~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Suba Sri Ramesh Babu
Student ID: X21100241

School of Computing
National College of Ireland

Supervisor: Taimur Hafeez

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Suba Sri Ramesh Babu
Student ID: X21100241
Programme: Data Analytics
Year: 2022
Module: MSc Research Project
Supervisor: Taimur Hafeez
Submission Due Date: 15/08/2022
Project Title: Sentiment Analysis In Tamil Language Using Hybrid Deep
Learning Approach
Word Count: 983
Page Count: [14]

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Suba Sri Ramesh Babu

Date: 14th August 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | [J
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Suba Sri Ramesh Babu
X21100241

1 Introduction

This configuration manual aims to provide a step-by-step procedure in the development
and implementation of the research project which aims to classify the sentiment of the
Tamil movie reviews. It provides an overview of the various hardware and software
requirements that are involved in setting up the working environment to run the code
smoothly. It also explains about the programming language used and libraries used in
pre-processing the Tamil text. This manual also provides an overview of the various
experiments performed in this research and results with evaluation metrics.

2 System Configurations

2.1 Hardware Configuration

The configration of the Hardware to build the research:
e Device Name: MacBook Pro
e Operating System: MacOSBigSurOS
e Processor: 2.3GHz Dual-Core Intel Core i5
e RAM: 16GB
e Number of Core: 2

e Graphic Type: intel iris Plus Graphics 640 1536 MB

2.2 Software Configuration

e IDE: Google Colabatory (Cloud Based Jupyter Notebook)
¢ Programming Language: MacOSBigSurOS
e Web Browser: Google Chrome

e Documentation: Overleaf

(Welcome to Colaboratory

File Edit View Insert Runtime Tools Help

Table of contents

Q, Getting started

Data science

= Machine learning

More resources

Machine learning examples

Section

Figure 1: Getting started with Google Colaboratory.

The First step is setting up the Google Colaboratory environment to develop the code
which was shown in figure [I To access the environment, we need a Google account to
sign in.

In the collab notebook, first we have mounted the drive to use the dataset and other
tools from the drive.

After that all the necessary libraries listed below were imported.

e pandas

e numpy

e nltk

e seaborn

e tensorflow
o fastext

e keras

e matplotlib
e sklearn

e indicnlp

2.3 Data Source

The dataset used for this project is collected from the Kaggle repository |I| shown in figure
[2l The dataset contains the Tamil movie reviews which was given in Tamil language and
ratings. The raw data has noise such as punctuation, and unnecessary words to learn the
meaning of the sentence by the model. So, next step involves data preparation.

'https://www.kaggle.com/datasets/sudalairajkumar/tamil-nlp?select=tamil_movie_
reviews_train.csv

https://www.kaggle.com/datasets/sudalairajkumar/tamil-nlp?select=tamil_movie_reviews_train.csv
https://www.kaggle.com/datasets/sudalairajkumar/tamil-nlp?select=tamil_movie_reviews_train.csv

Creal

Com

B <9 @ +

w

m

kaggle

te

Home

petitions

Datasets

Code

Discussions

= Courses

w More

B vour

Tamil

L]

R

Wark

NLP

Bivariate Plotting With .,

Starter: Wamen's E-Co.

View Active Events

Q, Search . |
Tamil NLP
Data Goda{7) Discussion (0) Matagata - |12 New Hotebook £ Download (3MB) e
Data Explorer
tamil_movie_reviews_train.csv (4.64 MB) EARED Wersion 7 {12.38 M)
D tamilmovie.reviews.test.osy
Detail Compact Column 30f 3 columns v I tamil_movie_reviews._train.c...
M tamil_news.
About this file D tamil_news_

D tamil_thirukkurs g
Train dataset for the tamil movie reviews classification M temil_thirukkoursl_train.

= Reviewld = & ReviewnTamd = @ Rawg

1B colurn Hhavie Reiew in Tam Rating for the meuie

Figure 2: Dataset from Kaggle.

3 Implementation

The following section aims to provide an overview of the various steps involved in the
implementation of the research work.
These include the data preparation, feature extraction and the proposed models im-

plementation.

The figure 3| shows the necessary libraries imported for this research.

[] import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import nltk

import seaborn as sns
import tensorflow as tf

import re

from nltk.tokenize import word_tokenize

from nltk.corpus import stopwords

from indicnlp import common

from indicnlp import loader

from indicnlp.morph import unsupervised_morph
import fasttext
import fasttext.util

from tensorflow.keras.optimizers import Adam, SGD
from tensorflow.keras.callbacks import TensorBoard

from keras

import

backend as K

from keras.preprocessing.text import Tokenizer,sequence

from keras.preprocessing.sequence import pad_sequences
from keras.models
from keras.models

from keras
from keras
from keras.
from keras.

.layers.

import
layers
layers

import Model

import Sequential

embeddings import Embedding

optimizers

import SpatialDropoutlD

import TimeDistributed,ConvlD,Dense,Embedding,Input,Dropout,LSTM,Bidirectional,MaxPoolinglD,Flatten,concatenate,GRU

from sklearn.model_selection import train test split
from sklearn.metrics import accuracy_score,confusion matrix,classification_report,roc_auc_score,roc_curve,precision recall curve

Figure 3: Imported Libraries.

3.1 Data Preparation

The datasets available in Kaggle contains train and test data. The datasets were uploaded
from the google drive.
The figure [] and figure [5] shows the train data and test data loading into pandas

dataframe.

Train Data:

[1 data = pd.read_csv('./drive/MyDrive/tamil movie reviews_train.csv')
data.head()

Figure 4: Train Data.

Test Datas:

[1 test = pd.read_csv('./drive/MyDrive/tamil movie reviews test.csv')
test.head()

Figure 5: Test Data.

Before pre-processing we are merging train and test data which was shown in the

figure [6]
Merging Data for Data cleansing process.

[] data = data.append(test)
df = data
df.head()
df.shape

(601, 3)

Figure 6: Merging Train and Test Data.

Sample data after merging process complete shown in figure [7}

) df.head()
[ReviewId ReviewInTamil Rating ?:
0 408 s Flaflonefld) e Ple ul BEW Lerib, Neflear... 4.00
1 107 &6 Flaflor uedSedysefld QeueflEFn Lmle.. 2.00
2 319 gullh Ballomelld smHEUms BMUSTSEDSE Fenaumuns . 3.25
3 484 2 s glarelley semengs ST Ularen Ty ST mig LLme.. 225
4 204 s sflesvealar emswmar, alldvauer QFls mbolls. 3.00

Figure 7: Sample of Dataset.

The raw data collected from the internet which was provided by different peoples
might contains more noise and unwanted symbols. The following figure |8 shows the
removal of punctuations and tokenisation each sentence into words.

¥ [14] def punctuation_remove(text_data):
Appending non punctuated words
punctuation ="".join([t for t in text_data if t not in string.punctuation])
return punctuation

Figure 8: Removing Puncutations and Word Tokenisation.

Output after removing punctuations and tokenisation was shown in the figure [9]

Figure 9: Output after Removing Punctuation and Word Tokenisation.

Performing morphological analysis for formalized linguistics structure. Morphological
analysis was done using the indic NLP library which was imported at starting of the code.
Using IndicNLP resources (Fernando and Wijayasiriwardhane; 2020)each tokenised word
was morphologically analysed and split into separate tokens which explains in figure

INDIC_NLP_RESOURCES = r"./drive/MyDrive/indic_nlp resources-master"

Initialize the Indic NLP library
loader.load()

Morphological Analyser
analyzer = unsupervised morph.UnsupervisedMorphAnalyzer('ta')

[1 final = []
for t in token_list:

new = []

for a in t:
ma= analyzer.morph analyze document(a.split(' '))
#print(ma)
new.append (ma)

fl= flatten_ list(new)

final.append(£f1l)

Figure 10: Morphological Analysis.

Sample output after morphological analysis we got is shown in figure [I1]

0 st

Q 1'aldp, Ballar, i, e, Faf, Wl el e, ‘groey e, AS1, CULD AGUL, ansa’, puly, Eatd

Figure 11: Output of Morphological Analysis.

The list of stop words were provided by TamilNLP resources which contains 125 Tamil
stopwords and was downloaded for github. The figure 12| shows the function created to

load the stopword in Tamil and the data after stopwords got removed was stored in text
variable.

def _ remove_ stopwords(gquery):
parsed = []

#0pening File to load the stopwords in tamil
with open('./drive/MyDrive/TamilStopWords.txt', encoding="utf8") as file:

contents = file.read()
for word in query:
if word not in contents:

parsed.append (word)

return parsed

text= []
for a in final:
stopwords_removed = __ remove_stopwords(a)
stopwords_removed = ' '.join(stopwords removed)
text.append(stopwords_ removed)

Figure 12: Stopword Removal.

In the next step to make the input in same size and shape the process of padding was
carried out. The figure [13]illustrate the process of padding.

[1 d = pad_sequences (X, maxlen=max_length)
print('Shape of data tensor:', d.shape)

Shape of data tensor: (601, 1150)

° print(d)

[0 0 0 ... 39 13 325]
[0 0 0 ... 4952 152 51]
[0 0 0 ... 2678 367 2134]
[0 0 0 ... 424 1043 1043]
[0 0 0 ... 137 15 24798]
[0 0 0 ... 1602 1392 502]]

Figure 13: Padding.

3.2 Data Transformation

The blocks in figure [14] explains the way the rating column get transformed into binary
labelled column as 0 and 1 which is negative and positive respectively.

[] ¥ = np.zeros_like(rating)
ylrating>3] = 1

[1 print(y, lea(y))

serreeeseepreesereseroreel
coomccemoccccoonosomnnsaoe
fooccococsosocomocmmooO R DR
rrreessereprrorreeesarrorse
gerperrererppepeesaroRre
sereperreeeePerEPreorreee
FPPePSrPHOPPOPEPHEPREREESE
cooncccoccacooreneracosos
serreeperereerereereeEeeS
crocorcosscoomooocoEoDaoS
repePeeeeeePerEErESORrEES
peeseopproeroorrroperReoes
hococcccoorrorccenooooroo
srereesorerorroseeroresor
ErorLrecessmrsenesssorsses
A i A E S R S g
PecpercoapEDRPREMERaRMERE
peeeprooeoprreseooroorerre
sereerepeeeeeeereeSESrreS
Y
rerresperssooeeareprrreees
seormseprosrssosarrossoran
corcccceeroreerhenoooeeoe

Figure 14: Converting Rating into Binary classification.

3.3 Feature Extraction

The next step is feature extraction. This process involves transforming each word into
vectors. For this fastText Word Embedding (Senevirathne et al.; 2020)) can be used. In
this research work the fasttext model which was pre-trained on Tamil was used. Figure
[[5khows the importing of fasttext and figure [I6] shows embedding matrix created using
fastext.

[1 import fasttext
import fasttext.util

[1 ft = fasttext.load model('./drive/MyDrive/cc.ta.300.bin")

Figure 15: Importing fasttext.

[1 unique words = len(word_ index)
total_words = unique words + 1
skipped_words =0
embedding_dim = 300
embedding matrix = np.zeros((total words, embedding dim))
for word, index in tokenizer.word_index.items():

try:
embedding vector = ft[word]
except:
skipped words = skipped words+l
pass

if embedding_vector is not None:
embedding matrix[index] = embedding_vector
print("Embedding Matrix shape : ",embedding matrix.shape)

Embedding Matrix shape : (24826, 300)

Figure 16: Building Embedding Matrix.

The figure [17] shows the building of embedding layer.

[] embedding layer = Embedding(total words, embedding dim, weights=[embedding matrix], input_ length=max length, trainable= False)

Figure 17: Embedding Layer.

After the data pre-processing steps the data was splitted into train and test data with
the ratio of 80:20 that explained in figure [I8|

[] train_features, test_ features, train_labels, test_labels = train_test_split(d, Y, test _size=.20)

Figure 18: Splitting data into Train and Test.

3.4 Model Building
3.4.1 CNN-LSTM
BUILDING CNN-LSTM MODEL

[] model_ 1 = Sequentialf})
model_1.add(embedding_layer)
model_1.add(SpatialDropoutlD(0.2))
model 1l.add(ConvliD(filters = 32, kernel size = 1, activation='relu', padding='same'))
model 1.add(MaxPoelinglD(pool size=2, strides= None, padding='wvalid'))
model l.add(ConvlD(filters = 64, kernel size = 1, activation='relu', padding='same'))
model 1.add(MaxPoelinglD(pool size=2, strides= None, padding='wvalid'))
#model 3.add(Activation('relu’))

model 1.add(LSTM(100, dropout=0.2, recurrent dropout=0.2))
model 1.add(Dense(2, activation='softmax'))
model l.compile(loss='categorical crossentropy', optimizer='adam', metrics=['accuracy'])

Figure 19: Building CNN-LSTM.
We also included early stopping shown in figure 20fo prevent the model from overfit-
ting.
[] callback = tf.keras.callbacks.EarlyStopping(monitor='loss', patience=3)
Figure 20: Early Stopping.
After CNN-LSTM model was built we need to train the model on the data on training

data for that we have tuned the hyperparameters and introduce early stopping aswell that
was shown in the figure [21}

history 1 = model 1.fit(train_features, train_labels, epochs=20, batch_size=32,validation_split=0.2, callbacks= [callback])

> Epoch 1/20

12/12 (= - 19s 1s/step - loss: 0.6085 - accuracy: 0.7214 - val loss: 0.5767 - val_accuracy: 0.7500
Epoch 2/20

12/12 [= - 13s 1s/step - loss: 0.5845 - accuracy: 0.7448 - val loss: 0.5861 - val_accuracy: 0.7500
Epoch 3/20

12/12 [=====s===sss==ssss==ssss===s====] - 14s ls/step - loss: 0.5697 - accuracy: 0.7448 - val_loss: 0.5713 - val_accuracy: 0.7500
Epoch 4/20

12/12 [======s=== m=mas =====] - 165 1s/step - loss: 0.5715 - accuracy: 0.7448 - val loss: 0.5685 - val_accuracy: 0.7500
Epoch 5/20

12/12) - 8s 640ms/step - loss: 0.5630 - accuracy: 0.7448 - val_loss: 0.5720 - val_accuracy: 0.7500
Epoch 6/20

12/12 [=====ss==s=s=ssss=ssss===s====] - 85 714ms/step - loss: 0.5591 - accuracy: 0.7448 - val_loss: 0.5648 - val_accuracy: 0.7500
Epoch 7/20

12/12 - 8s 633ms/step - loss: 0.5528 - accuracy: 0.7448 - val_loss: 0.5639 - val_accuracy: 0.7500
Epoch 8/20

12/12 - 85 638ms/step - loss: 0.5455 - accuracy: 0.7448 - val_loss: 0.5609 - val accuracy: 0.7500
Epoch 9/20

12/12 - 8s 712ms/step - loss: 0.5330 - accuracy: 0.7448 - val loss: 0.5584 - val_accuracy: 0.7500
Epoch 10/20

12/12 - 8s 641lms/step - loss: 0.5187 - accuracy: 0.7474 - val_loss: 0.5597 - val_accuracy: 0.7500
Epoch 11/20

12/12 - 85 638ms/step - loss: 0.5133 - accuracy: 0.7552 - val_loss: 0.5662 - val_accuracy: 0.7500
Epoch 12/20

12/12 - 8s 718ms/step - loss: 0.4617 - accuracy: 0.7708 - val_loss: 0.5396 - val_accuracy: 0.7708
Epoch 13/20

12/12 = - 95 694ms/step - loss: 0.4148 - accuracy: 0.7995 - val_loss: 0.5673 - val_accuracy: 0.6667
Epoch 14/2

12/12 [===========s===ss=s=ss===s====] - 85 644ms/step - loss: 0.3949 - accuracy: 0.8359 - val_loss: 0.5331 - val_accuracy: 0.6979
Epoch 15/20

12/12 - 85 630ms/step - loss: 0.3504 - accuracy: 0.8411 - val_loss: 0.5429 - val_accuracy: 0.7396
Epoch

12/12 - 7s 615ms/step - loss: 0.3159 - accuracy: 0.8776 - val_loss: 0.5863 - val_accuracy: 0.7708
Epoch

12/12 - 95 722ms/step - loss: 0.3019 - accuracy: 0.8776 - val_loss: 0.6977 - val_accuracy: 0.7708
Epoch

12/12 - 8s 648ms/step - loss: 0.2984 - accuracy: 0.8958 - val _loss: 0.5283 - val_accuracy: 0.7396
Epoch

1‘2’/12 - 8s 641ms/step - loss: 0.2290 - accuracy: 0.9089 - val loss: 0.5616 - val_accuracy: 0.7396

Epoch 20/20
12/12 [========

®
@

645ms/step - loss: 0.1825 - accuracy: 0.9323 - val _loss: 0.6074 - val_accuracy: 0.7083

Figure 21: Training CNN-LSTM.

The figure [22| shows the evaluation of Train and test data and its accuracy.

[] train_scores_l = model_l.evaluate(train_features, train labels, verbose=0)
print(“Train %s: %.2f¥%" % (model_3.metrics_names[1], train_scores_l[1]*100))

Train accuracy: 92.29%

[] test_scores_l = model_l.evaluate(test_features, test_labels, verbose=0)
print("Test %s: %.2f%%" % (model 3.metrics names[l], test_scores_l[1]*100))

Test accuracy: 78.51%

Figure 22: Evaluation and Train and Test Accuracy for CNN-LSTM.

we have created a function to get the classification report and confusion matrix which
was defined in the figure

[1 def modell evaluate():
predict class with test set
y_pred_test = np.argmax(model_3.predict(test_features), axis=1)
print('Accuracy:\t{:0.1f}%'.format(accuracy_score(np.argmax(test_labels,axis=1),y pred test)*100))

#classification report
print(‘'\n')
print(classification_report(np.argmax(test_labels,axis=1), y pred_test))

#confusion matrix
confmat = confusion matrix(np.argmax(test_labels,axis=1), y_pred test)

fig, ax = plt.subplots(figsize=(4, 4))
ax.matshow(confmat, cmap=plt.cm.Blues, alpha=0.3)
for i in range(confmat.shape(0]):

for j in range(confmat.shape([1l]):

ax.text(x=j, y=i, s=confmat[i, j], va='center',6 ha='center')

plt.xlabel('Predicted label')
plt.ylabel('True label')
plt.tight_layout()

Figure 23: Creating function to summary of the model.

The figure

shows the classification Report and confusion matrix of CNN-LSTM.

[] modell evaluate()

Accuracy: 78.5%
precision recall fl-score support
0 0.83 0.90 0.87 93
1 0.55 0.39 0.46 28
accuracy 0.79 121
macro avg 0.69 0.65 0.66 121
weighted avg 0.77 0.79 0.77 121
0 1
0 84 9
2
[
(Y]
S
1 17 11

Predicted label

Figure 24: Classification Report and Confusion Matrix of CNN-LSTM.

3.4.2 CNN-BiLSTM
Building CNN-BiLSTM MODEL in the figure [25

model 2 = Sequential()

model_2.add(embedding_layer)

model_2.add(SpatialDropoutlD(0.2))

model_2.add(ConvlD(filters = 32, kernel_size = 1, activation='relu', padding='same'))
#model.add(BatchNormalization(})

model_ 2.add(MaxPoolinglD(pool_size=2, strides= None, padding='valid'))

model 2.add(ConvlD(filters = 64, kernel size = 1, activation='relu', padding='same'))
model_2.add(MaxPoolinglD(pool_size=2, strides= None, padding='valid'))
model_2.add{Activation('relu')})

model 2.add(Bidirectional (LSTM{150, return sequences=True)))

model 2.add(Dropout(0.3))

model_2.add(Bidirectional (LSTM(96)))

model 2.add(Dropout(0.2))

#model_2.add(Dense(64,activation="sigmoid"))

model 2.add(Dense(32,activation="'relu'})

#model 2.add(Flatten())

model_2.add(Dense(2,activation='sigmoid'))

model 2.compileoptimizer='adam', loss='categorical crossentropy', metriecs=['accuracy'])

Figure 25: Building CNN-BiLSTM.

10

Training the CNN-BiLSTM on training data in figure [26]

hist_2 = model_2.fit{train_features, train_labels, epochs=20, batch_size=32, validation_split=0.2, callbacks= [callback]}

[+ Epoch 1/20

12/12 |] - 288 2s/step - loss: 0.6085 - accuracy: 0.7135 - val_loss: 0.5785 - val_accuracy: 0.7500
Epech 2/20
12/12 |] - 208 2s/step - loss: 0.5724 - accuracy: 0.7448 - val_loss: 0.5841 - val_accuracy: 0.7500
Epoch 3/20
12/12 | 1 - 228 2s/step - loss: 0.5748 - accuracy: 0.7448 - val loss: 0.5828 - val aceuracy: 0.7500
Epoch 4/20
12/12 |] = 208 2s/step - loss: 0.5735 - accuracy: 0.7448 - val loss: 0.5593 - val_accuracy: 0.7500
Epoch 5/20
12/12 |] - 208 2s/step - loss: 0.5577 - accuracy: 0.7448 - val loss: 0.5673 - val_accuracy: 0.7500
Epoch 6/20
12/12 |] = 218 2s/step - loss: 0.5562 - accuracy: 0.7448 - val_loss: 0.5570 = val_accuracy: 0.7500
Epoch 7/20
12/12 | 1 - 218 28/step - loss: 0.5376 - accuracy: 0.7448 - val loss: 0.5556 - val_accuracy: 0.7500
Epoch 8/20
12/12 |] - 208 2s/step - loss: 0.5117 - accuracy: 0.7552 - val_loss: 0.5228 - val accuracy: 0.7604
Epoch 9/20
12/12 |] - 208 2s/step - loss: 0.4932 - accuracy: 0.7760 - val loss: 0.5210 - val_accuracy: 0.7604
Epoch 10/20
12/12 |] - 228 2s/step - loss: 0.4688 - accuracy: 0.8021 - val_loss: 0.5126 - val_accuracy: 0.7604
Epoch 11/20
12/12 |] - 208 2s/step - loss: 0.4331 - accuracy: 0.8125 - val_loss: 0.5255 - val_accuracy: 0.7396
Epoch 12/20
12/12 |] = 208 2s/step - loss: 0.4023 - accuracy: 0.8229 - val_loss: 0.5110 - val_accuracy: 0.7396
Epoch 13/20
12/12 |] - 228 2s/step - loss: 0.3059 - accuracy: 0.8750 - val_loss: 0.5617 - val_accuracy: 0.7708
Epoch 14/20
12/12 |] - 208 2s/step - loss: 0.3315 - accuracy: 0.8620 - val_loss: 0.5615 - val accuracy: 0.7604
Epoch 15/20
12/12 | 1 - 218 2s/step - loss: 0.2553 - accuracy: 0.8932 - val_loss: 0.6193 - val_accuracy: 0.8021
Epoch 16/20
12/12 | 1 = 218 28/step - loss: 0.2257 - accuracy: 0.9193 - val loes: 0.6300 - val accuracy: 0.7500
Epoch 17/20
12/12 |] = 228 2s/step - loss: 0.2094 - accuracy: 0.9167 - val_loss: 0.6423 - val_accuracy: 0.8021
Epoch 18/20
12/12 | 1 - 21s 2s/step - loss: 0.2323 - accuracy: 0.9062 - val loss: 0.4905 - val accuracy: 0.7917
Epoch 19/20
12/12 |] - 298 2s/step - loss: 0.1879 - accuracy: 0.9401 - val loss: 0.6203 - val accuracy: 0.7604
Epoch 20/20
12/12 | 1 - 228 2s/step - loss: 0.1998 - accuracy: 0.9193 - val loss: 0.5839 - val_accuracy: 0.8333

Figure 26: Training CNN-BiLLSTM.

After training the CNN-BiLSTM Model, the model was then evaluated on train and
test data. The accuracy the model got and the evaluation of CNN-BIiLSTM shown in

figure

[1 train scores_2 = model 2.evaluate(train features, train labels, verbose=0)
print("Train %s: %.2f%%" % (model 2.metrics_names[1], train scores_2[1]*100))

Train accuracy: 96.25%

[1] test scores_2 = model_2.evaluate(test_features, test_labels, verbose=0)
print("Test %s: %.2f%%" % (model_2.metrics_names[1], test_scores_2[1]*100))

Test accuracy: 80.99%

Figure 27: Evaluation and Train and Test Accuarcy for CNN-BiLSTM.

Classification Report and Confusion Matrix shows how well the model performance
is. These summary of CNN-BiLSTM given in figure

11

[] model2 evaluate()

Accuracy: 81.0%
precision recall fl-score support
0 0.84 0.94 0.88 93
1 0.65 0.39 0.49 28
accuracy 0.81 121
macro avg 0.74 0.66 0.69 121
weighted avg 0.79 0.81 0.79 121
] 1
0 87 6
g
L
L1
=
1 17 1n

Predicted label

Figure 28: Classification Report and Confusion Matrix of CNN-BiLSTM.

3.5 CNN-BiGRU
Building CNN-BiGRU in the figure

[1 model_3 = Sequentialf()
model_3.add(embedding_layer)
model 3.add(SpatialDropoutlD(0.2)}
model 3.add(ConvlD(filters = 64, kernel size = 1, activation='relu', padding='same'})
model 3.add(MaxPoolinglD({pool_size=2, strides= None, padding="valid'))
model_3.add(Activation('relu'))

model 3.add(SpatialDropoutlD(0.2)}
model 3.add(Bidirectional (GRU(75)})
model 3.add(Dropout(0.2))

model_3.add(Dense(2, activation='sigmoid'})
model_3.compile(loss='categorical_ crossentropy’', optimizer='adam', metrics=['accuracy’])

Figure 29: Building CNN-BiGRU.

In figure |30| training CNN-BiLSTM model on train data with hyperparameters were
shown.

12

history 3 = model_3.fit(train_features, train_labels, epochs=20, batch_size=32,validation_split=0.2, callbacks= [callback])

()

Epoch 1/20
12/12 - 235 ls/step - loss: 0.6069 - accuracy: 0.7318 - val_loss: 0.5724 - val_accuracy: 0.7500
Epoch

12/12 - 15s 1s/step - loss: 0.5884 - accuracy: 0.7448 - val loss: 0.5679 - val accuracy: 0.7500
Epoch

12/12 - 145 1s/step - loss: 0.5668 - accuracy: 0.7448 - val_loss: 0.5732 - val_accuracy: 0.7500
Epoch

12/12 - 13s 1s/step - loss: 0.5619 - accuracy: 0.7448 - val_loss: 0.5614 - val_accuracy: 0.7500
Epoch

12/12 - 13s 1s/step - loss: 0.5588 - accuracy: 0.7448 - val_loss: 0.5591 - val_accuracy: 0.7500
Epoch

12/12 - 108 835ms/step - loss: 0.5519 - accuracy: 0.7448 - val_loss: 0.5555 - val_accuracy: 0.7500
Epach 7/20

12/12 - 8s 705ms/step - loss: 0.5390 - accuracy: 0.7448 - val_loss: 0.5495 - val_accuracy: 0.7500
Epoch

12/12 - 10s B3dms/step - loss: 0.5311 - accuracy: 0.7448 - val_loss: 0.5418 - val_accuracy: 0.7500
Epach

12/12 - 8s 698ms/step - loss: 0.5072 - accuracy: 0.7448 - val loss: 0.5291 - val accuracy: 0.7500
Epoch

12/12 - 8s 705ms/step - loss: 0.4927 - accuracy: 0.7604 - val loss: 0.5145 - val_accuracy: 0.7500
Epoch

12/12 - B8 694ms/atep - loss: 0.4553 - accuracy: 0.7891 - val loss: 0.4993 - val accuracy: 0.7500
Epoch 12/20

12/12 - &s 70Ims/step - loss: 0.4219 - accuracy: 0.7969 - val loss: 0.4701 - val accuracy: 0.7604
Epoch

12/12 - 8 Tllms/step - loss: 0.3657 - accuracy: 0.8203 - val loss: 0.4542 - val accuracy: 0.8229
Epoch

12/12 - Bs 697ms/step - loss: 0.3472 - accuracy: 0.B438 - val loss: 0.4383 - val accuracy: 0.8021
Epach

12/12 - 9s 724ms/step - loss: 0.2776 - accuracy: 0.8932 - val loss: 0.4409 - val accuracy: 0.83313
Epoch

12/12 - 10s BS7ms/step - loss: 0.2279 - accuracy: 0.9062 - val_loss: 0.4176 - val_accuracy: 0.8229
Epoch

12/12 - 8s 70Ims/step - loss: 0.1982 - accuracy: 0.9245 - val loss: 0.4206 - val accuracy: 0.8125

Epoch 18/20

12/12 [=e=ssssssssssssssssssssssssane | - 98 790ms/step - loss: 0.1728 - accuracy: 0.9401 - val loss: 0.4633 - val accuracy: 0.8125
Epoch 19/20

12/12 [emmessascsssmssasnannaaanaane] - 148 1s/step - loss: 0.1698 - accuracy: 0.9453 - val_loss: 0.5807 - val_accuracy: 0.8021
Epoch 20/20

12/12 [sessesssssssmmsaemannaasanne] - 8s 6B6ms/step - loss: D.1435 - accuracy: 0.9479 - val loss: 0.4625 - val accuracy: 0.8021

Figure 30: Training CNN-BiLSTM.

Evaluation of CNN-BIiLSTM and accuracy for predicted train and test data was
provided in the figure [31]

[

1

train_scores_3 = model_3.evaluate(train_features, train_labels, verbose=0)
print("Train %s: %.2f%%" % (model_4.metrics_names[1l], train_scores_3[1]*100))

Train accuracy: 95.21%

test_scores_3 = model_3.evaluate(test_features, test_labels, verbose=0)
print("Test %s: %.2f3%" % (model_ 4.metrics_names[1], test scores_3[1]*100))

Test accuracy: 79.34%

Figure 31: Evaluation and Train and Test Accuarcy for CNN-BiLSTM.

The figure explains the Classification Report and Confusion Matrix of CNN-

BiGRU.

[

1

train_scores_3 = model_3.evaluate(train_features, train_labels, verbose=0)
print("Train %s: %.2f%%" % (model_4.metrics_names[1l], train_scores_3[1]*100))

Train accuracy: 95.21%

test_scores_3 = model_3.evaluate(test_features, test_labels, verbose=0)
print("Test %s: %.2f3%" % (model_ 4.metrics_names[1], test scores_3[1]*100))

Test accuracy: 79.34%

Figure 32: Classification Report and Confusion Matrix of CNN-BiGRU.

References

Fernando, A. and Wijayasiriwardhane, T. K. (2020). Identifying religious extremism-
based threats in srilanka using bilingual social media intelligence, 2020 International

13

Research Conference on Smart Computing and Systems Engineering (SCSE), IEEE,
pp. 103-110.

Senevirathne, L., Demotte, P., Karunanayake, B., Munasinghe, U. and Ranathunga, S.
(2020). Sentiment analysis for sinhala language using deep learning techniques, arXiv
preprint arXiv:2011.07280 .

14

	Introduction
	System Configurations
	Hardware Configuration
	Software Configuration
	Data Source

	Implementation
	Data Preparation
	Data Transformation
	Feature Extraction
	Model Building
	CNN-LSTM
	CNN-BiLSTM

	CNN-BiGRU

