~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Aryan Rajput
Student ID: X20128088

School of Computing
National College of Ireland

Supervisor: Prof. Hicham Rifai

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Aryan Rajput
Student ID: X20128088
Programme: Data Analytics
Year: 2018
Module: MSc Research Project
Supervisor: Prof. Hicham Rifai
Submission Due Date: 31/01/2022
Project Title: Configuration Manual
Word Count: 747
Page Count: [1

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Aryan Rajput

Date: 30th January 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Aryan Rajput
X20128088

1 Introduction

The main purpose of this document is to enlist the tasks that are needed to be executed
while implementation of this project. Software and hardware prerequisites are provided
in order to duplicate the project in the future. The coding processes are covered in this
article, as well as the steps that needed to be followed in order to run the code.

2 System Configuration

The requirement for hardware and software that are used to carry out the research are
enlisted in this section.

2.1 Hardware Configuration

The configuration of the hardware that was used in the research is displayed in Figure

Device specifications

Device name

Processor
Installed RAM
Device 1D
Product ID
System type

Pen and touch

Figure 1: Hardware Configuration

Windows specifications are displayed in Figure

2.2 Software Configuration

The configuration of the software that were used in the research are explained in this
section.

Windows specifications

Edition 10 Home
Version
Installed on

OS5 build
Experience

Figure 2: Hardware Configuration

2.2.1 Python

Python is used to carry out this study project. It has a significant number of classes
which support Machine Learning techniques. It also comes with a number of libraries
and packages that makes pre-processing and project implementation very simple. The
latest version of python is downloaded and used to conduct this research. The python
version used is 3.10.1

2.2.2 Anaconda

Anaconda is used to provide R and Python integrated development environment (IDE).
It makes developers experience easy by integrating several platforms together. The
anaconda version used for this project is 2.1.1

2.2.3 Jupyter Notebook

Jupyter Notebook has been used to develop the code and programs as the main IDE for
this research. The version for Jupyter Notebook used is 6.3.0

2.2.4 Google Chrome

Google Chrome has been used as main browser to provide Jupyter Notebook runnable
platform. The version used for Chrome is 96.0.4664.93

2.2.5 Overleaf

Overleaf has been used to develop the report for the project. Overleaf was also integrated
with Jupyter Notebook to get the latest and updated output results.

3 Data Preparation

The dataset which has been used used for this research has been downloaded from open
repository website kaggle E] The snapshot for the datset is depicted in Figure

The dataset consist of 5 columns and 1021064 rows, which consist of product details
which is collected for over 6 years. After downloading the dataset, it has been uploaded
to jupyter notebook and kept under same directory as the code, so that giving path and

"https://www.kaggle.com/felixzhao/productdemandforecasting/

https://www.kaggle.com/felixzhao/productdemandforecasting/

< Historical Product Demand.csv (51.25 MB) & 03

Detail Compact Column 5of 5columns v

About this file

Dataset containing the product demand for encoded products

A Product_Code = A Warchouse = A ProductCategory = O Date = M OmerDemand =
The product name se name P The date customer needs single order gty

encoded encaded ach Pro the product

Product 1359 2% Wnse.J 73% Category.019 46%

Product 1295 % Whse_A 15% Category.005 10%

Product_8993 Whse_J 2012/7/27 188

Product_8979 Whse_J 2012/1/19 588

Product 8979 Whse_J 912/2/3 589

Product_8979 Whse_J Category_828 2012/2/9 509

Figure 3: Dataset

importing other libraries was not needed. Refer to Figure [for importing dataset related
details.

#Import the dota and parse dates.
df = pd.read csv{'Historical Product Demand.csv', parse_dates=['Date'])

Figure 4: Importing Dataset

4 Implementation

The python libraries that are used in the project needs to be updated to latest version.
Specially keras and tensorflow libraries needed to be updated to latest version. The
Tensorflow version used for research is 2.7.0 and Keras version is also 2.7.0.

4.1 Implementing SARIMA
All the libraries that were used for implementation of SARIMA are displayed in Figure

import pandas as pd
import numpy as np
import seaborn as s

import matplotlib.pyplot as plt
#matpleotlib inline

from scipy.stats import norm, skew
from scipy import stats

import statsmodels.api as sm

from statsmodels.tsa.statespace.sarimax import SARIMAX

Figure 5: SARIMA Libraries

After Importing and doing pre-processing, for SARIMA model the method which is
used to calculate the best variable values has been displayed Figure [6]

for param in pdq:
for param _seasonal in seasonal pdg:
try:
mod = sm.tsa.statespace.SARIMAX(y,

order=param,
seasonal_order=param_seasonal,
enforce_stationarity=False,
enforce_invertibility=False)

results = mod.fit()

print('SARIMA{}x{}12 - AIC:{}'.format(param, param_seasonal, results.aic))

except:
continue
Figure 6: Method to find Best-Fit SARIMA

SARIMA(@, @8, @)x(e, @8, @, 12)12 - AIC:1932.23655773549
SARIMA(G, B8, @)x(®, @, 1, 12)12 - AIC:1512.9275832124356
SARIMA(@, B8, @)x(®, 1, @, 12)12 - AIC:1338.8201294951011
SARIMA(G, B8, @)x(e, 1, 1, 12)12 - AIC:3134.8602952352074
SARIMA(®, B8, @)x(1, @&, @, 12)12 - AIC:1366.5117513512635

Figure 7: Finding Best-Fit SARIMA

After finding the best fit SARIMA model by looking AIC value, main SARIMA model
has been applied. A clear representation has been shown in Figure [§] All the AIC value
have been compared and then it was decided to go with ARIMA(1,1,1)*(1,1,0,12).

#Fit the model with the best params.
#ARIMA(1, I, 1)x(1, 1, @, 12)12 - AIC:960.5164122018646

from statsmodels.tsa.statespace.sarimax import SARIMAX
mod = sm.tsa.statespace.SARIMAX(y,
order=({1, 1, 1},
seasonal order={1, 1, &, 12},
enforce_stationarity=False,
enforce_invertibility=False)
results = mod.fit()

Figure 8: Implementing SARIMA

4.2 Implementing RNN
All the libraries that were used for implementation of RNN are displayed in Figure [9)

4

Importing Libraries

import pandas as pd;

import matplotlib.pyplot as plt

from numpy import array

from numpy import hstack

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import LSTM

from keras.layers import RNN, SimpleRNN

from keras.preprocessing.sequence import TimeseriesGenerator
from keras.layers import Dropout

from keras.nptihizers import Adam

from keras.layers.core import Activation

from keras.callbacks import LambdaCallback
from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras.optimizers import Adam
from sklearn.preprocessing import LabelEncoder

Figure 9: RNN Libraries

After importing the dataset and doing all the necessary pre-processing tasks, data
has been split into test, train, and hold data. To make a better understanding about it,
please refer to Figure

Splitting data into train, test and hold-out data

: | number_of_test_data = 5808
number_of_holdout_data = Seee
number_of_training data = len(dataset) - number_of holdout data - number_of test data
print ("total, train, test, holdout:", len(dataset), number_of training data, number_ of test_data, number_of_ holdout_data)

total, train, test, holdout: 1848575 1838575 5600 5008

Figure 10: Splitting Test Train Data

After splitting the data, as it is needed in artificial neural network to provide a se-
quential three dimensional input, and thus we had to convert the normal input data to
3-dimensional input. The input code has been showed in Figure

After getting the data prepared, finally RNN model is defined as per Figure

Then created model is trained by fitting it to train data. Figure describes the
model fitting.

After model is fitted, order demand is predicted and results are checked by getting
mean absolute error. Refer to Figure [14] and Figure [15] for prediction and output result.

Preparing 3-Dimensional Input for Sequential Model

in_seql = array(datatrainf‘Product Code’])
in_seq2 = array(datatrain['Warchouse'])

in_seq3 = array(datatrain['Product Category'])
in_seg4 = array(datatrain['Year'])

in_segq5 = array(datatrain['Month'])

in_segt = array(datatrain['Day'])

out_seq_train = array(datatrain['Order Demand'])

in seql = in seql.reshape((len(in_seql), 1)
in seq2 = in_seq2.reshape((len(in_seq2), 1)
in _seq3 = in_seqg3.reshape((len(in_seq3), 1)
in_seq4 = in_seqd.reshape((len(in_seqd4), 1)
in_seg5 = in_seqS.reshape((len(in_seq%), 1)
in_seg6 = in_seq6.reshape((len(in_seqgs), 1)
out_seq_train = out_seq train.reshape((len(

0 S S e e s s

ut_seg train), 1))

datatrain_feed = hstack(({in_seql, in_seq2, in_seq3, in_seq4, in_seq%, in_seg6&, ocut_seq train))

Figure 11: Preparing 3-D Input

Creating RNN model

model = Sequential()

model.add(SimpleRMM{4, activation="linear', input shape=(n_input, n_features), return_sequences = False))
model.add(Dense(1, activation="linear'))

adam = Adam(lr=2.8081)
model.compile(optimizer="adam', loss="mse')

Figure 12: Defining RNN Model

Training the model

score = model.fit_generator(generator_train, epochs=2888, verbose=2, wvalidation_data=generator_test)

1/1 - 85 - loss: 5598497.0000 - val loss: 454@064.9000 - 3s/epoch - B=/step
Epoch 2/2@@@

1/1 - 7s - loss: 5345647.5000 - val loss: 4337165.8080 - 7s/epoch - 7s/step
Epoch 3/2@@@

1/1 - 7s - loss: 51868613.0002 - val loss: 4141780.8000 - 7s/epoch - 7s/step
Epoch 4/2060

1/1 - 7s - loss: 4863603.0000 - val loss: 3954879.0000 - 7s/epoch - 7s/step
Epoch 5/2008

1/1 - 7s - loss: 4634810.0008 - val loss: 3774193.5000

7s/epoch - 7s/step

Figure 13: Training RNN Model

df_result = pd.DataFrame({'Actual’ : [], 'Prediction’ : [1})

for i in range(len(generator_test)):
¥, y = generator_test[i]
x_input = array(x).reshape((1, n_input, n_features))
yhat = model.predict(x_input, verbose=2)
df_result = df_result.append({'Actual': scaler.inverse_transform(y)[2][@], "Prediction’: scaler.inverse_transform(yhat)

Figure 14: Predicting Order Demand

mean = df _result['Actual'].mean()
mae = (df result['Actual'] - df_result['Prediction’]).abs().mean()

print({"mean: ", mean)
print{"mae:", mae)
print("mae/mean ratio: “, 188"mae/mean,"%")

print{"correctness: ", 188 - 10@*mae/mean,” %")

mean: 5399364.85453817

mae: 3IB7EE34.158571828

mae,/mean ratio: 56.873988%7645247 %
correctness: 43.12681142354753 %

Figure 15: Interpreting Result

	Introduction
	System Configuration
	Hardware Configuration
	Software Configuration
	Python
	Anaconda
	Jupyter Notebook
	Google Chrome
	Overleaf

	Data Preparation
	Implementation
	Implementing SARIMA
	Implementing RNN

