ﬁ

\‘
National
Collegeof

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Shital Namdeo Raut
Student ID: x19243294

School of Computing
National College of Ireland

Supervisor: Dr. Paul Stynes, Dr. Pramod Pathak

‘-—
National College of Ireland \ National

Collegeof
Ireland

MSc Project Submission Sheet
School of Computing

Student Name: Shital Namdeo Raut

Student ID: X19243294

Programme: Data Analytics Year: 2021
Module: MSc Research Project

Lecturer: 31/01/2022

Submission Due

Date:

Project Title: Configuration Manual

Word Count: 700 Page Count: 9

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Shital Namdeo Raut

Date: 31st January 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o
copies)

Attach a Moodle submission receipt of the online project a
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both | o
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Shital Raut
X19243294

1. Introduction

This handbook provides thorough instructions on how to set it up all or most of the essential
software and hardware for developing the full system in the first place. The setup instructions
will assist in the replication of the study in a much more concrete way. We'll assess the
system's overall functionality as well as its interface. (In other words, how a person will
engage with our platform through the system user interface.)

The Configuration Manual will be divided into three sections excluding this introduction part.
e Environmental Setup
e Libraries Required
e Steps carried out in each Experiment

2.Environmental Setup

2.1 Hardware Requirements
e RAM: 8GB RAM.
e System Memory: 500 GB HDD.
e Processor: 2.40 GHz Intel. Core i5

2.2 Software Requirements
e Windows Edition: Windows 10
e Scripting Language: Python 3.6.3

2.3 Integrated Development Environment: Google Colab Free.
The project was implemented using python language on Google Colab Free version.

1. Cloud Storage: Google Drive. (For storing the dataset on cloud drive which will
be used by collab.

(Welcome to Colaboratory

File Edit View Insert Runtime Tools Help

Table of contents

Q, Getting started
Data science
Machine leaming

{(x} Moreresources

Machine learning examples

8 Section

X

+ Code + Text

& Copy to Drive Connect ~

€O What is Colaboratory?

Colaboratory, or 'Colab’ for short, allows you to write and execute Python in your browser, with

« Zero configuration required

+ Free access to GPUs

« Easy sharing
Whether you're a student, a data scientist or an Al researcher, Colab can make your work easier. Watch Introduction to Colab to find out more,
or just get started below!

Getting started

The document that you are reading is not a static web page, but an interactive environment called a Colab notebook that lets you write and
execute code.

For example, here is a code cell with a short Python script that computes a value, stores it in a variable and prints the result:

[] seconds_in_a_day - 24 * 60 * 60
seconds_in_a_day

86400

/' Editin

G share %t °

~

Figure 1: Google Colab
3.Libraries Required

Table 1 lists all of the libraries needed to complete this research study, as well as the
procedures to load them. Before we can use it, we must first download some libraries.

pandas import pandas as pd
numpy import numpy as np
sklearn.metrics mean_squared_error

matplotlib

import matplotlib.pyplot as
plt

statsmodels.tsa.seasonal

import seasonal _decompose

statsmodels.tsa.arima_model

import ARIMA

statsmodels.tsa.api ExponentialSmoothing,
SimpleExpSmoothing, Holt
arch Arch package

4. Implementation Details

1. Upload the dataset onto Google Drive.
2. Open Google Colab.
3. Follow the below steps on Google Colab:
* Go to File and then Open Notebook- Train.ipynb.

4. Allocate runtime.
5. Execute all the steps till Mounting the Google Drive.

o from google.colab import drive
drive.mount('/content/drive’)l

Mounted at /content/drive

Figure 2: Mounting the Google Drive.

6. Import the required libraries.

[] import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
from statsmodels.tsa.stattools import adfuller
from statsmodels.tsa.seasonal import seasonal decompose
from statsmodels.tsa.arima_model import ARIMA
from pandas.plotting import register matplotlib converters
register matplotlib converters()
from sklearn.metrics import mean_squared error
from statsmodels.tools.eval measures import rmse
from statsmodels.tsa.apl import ExponentialsSmoothing, SimpleExpSmoothing, Holt

Figure 3: Importing the required libraries.

7. Read the data from csv file.

data = pd.read_csv('/content/drive/My Drive/Dairy Time Series/market-prices-dairy-products en 7.csv')

Figure 4: Reading the data from csv file.

8. Convert “date” field to appropriate format and fetch only Ireland related data.

[] #Convert str column to DateTime
data['Date’].astype('datetimessd’)

2020-66-01
2020-66-01
2020-06-01
2020-66-01
2020-66-01

Bwom e ®

39558 1991-61-061
39551 1991-61-01
38552 1991-61-01
30553 1991-01-01
39554 1991-61-061
Name: Date, Length: 3@555, dtype: datetime64[ns]

[] #Fetch only IE Data
data = data.loc[data['Country'] == "IE"]
data = data.loc[data['Product desc'] == "Butter"] #Change product accordingly

Figure 5: Converting the date field and fetching Ireland related data.

9. Clean the data for splitting it into training and testing data.

Split data into train / test sets
train = data_final.iloc[:len(data_final)-12]
test = data_final.iloc[len(data_final)-12:] # set one year(12 months) for testing

Figure 6: Splitting the data into training and testing data set.

As the dataset is divided into training and testing dataset, we can now perform the
experiments as follows:

5.Experiment 1: ARIMA Model

1) Fit ARIMA model to the dataset using following code:

Fit ARIMA function to Butter dataset
model=ARIMA(data final['Price’],order=(1,1,1))
model fit=model.fit()

#model fit.summary()

Figure 7: Applying ARIMA model for seasonal dairy price prediction.

2) Test ARIMA model using following code to find how well ARIMA model can predict and
forecast the seasonal prices of Butter item:

[] #Testing Arima
start = len(train)
end = len(train) + len(test) - 1

Predictions for one-year against the test set
predictions = model fit.predict(start, end,
typ = "levels').rename("Predictions™)
plot predictions and actual values
predictions.plot(legend = True)
test['Price’].plot(legend = True)

Calculate root mean squared error
rmse_score = rmse(test["Price"], predictions)

Calculate mean squared error
mse = mean_squared _error(test["Price"], predictions)

print("Arima Root Mean Squared Error : " + str(rmse_score))
print("Arima Mean Squared Error : " + str(mse))

Figure 8: Testing ARIMA model for seasonal dairy price prediction.
3) Forecast future Butter prices for the period of next three years using ARIMA model.

#Forcasting Arima
Train the model on the full dataset
model = ARIMA(data final['Price’],

order = (@, 1, 1)

)
result = model.fit()

Forecast for the next 3 years

forecast = result.predict(start = len(data_final),
end = (len(data final)-1) + 3 * 12,
typ = 'levels').rename('Forecast')

Plot the forecast values
data final['Price’].plot(figsize = (12, 5), legend = True)
forecast.plot(legend = True)

Figure 9: Forecasting future Butter prices using ARIMA model.

6. Experiment 2: ARIMA-GARCH Model

1) Install and import arch model using pip command as shown in below code snippet.

[]

Ipip install arch
Ipip install pmdarima
import arch

Figure 10: Importing arch module.

2) Fit Arima and Garch model on the given dataset.

[]

import statsmodels.tsa.arima model as stm

fit ARIMA model
model = stm.ARIMA(data final['Price'], order=(3,1,2))
model fit = model.fit()

Fit garch model

garch = arch.arch_model(data final['Price'], vol='garch', p=1, 0=8, g=1)
garch_fitted = garch.fit()

garch_forecast = garch fitted.forecast(horizon=1)

predicted et = garch forecast.mean['h.1'].1iloc[-1]

Figure 11: Applying Arima and garch model on given dataset.

3) Test ARIMA-GARCH model using following code to find how well ARIMA-GARCH
model can predict and forecast the seasonal prices of Butter item:

[]

#Testing

predicted mu = model fit.predict(start, end,
typ = 'levels")

prediction = predicted mu + predicted et

prediction.plot(legend = True)

test['Price’].plot(legend = True)

Calculate root mean squared error
rmse_score = rmse(test["Price"], prediction)

Calculate mean squared error

mse = mean_squared error(test["Price"], prediction)
print("Arima-Garch Root Mean Squared Error : " + str(rmse_score))
print({"Arima-Garch Squared Error : " + str(mse))

Figure 12: Testing ARIMA-GARCH model for seasonal dairy price prediction.

4) Forecast future Butter prices for the period of next three years using ARIMA-GARCH

model.

[] # Forecast for the next 3 years
forecast = model fit.predict(start = len(data final),
end = (len(data final)-1) + 3 * 12,
typ = 'levels').rename('Forecast')

forcasting = forecast + predicted et

Plot the forecast values
data final['Price’].plot(figsize = (12, 5), legend = True)
forcasting.plot(legend = True)

Figure 13: Forecasting future Butter prices using ARIMA-GARCH model.

7.Experiment 3: Simple Exponential Model

1) Apply and test Simple Exponential Model using following code to find how well SEM
model can predict and forecast the seasonal prices of Butter item:

[1 #SimpleExpSmoothing
y_hat_avg = test['Price’]
fit2 = SimpleExpSmocthing(np.asarray(data_final['Price’])).fit(smoothing_level=0.6,optimized=False)
predictions = fit2.predict(start, end)
predictions = pd.DataFrame(predictions,index=test.index,columns=['Predictions'])
#predictions = pd.Series(predictions, index=test.index)

plot predictions and actual values
predictions['Predictions'].plot(legend = True)
test['Price’'].plot(legend = True)

Calculate root mean squared error

rmse_score = rmse(test["Price”], predictions['Predictions’])

Calculate mean squared error
mse = mean_squared error(test["Price"], predictions['Predictions'])

print("SimpleExpSmoothing Root Mean Squared Error : " + str(rmse score))
print("SimpleExpSmoothing Mean Squared Error : " + str(mse))
Figure 14: Applying and Testing SEM model for seasonal dairy price prediction.

2) Forecast future Butter prices for the period of next three years using ARIMA-GARCH
model.

[] #Forcasting SimpleExpSmoothing
SES model = SimpleExpSmoothing(data final['Price’])
SES result = SES model.fit()

Forecast for the next 3 years

forecast = SES result.predict(start = len(data final),
end = (len(data final)-1) + 3 * 12,
)

forecast = pd.DataFrame(forecast,columns=['Forecast'])

Plot the forecast values
data final['Price’].plot(figsize
forecast['Forecast'].plot(legend

(12, 5), legend = True)
True)

Figure 15: Forecasting future Butter prices using SEM model.
8. Experiment 4: SARIMA Model

1) Fit SARIMA model to the dataset using following code:

[1 # Fit a SARIMAX
from statsmodels.tsa.statespace.sarimax import SARIMAX

model = SARIMAX(data final['Price'],
order = (0, 1, 1),
seasonal order =(2, 1, 1, 12))

result = model.fit()
#result.summary()

Figure 16: Applying SARIMA model for seasonal dairy price prediction.

2) Test SARIMA model using following code to find how well SARIMA model can predict
and forecast the seasonal prices of Butter item:

[] #Testing Sarima
start = len(train)
end = len(train) + len(test) - 1

Predictions for one-year against the test set
predictions = result.predict(start, end,
typ = 'levels').rename("Predictions™)

plot predictions and actual values
predictions.plot(legend = True)
test['Price’].plot(legend = True)

Calculate root mean squared error
rmse_score = rmse(test["Price"], predictions)

Calculate mean squared error
mse = mean_squared error(test["Price"], predictions)

print("Sarima Root Mean Squared Error : " + str(rmse score))
print("Sarima Mean Squared Error : " + str(mse))

Figure 17: Testing SARIMA model for seasonal dairy price prediction.
3) Forecast future Butter prices for the period of next three years using SARIMA model.

[] #Forcasting Sarima
Train the model on the full dataset
model = model = SARIMAX(data final['Price'],
order = (0, 1, 1),
seasonal order =(2, 1, 1, 12))
result = model.fit()

Forecast for the next 3 years

forecast = result.predict(start = len(data _final),
end = (len(data final)-1) + 3 * 12,
typ = 'levels').rename('Forecast')

Plot the forecast values
data _final['Price’].plot(figsize = (12, 5), legend = True)
forecast.plot(legend = True)

Figure 18: Forecasting future Butter prices using SARIMA model.

