
 

 

 
 
 
 
 
 
 
 
 
 

 

Configuration Manual 
 
 
 
 

 

MSc Research Project 
 

Data Analytics 
 
 

 

Arunprasath Ramakrishnan Arularasan 
 

Student ID: 20207417 
 
 
 

School of Computing 
 

National College of Ireland 
 
 
 
 
 
 
 
 
 
 
 

Supervisor: Dr. Vladimir Milosavljevic 



 

 
National College of Ireland 

 

MSc Project Submission Sheet 

 

School of Computing 

 

Student Name: 

 

Arunprasath Ramakrishnan Arularasan 

 

Student ID: 

 

20207417 

 

Programme: 

 

Data Analytics 

 

Year: 

 

2021-2022 

 

Module: 

 

MSc Research Project 

 

Lecturer: 

 

Dr. Vladimir Milosavljevic 

Submission Due 

Date: 

 

August 15, 2022 

 

Project Title: 

 

Seismic Phase Detection & Picking using EfficientNet 

Word Count: 

 

1526       Page Count: 12 

 
I hereby certify that the information contained in this (my submission) is information pertaining to research I 
conducted for this project.  All information other than my own contribution will be fully referenced and listed in 
the relevant bibliography section at the rear of the project. 
ALL internet material must be referenced in the bibliography section.  Students are required to use the 
Referencing Standard specified in the report template.  To use other author's written or electronic work is 
illegal (plagiarism) and may result in disciplinary action. 

 

Signature: 

 

Arunprasath Ramakrishnan Arularasan 

 

Date: 

 

August 15, 2022 

 

 

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST 

 

Attach a completed copy of this sheet to each project (including multiple 

copies) 

□ 

Attach a Moodle submission receipt of the online project 

submission, to each project (including multiple copies). 

□ 

You must ensure that you retain a HARD COPY of the project, both 

for your own reference and in case a project is lost or mislaid.  It is not 

sufficient to keep a copy on computer.   

□ 

 

 

Assignments that are submitted to the Programme Coordinator Office must be placed 

into the assignment box located outside the office. 

 

Office Use Only 

Signature:  

Date:  

Penalty Applied (if applicable):  



1 

 

 

 

Configuration Manual 
 

Arunprasath Ramakrishnan Arularasan 

Student ID: 20207417 

 
 
 

1 Introduction 
 

The configuration manual discusses the model-building steps of the research “Seismic 

Phase Detection & Picking using EfficientNet”. The research was done using Jupyter 

Notebook on a local machine and Python. The system configuration used for the research is 

shown in Table 1. The latest version of TensorFlow was used to access the EfficientNet 

model. The Keras Image generator was used for reading the images. The “Matplotlib” library 

was used for the visualisations and the “sklearn” library was used for the evaluation metrics. 

 

          Table 1 System Configuration 

Operating System Windows 10 

RAM 16 GB 

Processor AMD Ryzen 7 5800H 

Graphic Card NVIDIA RTX 3060 

 

 

2 Data pre-processing 
 

The Italian Seismic Dataset (INSTANCE) was used for this research. The datasets 

consist of raw waveform signals that need to be converted into waveform and spectrogram 

plots for the research. The signals are stored as hdf5 files and the metadata for the signals is 

stored as CSV. The h5py library is used for reading the HDF5 files and the plots of waveform 

were visualised using the matplotlib library. The parallel, delayed function in the joblib 

library is used for multiprocessing. 

 

 

 

Figure 1 Required Modules 
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Figure 2: Reading the Metadata 

 

 

 

Figure 3:  Creating Data intervals 

 

 

 

Figure 4: Creating Folders and Sub-folders for Plots 

 

 

The paths to the HDF5 files were given and the metadata file was read using the 

“pandas” library as shown in Fig2. For this research, 10000 earthquake signals were chosen 

and the data interval was chosen as 2000. The name of all the traces from the metadata was 

stored in a separate list. Separate subdirectories are created as shown in Fig 4 for Waveform 

and Spectrogram plots with the subfolders as Earthquake and Noise. Fig 5 shows the code 

block that converts the waveform signals into their respective waveform and spectrogram 

plots. The traces are read in batches of 2000 using for loop. The traces list containing the 

10,000 earthquake waveforms is then read from the HDF5 files. The waveforms are then 

transposed using NumPy. The waveforms are then plotted for the 120s with the labels and the 

axis removed. The waveform is then saved to its path. The spectrogram is plotted using the 

specgram function in matplotlib. The colormap chosen for the spectrogram was plasma as 

EfficientNet requires images in 3 channels with the sampling frequency set at 100Hz. The 

plots are then stored in the respective directories. Since the processing of 10,000 files 

consumes a lot of time, the parallel and delayed functions were used for multiprocessing the 

batches of 2000 images. This allows for faster conversion of signals to waveform and 

spectrogram plots. Both the waveform and the spectrogram plots of a particular trace were 

stored with their names from the metadata file.  
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Figure 5: Converting Signals to Spectrogram and Waveform 

 

For the processing of the noise waves the same code snipped was used with the file’s 

paths changed for the HDF5 file and the CSV file as shown in Fig 6. The noise waves were 

processed in a similar way to the earthquake signals. The waveform of the noise and the 

spectrogram plots were stored in their respective directories. 

 

Figure 6: Processing Noise Waves 

 

 The spectrogram plots for the phase classification model were trained using Keras 

Image Generator which requires a separate folder structure for the train, test, and validation. 

The “splitfolders” library was used for converting it into that folder structure in the ratio of 

60% for the training data and 20% each for the test and validation data.  
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Figure 7: Creating the Folder structure 

 

 

3 Phase Classification model 
 

For the phase classification model, the libraries shown in Fig 8 were used. The Keras 

Image Data Generator was used for processing the images from the train, test, and validation 

folders. The “flow_from_directory” function takes the directory path and reads the images 

from both classes. Since the EfficientNet-B0 model was used for the research, the images 

were resized into the shape (224,224). The classes were specified to ensure that Noise was 

encoded as 0 and earthquake was encoded as 1. The images were read in batches of 64 and 

since this is a classification model the class mode was set as categorical. 

 

 

Figure 8: Libraries for the Phase Classification model 

 

Fig 10 shows the callback functions used while training the model. The callback 

functions used were the early stopping callback and the model checkpoint callback. The early 

stopping callback was set to stop after 10 epochs if the improvements were worse than 1%. 

The model checkpoint callback was used to save the model weight after every epoch to 

continue the training from the last saved state. Fig 11 shows the EfficientNet architecture 

used for the Phase Classification model. The EfficientNet B0 was loaded from TensorFlow 

Keras applications. The layers of the EfficientNet were set to be not trainable. The Global 

max pooling layer and dense layer were used to get the output from the EfficientNet 

architecture to classify the signals. The “SoftMax” function was used to dense the output into 

two probabilities for the Earthquake class and the Noise Class. The model was trained with 

the train generator and the val generator was used for validation and the model was trained 

for 50 epochs. Fig 12 shows the code used for retrieving the “Accuracy vs Loss” curve from 

the history variable. Fig 13 shows the evaluation of the model on the test dataset. Fig 14 

shows the calculation of evaluation metrics like the accuracy, F1 score, recall, and precision 

from the “sklearn” metrics. The confusion matrix is plotted using the 

“ConfusionMatrixDisplay” and the plots are saved. The accuracy history for the training and 

test dataset for every epoch is plotted using the history variable. The false positive rate, true 

positive rate, and AUC are calculated using the sklearn metrics function. These variables are 

used to plot the Receiver Operating Characteristics (ROC) in Fig 15.   

Fig 16 shows the CNN architecture that was used for comparing the performance of 

the EfficientNet. The model was then compiled with the same parameters and trained with 

the train generator. The model was evaluated similarly to the EfficientNet. For finding the 
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interpretability of the model, the code in Fig 17 was used to display random image samples 

with the predicted labels. The same code was reused with the path of the train, test, and 

validation directories for training with the STEAD dataset.  

 

 

Figure 9: Creating the Image Data Generator 

 

 

 

Figure 10: Callback functions 
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Figure 11: EfficientNet Architecture 

 

Figure 12: History plot 

 

 

Figure 13: Evaluating Test dataset 

 

 

Figure 14: Evaluation metrics 
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Figure 15: ROC Curve 

 

 

 

 

Figure 16: CNN architecture 

 

 

 

Figure 17:  Displaying wrong predictions 
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4 Phase Regression model 
 

The libraries used for the Phase regression model are shown in Fig 18. The labels for the 

arrival times for the trace are retrieved by reading the metadata file as shown in Fig 19. Since 

the regression model can’t use the folder structure like the classification model, the path of 

the files is stored in a separate dataframe as shown in Fig 20 along with their corresponding 

labels from the metadata file. 

 

Figure 18: Libraries for Phase Regression 

 

 

Figure 19: Reading the Metadata 

 

 

 

Figure 20: Creating dataframe with image path and arrival times 
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 The dataframe is then split into train, test, and validation and passed to the Image data 

generators for creating their respective generators. The Image generator takes the path of the 

image as “x_col” and the “y_col” as the arrival time of the P/S waves. The class mode was 

set as raw as it is a regression model. Fig 22 shows the calculation of the baseline MAPE and 

MSE for the model by predicting the mean of the arrival times. 

 

 

 

Figure 21: Creating Image Data Generator 

 

 

 

Figure 22: Baseline MAE & MAPE 
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 Fig 23 shows the callback functions used for the model. The early stopping callback 

and the model checkpoint callback were aused for the model with the validation MAPE being 

the monitor variable. Fig 25 shows the EfficientNet regression architecture used and Fig 25 

shows the and training of the model with “rectified adam” as the optimizer. 

  

 

Figure 23: Callback functions 

 

 

 

Figure 24: EfficientNet Regression architecture 

 

 

 

Figure 25: Compiling the model 
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 The model was evaluated using the train generator as shown in Fig 26. Fig 27 shows 

how the true picks were classified for the model. If a predicted value lied within a range of 

150 (1.5s), it was considered a true pick. The CNN Regression architecture is shown in Fig 

28. The model was compiled similarly to the EfficientNet architecture and the model’s 

performance was evaluated using the test dataset. The MAPE plots for every epoch were 

visualised for both the architectures using the code snippet in Fig 29. The baseline MAPE 

was used as a reference line. The same code was used for S waves with the variable name 

changed and the STEAD dataset.   

 

 

Figure 26: Evaluating the Test data 

 

 

Figure 27: Finding True Picks 

 

 
 

 

Figure 28: CNN Regression Architecture 
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Figure 29: Comparison of MAPE over epochs 

 

 

 

 


