
Configuration Manual

MSc Research Project

Data Analytics

Krishnanunni Raju
Student ID: 20232217

School of Computing

National College of Ireland

Supervisor: Mr. Hicham Rifai

www.ncirl.ie

National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Krishnanunni Raju

Student ID: 20232217

Programme: Data Analytics

Year: 2022

Module: MSc Research Project

Supervisor: Mr. Hicham Rifai

Submission Due Date: 15/08/2022

Project Title: Configuration Manual

Word Count: 1642

Page Count: 12

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 14th August 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Krishnanunni Raju
20232217

1 Introduction

The goal of this document is to offer all of the instructions required to reproduce the
Exercise Tracking and Detection Using Spatial-Temporal Graph Convolutional Neural
Network implementation.

2 Hardware Requirements

The computer used for project implementation has a 9th generation Intel Core i7-9750H@2.60
GHz processor, 16GB of RAM, and Microsoft Windows 11 Home edition. The hardware
specification is given in Figure 1.

Figure 1: Hardware Specification

The specifications of the operating system is shown in Figure 2.

Figure 2: Operating system specification

3 Software Requirements

Pycharm Professional Edition by JetBrains was used to implement the solution. The
version of the software is 2022.1.2. The software specification is shown in Figure 3.
Python 3.10.4 is used for implementation as shown in Figure 4.

1

Figure 3: Pycharm software specification

Figure 4: Python version

4 Library requirements

The following are the libraries required and their versions. Pip package manager is used
to install all these libraries.

• mediapipe - 0.8.10

• numpy - 1.23.0

• opencv contrib python - 4.6.0.66

• pandas - 1.4.3

• torch - 1.12.0

• protobuf - 3.19.0

5 Dataset Description

• The dataset used for implementation is an open-source dataset. It is downloaded
from InfinityAI website1. It is also available to be downloaded from another source2.

• The dataset is in the form of a zip file. Once extracted there will be 10 zip files
with each file having 100 videos in it as shown in Figure 5. These files should be
extracted and a folder structure should be created as shown in Figure 6.

1https://toinfinity.ai/infiniterep
2https://paperswithcode.com/dataset/infiniterep

2

Figure 5: Extracted dataset

Figure 6: Folder structure of the data

6 Training Data Generation

• Once the dataset folder structure is created class TrainingData is utilized to create
the training data.

• The constructor of the class takes the path of dataset folder.

• TrainingData class has three member functions. They are generate frames(),
read files() and read video files into dataframe(). These functions are intern-
ally used by the class and called inside the constructor.

• All the directories are looped and files with extension mp4 are read.

• An object of PoseEstimator class is created and the skeletal information is extracted
using the capture from training data() method.

7 Pose Capturing

PoseEstimator is the class used to capture the skeletal information. The class diagram is
shown in Figure 7

• It has two important memeber functions. They are capture() and capture from training data().

• capture() is used to extract skeletal data and classify the exercise in real time.

• capture from training data() helps the TrainingData class to extract skeletal data
from the video dataset.

3

• There are three more functions in the class that are internally used by the other
two functions for achieving their goal.

Figure 7: PoseEstimator Class

8 Model Implementation

8.1 STGCN Class

• The model is implemented using the Model class and class STGCN acts as a wrapper
of the Model class. The fields and methods of the class are shown in Figure 8

• Arguments of STGCN class:

– optimizer(string): The optimizer to be considered for training.

– labels(list): List of labels related to the network.

– strategy(string): The partitioning method to be used. This can take two values
either ’spatial’ or ’uniform’. If any other values are provided a ValueError
exception will be raised.

– edge importance(bool): This parameter decides whether the learnable edge
importance mask will be used or not.

• Functionality of STGCN class:

– Create an instance of Model class. Model class is the implementation of the
Spatial-temporal Graph Convolutional Neural Network.

– Train the STGCN model using train() function. The function takes two
arguments. They are the path of skeletal data in .NPY file and labels in a
pickle file.

4

– The number of epochs can be changed inside the loop defined in train()
method. It is set to 100.

– Batch size for training can be changed in the arguments while initializing
loader variable. It is set to 256 for training.

– Test the model with a testing data using test(). It takes a single argument
for the path of data. The data should be stored in .NPY file format.

– Batch size for test data could be changed by changing the batch size argument
value while initializing the loader variable

– Predict the class of exercise for any given data. The predict() function used
for this takes the data as the argument. The data should have the form a
tensor.

– save() takes two arguments. They are the path where the model should be
saved and path where the labels should be saved.

– load() takes path of the saved model and path of the labels as arguments. It
loads the saved model.

Figure 8: STGCN Class

8.2 Model Class

• Arguments of the Model class:

5

– in channels (int): The number of coordinates or channels in the data. It is set
to 3.

– num class (int): The count of classes of exercises. Number of different exercises
that will be detected.

– edge importance weighting (bool): If it is set to True, then a learnable im-
portance weighting is added to the edges of the graph.

• Functionality of Model class:

– The neural network is defined in this class. The constructor of the class is
shown in Figure 9

Figure 9: Constructor of Model Class

– Model class is inherited from torch.nn.Module class.

– Define the number of ST-GCN blocks with the required arguments.

– Function forward() takes the data in the form of tensor and performs forward
propagation.

– The fields and methods of the class are shown in Figure 10

8.3 st-gcn class

• Applies a spatial temporal graph convolution over an input graph sequence.

• It is also inhereted from torch.nn.Module. The fields and methods of the class are
shown in Figure 11.

• Arguments of st-gcn class

– in channels (int): Number of coordinates/channels in the input data.

– out channels (int): Count of channels after the convolution operation.

6

Figure 10: Model Class

– kernel size (tuple): It has a datatype of tuple. The first value corresponds to
the size of temporal convolving kernal and the second value corresponds to the
size of graph convolvong kernal.

– stride (int): The default value of stride is 1 and it denotes the stride of the
temporal convolution operation. As the default value is set it is a optional
argument.

– dropout (int): Defines the value of hyperparameter dropout. The default value
is set to 0. It is an optional argument.

– residual (bool): If it is set to True, it applies a residual mechanism.The default
value is set to True.

Figure 11: st gcn class

• Shape:

– Input[0]:The sequence of input graph(Format: (N, in channels, T in, V))

– Input[1]: The adjacency matrix of the input graph(Format: (K,V, V))

– Output[0]: Defines the output graph sequence. (Format: (N, out channels, T out, V))

– Output[1]: Defines the adjacency matrix of the graph for output data. (Format:
(K,V, V)).
Here

7

N - batch size.
K - spatial kernel size.
T in/T out - length of the input or output sequence.
V - number of nodes int the graph.

8.4 Graph Class

• This class defines the graph used to model the skeletons that are extracted by
MediaPipe BlazePose. The fields and methods of the class is shown in Figure 12

• Arguments of Graph Class:

– strategy (string): Defines the partitioning strategy used. It can only be one of
the two following values.

1. uniform: Uniform Labeling

2. spatial: Spatial Configuration

– max hop (int): the maximum distance in between two of the connected nodes.

– dilation (int): Defines the spacing in between the kernel points.

Figure 12: Graph class

8.5 ConvTemporalGraphical Class

• This class is also inherited from torch.nn.Module.

• This is the class for application of a graph convolution. The fields and methods of
this class is shown in Figure 13.

– in channels (int): Defines the count of coordinates/channels in the input data.

8

– out channels (int): Number of channels that are present after the convolution
operation.

– kernel size (int): Defines the size kernel that performs graph convolution.

– t kernel size (int): Defines the size of the kernel that performs the temporal
convolution.

– t stride (int): It is a optional parameter and default value is 1. It defines the
stride value for temporal convolution.

– t padding (int): Temporal zero-padding that are added to both the sides of
input. It is an optional parameter and default value is 0.

– t dilation (int):Defines the spacing in between the elements in temporal kernel.
It is an optional parameter and default value is 1.

– bias (bool): If it is set to True, a learnable bias is added to the output. It is
an optional argument and the default value is True.

Figure 13: ConvTemporalGraphical Class

8.6 Feeder Class

• Data feeder class for model training and testing. The fields and methods in the
class is shown in Figure 14.

• Arguments for Feeder Class:

– data path: the path to ’.npy’ data, the shape of data should be (N, C, T, V,
M)

– label path: the path to label

– random choose: If true, randomly choose a portion of the input sequence

– random shift: If true, randomly pad zeros at the beginning or end of sequence

– window size: The length of the output sequence

– normalization: If true, normalize input sequence debug: If true, only use the
first 100 samples

9

Figure 14: Feeder class

8.7 ExerciseTracker class

• The whole implementation follows compositional architecture. Exercise Tracker is
the class that uses all the other classes and does model training, testing and real-
time tracking as well. The fields and methods of the class are shown in Figure 15.

• Arguments for ExerciseTracker:

– train(bool): If set to True the models will be trained and if set to False will
try to load a saved model.

– strategy(string): Can take two values: ’spatial’ or ’uniform’ depending on the
strategy required. Only applicable for loading the model.

– edge importance(bool): Only applicable if loading a saved model. If set to
True, it will try to load the model with edge importance set to True.

9 Training

In main.py file call ExerciseTracker with train parameter set to True. The other two
parameters are not required if training is to be performed as shown in Figure 16.
This will train 4 models. They are created with a combination of two partitioning

methods and use of learnable edge importance weighting mask. It will also test the
models with a testing data and print the results. If track() function is called after this

10

Figure 15: ExerciseTracker Class

Figure 16: Configuring main.py for training and saving the model

line it will access the camera and start the detection.
Figure 17 shows the functions trainModel(),test model() and track(). If generate is set

Figure 17: Functions used to train the model, test the model with test data and start
tracking using the model

to True it will generate training data from videos. The argument to TrainingData should
be the directory where the extracted dataset is present as shown in Figure 6 in section 5.
If the folder path has been changed, change the argument to TrainingData. It will
save the data and labels in C : \ProjectDBs\Final ResearchDB\final data.npy and
C : \ProjectDBs\Final ResearchDB\final data label.pkl respectively. The models
will be saved in C : \ProjectDBs\Final ResearchDB.

11

Figure 18: Configuring main.py for using a saved model

10 Using a saved model

To use a saved model initialize ExerciseTracker with train as False. Provide arguments
strategy and edge importance for loading the required model. If strategy is given as
’spatial’ and edge importance is set to True it will load model with spatial configuration
partitioning and learnable edge importance weighting mask.
Call track() method of ExerciseTracker to access the camera and start the detection and
classification.

Figure 19: ExerciseTracker constructor

From the constructor of ExerciseTracker shown in Figure 19 it could be seen that
the saved model will be looked in C : \ProjectDBs\Final ResearchDB. The name
of the model file will be in the format Final Model {strategy name} {edge importance
weighting enabled}.pth.

12

	Introduction
	Hardware Requirements
	Software Requirements
	Library requirements
	Dataset Description
	Training Data Generation
	Pose Capturing
	Model Implementation
	STGCN Class
	Model Class
	st-gcn class
	Graph Class
	ConvTemporalGraphical Class
	Feeder Class
	ExerciseTracker class

	Training
	Using a saved model

