057 

1. Introduction 

This configuration manual describes the resources, the required packages and the hardware 

setup required as well as the explanation of the overall code written in implementation of the 

research project:  

An Approach to Identify and Classify Banana leaf pests using Machine Learning and Deep 

Learning Neural Networks  

 

2. Environment Configuration 

2.1 Hardware Configuration – The Hardware configuration required for the 

research is shown below in Table 1: 
 

Hardware Specifications 

System name Acer Aspire 

System RAM  8 GB 

Operating System Windows 11, 64 Bit 

Processor Intel Core i7 8th Gen 

GPU Nvidia GeForce GTX 1650 

 

Table 1: Hardware Configurations 

 

2.2 Software Requirement –  

• Jupyter Notebook – For the entire research jupyter notebook is used which is 

downloaded from Anaconda Navigator (version 1.9.7). Anaconda Navigator is a 

Graphical User Interface which has various environments like Spyder, Jupyter etc. 

Jupyter Notebook was downloaded to implement machine learning models and 

techniques. The anaconda navigator environment is shown in Figure 1: 

• Microsoft Excel – Microsoft Excel was used to display plots and charts. 



 
 

 

Figure 1: Anaconda Navigator 

 

3. Implementation and Results 

The Implementation section gives the information of all the steps carried out from data 

gathering, data cleaning, model training, testing and evaluation. 

 

3.1 Data Gathering –  

 

• Kaggle Repository – The dataset from Kaggle was downloaded and stored at local 

device within a folder 1. Some images had camera watermark, it was removed by 

cropping that part so the model wont learn unwanted noise part. 

 

 

Figure 2: Kaggle Dataset 

• Mendeley Repository – Similar to Kaggle dataset, the dataset from Mendeley was 

downloaded and stored in local system 2. The dataset was in compressed format. It was 

uncompressed and data was extracted. 

 

 

 

 

1 
https://www.kaggle.com/datasets/kaiesalmahmud/banana-leaf-dataset 

2 
https://data.mendeley.com/datasets/rjykr62kdh 

 

https://www.kaggle.com/datasets/kaiesalmahmud/banana-leaf-dataset
https://data.mendeley.com/datasets/rjykr62kdh


 
 

 

Figure 3: Mendeley Repository 

After downloading the data, both the dataset is merged into a single folder so that the data size 

will increase also the model will get to train more images of that particular disease.  

3.2 Data Preparation –  

 

As the datasets are downloaded from two different source, so renaming of each file is done to 

make it easier to read. In the Figure 4, the file name is changed to cordana(1), cordana(2) and 

so on from some random name. 

 

 

Figure 4: Renaming of each class of Images 

 



 
 

Important libraries for the research are imported and used. To install a library -pip command 

is used to get that package. The main libraries which are used are numpy, pandas, keras, 

tensorflow, matplotlib, sklearn, skimage and cv2 to read and process the images. 

 

Figure 5: Importing Packages 

 

First the data is read from the local system 

 

 Figure 6: Loading data 

The number of images in each Directory is displayed so its easy to see the which class of image 

has highest count. 

 

Figure 7: Number of Images in each Class 



 
 

 To read the images I have created a Dataframe of Directory and Label 

 

Figure 8: Creating a DataFrame of directory and label 

The Name labels are replaced with numeric labels 

 

Figure 9: Numeric Labels 

 

 

 

 

 



 
 

3.3 Data Pre-Processing –  

 

Displaying the Original Image and converting the original image to grey scale. 

 

      

Figure 10: Original Image to grey scale 

 

The Greyscale image is then subjected to Thresholding which is a method of Image 

Segmentation. Thresholding converts the image in Black and White which is 0 and 1 pixels 

respectively. 0 is for background image and 1 is the infected part of the banana leaf. The image 

obtain is also called as Binary Image. 

 

 
 

 

Figure 11: Threshold Image 



 
 

From the Threshold image, we get the required Region of Interest which is the infected part of 

image. 

 

Figure 12: Region of Interest                          

The sample images for each class are displayed and the images are resized. Resizing is done as 

zooming may result into distortion of image while resizing to lower size contains all the pixel 

information which are required. 

 

 

Figure 13: Image Resizing 

A Function is created which is used to extract features of images. GLCM was used to extract 

the features of image which are contrast, correlation, homogeneity and Energy. The 

greycomatrix function is used which is set at distance 10 and angle 90. Thus, all grey images 

will be return by the function within the specified distance and angle. 

 

 

Figure 14: Feature Extraction using GLCM 



 
 

Creating an array of all the features by looping all the images of all the diseases. 

 

Figure 15: Array of features 

Creating a DataFrame of Extracted Features  

 

Figure 16: DataFrame of Features 

 

Feature Scaling Using MinMax Scaler – After Creating a DataFrame of features, feature 

scaling is used on the independent variables. Feature scaling is important because the data with 

grater variation may change the prediction of the outcomes. It basically converts all the data in 

the range [0,1] which means no feature have high variance. 

 

 

Figure 17: Feature Scaling 



 
 

3.4 Implementation –  

 

a) Classification using traditional machine learning techniques 

The Normalized data is then assigned into x and y variables and the data is split into training 

and testing set. The data is split in the ratio 75% and 25% for training and testing respectively. 

 

Figure 18: Data Split 

After splitting the data models are implemented, the three models which are evaluated are K-

NN, SVM and Random Forest.  

While running these models, Hyperparameter tuning is done to find the best optimal parameters 

for the models. The Hyperparameter tuning is performed by using GridSearchCV. The 

GridSearchCV finds the best parameters from the parameters passed as input to the model. The 

GrisSearchCV is imported from the sklearn package. 

 

• Support Vector Machine 

 

The best Kernel parameters is found for SVM using GridSearchCV. The SVM is in the 

sklearn package which is imported at the start of work.  

 

 
Figure 19: Support Vector Machine 

 

SVM prediction on test data 



 
 

 

Figure 20: SVM predicted labels 

The confusion matrix and classification report of the model are then displayed. 

 

Figure 21: Confusion Matrix 

 

Figure 22: Classification Report SVM 

 

As the f1-score was low which is around 45%, next model is implemented. 



 
 

• K-Nearest Neighbor 

 

GridSearchCV is used to find the best possible value for ‘K’ which decides the number of 

neighbors. 

 

 
 

Figure 23: K-Nearest Neighbor 

 

Model Accuracy 

 

Figure 24: Accuracy of KNN 

Prediction on test set 

 

Figure 25: Prediction on Test set (KNN) 



 
 

The Confusion matrix and Classification Report is shown below in Figure 26 and 27. 

 

Figure 26: Confusion Matrix KNN 

 

Figure 27: Classification Report KNN 

The f1-score from SVM has improved and the model is giving good precision and recall as 

compared to SVM but to again high f1-score we implemented Random Forest classifier. 

 

• Random Forest Classifier 

Similarly, Hyperparameter Tuning is done for Random Forest classifier using GridSearchCV. 

The number of parameters is passed as input to GridSearchCV along with Random Forest 

model. The GridSearchCV along with Random Forest is shown in Figure 28. 

 

Figure 28: Random Forest Classifier 



 
 

Accuracy of Random Forest classifier is shown below in Figure 29. 

 

Figure 29: Accuracy of RF Classifier 

Prediction of Random Forest Classifier on test dataset is shown below in Figure 30. 

 

Figure 30: Prediction on Test Data 

The confusion matrix and classification matrix is shown below: 

 

Figure 31: Confusion Matrix 

 

Figure 32: Classification report 



 
 

From the classification report, we can see higher f1-score compared to KNN and SVM. Also, 

precision and recall is higher for Random Forest classifier. The overall accuracy of Random 

Forest is 70%. 

b) Classification using Deep learning techniques 

 

• EfficientNet-B1 

 

Initially, the Dataframe of Directory and label is split into training and testing with stratification 

as ‘y’. 

 
Figure 33: Data split 

A function is created to load the images, resize it, convert the images into array and store it in 

a variable. 

 
Figure 34: Image processing 

The Data after processing is stored in images and label variables 

 

Figure 35: Image and Label variables 

 

After this, the EfficientNet-B1 model is implemented. The Height and width of the images is 

fixed and is passed as input to the model. Data Augmentation is done by Flipping the images 

horizontally and rotating the images by 20%. The EfficientNet-B1 model is trained on imagenet 

database. This augmented data is loaded on the Sequential layer which is the initial layer of 

model. Fine tuning is done by making the base_model.trainable variable as ‘TRUE’. A dropout 

layer followed by dense layer are used in which activation functions are assigned ‘relu’ and 

‘softmax’. Adam optimizer is used with learning rate set to 0.0005 and loss to 

sparse_categorical_crossentropy. The model summary is shown below in Figure 36: 



 
 

 

Figure 36: EfficientNet-B1 model summary 

 

The training steps is assigned as 50, Validation steps to 25, Batch size=32 & epoch is set to 1. 

The accuracy of EfficientNet-B1 is shown below in Figure 37 

 

Figure 37: EfficientNet-B1 Accuracy 

Sample Images are tested on the testing dataset from the original image dataset to analyse 

how the model performs. 

 

 

Figure 38: EfficientNet-B1 model Testing 

 

 

 



 
 

• VGG19 

 

Similar to EfficientNet-B1, for VGG19 the data is stored in a list and labels in another list. The 

image are converted into array of images and are normalized by dividing it by 255. Further as 

the input to convolution neural network is required in 3-D, the image is reshaped to (-1, 

224,224,3). The Height and width od image is set to 224 which is required for VGG19. 

 

Figure 39: Image reshaping 

 

From sklearn, LabelBinarizer is loaded to encode the labels  

 

Figure 40: Encoding the Labels 

 

For executing the model, strategy.scope() methos is used for executing the model. 

 

Figure 41: Creating strategy for execution 

After this, the VGG19 model is implemented, the input shape is given as (224,224,3). The 

model is trained on imagenet database. MAxPool2D layer is used which limits the 

computational cost of the model. The learning rate is set to 0.000001. Adam optimizer is used 

with loss as categorical crossentropy. The VGG19 model summary is shown below in Figure 

42: 

 



 
 

 

Figure 42: VGG19 model summary 

 

Figure 43: VGG19 model training 

 

The Accuracy and loss of the model is shown below: 

 

Figure 44: VGG19 Accuracy and Loss 

 

The Training and Validation accuracy and loss is shown below in Figure 45: 



 
 

 

Figure 45: Training and Validation Accuracy, Loss 

 

As the Validation Accuracy and loss is steady so we see that there is no overfitting of the model, 

therefore the epoch is set to 12. 

The classification report is shown in figure 46: 

 

Figure 46: VGG19 Classification report 

 



 
 

Sample testing of images on test dataset. 

 

Figure 47: Sample Testing of images (VGG19 model) 

 

• DenseNet201 

 

Similar steps of image processing are undertaken for implementation of DenseNet201. The 

input shape of the image is set to (224,224,3) and the DenseNet model is trained on imagenet 

database. The model.trainable is set to ‘FALSE’. The model is compiled using ‘adam’ 

optimizer and learning rate is set to 0.000001.  

 

 
Figure 48: DenseNet201 model 

 

The model is trained with batch size equal to 64 and epochs equal to 12. As the learning rate is 

reduced and as the validation accuracy and loss is steady along the training accuracy and loss, 

we therefore say there is not much overfitting of the model and so the epoch is set to 12. 



 
 

 

Figure 49: Training DenseNet201 model 

 

The classification report is shown as follows in figure 50: 

 

Figure 50: Classification report DenseNet201 

 

As we can see, higher f1-score, precision and recall is achieved using DenseNet201. The 

DensetNet201 showed has low computational time than EfficientNet-B1 and VGG19. The 

training accuracy and loss v validation accuracy and loss is shown below: 

 

                                           Figure 51: Training v Validation Accuracy 



 
 

 

Figure 52: Training v Validation Loss 

 

  

Figure 53(a): Training & Val Accuracy        Figure 53(b): Training & Val Loss 

 

The testing of banana leaf disease by DenseNet201 is shown below: 

 

 

Figure 54: Testing using DenseNet201 model 

 

 

Figure 55: Prediction of DenseNet201 model 

 

 


