

Configuration Manual

MSc Research Project

M Sc Data Analytics

Khushbu Rajpara

X 2 0175671

School of Computing

National College of Ireland

Supervisor: Prof. Vladimir Milosavljevic

National College of Ireland

MSc Project Submission Sheet

School of Computing
Student Name: Khushbu Rajpara

Student ID: X20175671

Programme: MSc Data Analytics

Module: MSc Research Project

Lecturer: Prof. Vladimir Milosavljevic
Submission Due
Date: 16th December, 2021

Year: 2021-22

Project Title: Single Image Super Resolution using multiple Deep Convolution Neural Networks

Word Count: 1156 Page Count: 14

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.
ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

Khushbu Rajpara

Date:

16th December, 2021

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)
□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).
□

You must ensure that you retain a HARD COPY of the project,

both for your own reference and in case a project is lost or mislaid. It

is not sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed into

the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Configuration Manual

Khushbu Rajpara
X20175671

1 Introduction

The given configuration manual interprets the requirements for implementing the system

designed for enhancing the image resolution with the help of Deep neural network

models. Moreover, the hardware and software requirements for successful

implementation of the project will be explained meticulously in this manual.

2 System Configuration

Mentioned below are the hardware and software configurations used for project

implementation.

2.2 Software Requirements
This chapter provides requirements for the software used in this study as well as information

about the software that was used to execute the model. The personal computer did not have

enough resources to implement the project. That being the case, project is implemented on the

Google Colab.

2.2.1 Google colaboratory
For the model's implementation, the Google infrastructure's computing, also known as Google

colab, is utilized. All the necessary libraries have been installed, and the models have been

created in Google Colab.

2.1 Hardware Requirements:

Figure 1 Hardware Re quirments

2

The dataset is uploaded to Google Drive and then linked to Google Colab using the code below.

Apart from that, there are direct options for mounting our hard drive inside the Google Col

Figure 2 Google Colab

This project is built with Google Colab Pro+, which runs the software in the background,

allowing the GPU to stay connected for a longer period of time.

3 Project Implementation
The proposed research project is run on a GPU server on Google Colab with the aim of image

super resolution. This study is divided into four sections, each of which performs trials using

one of the four current models. This study examines all areas of data analytics, including data

collection and cleansing, as well as model implementation and evaluation.

3.1 Data Collection:
The data that was utilized to conduct this research was obtained from Kaggle. There are three

sub folders in the data and it contains high resolution images as well as low resolution images.

The following image is showing the dataset in the system.

Figure 3 Data Collection

3.2 Data Preparation
As this dataset is relatively small compared to “DIV2k” although the data in this dataset is

cleaned.

The below is the code for getting the file into the proper format. Firstly, the dataset is download

from the Kaggle then it was uploaded into google drive.

3

Figure 4 Dataset available on Kaggle

The following cell block is building a dataset in form of 2 arrays one consisting of High-

resolution image and another of Low-resolution image. Then this array is used for splitting the

dataset into 3 parts.

Figure 5 Data Preparation

3.3 Data Pre-Processing
The following cell is for visualizing the dataset. In that randomly four images select from the

dataset and plot it as a output.

4

Figure 6 Data Pre-processing

The below code splitting the dataset into training, Testing and validation. Brief explanation of

used variable name is below.

TN_H_Img: high resolution images for training.

TN_L_Img: Low resolution images for training

V_H_image: high resolution images for validation

V_L_image: Low resolution images for validation

TS_H_Img: High resolution images for testing

TS_L_Img: Low resolution images for testing

This variable is used as input for the four model

3.4 Model Building

Figure 8 Importing Libraries

3.4.1 CNN model
The layers are customized using up and down function, where down function creates a layer

with Conv2D layer and given parameters such as numbers of filters, kernel size and whether to

apply batch normalization, whereas the up function creates a layer using Conv2DTranspose

and given parameters filters, kernel size and whether or not to add dropout layer. The model at

5

the end concatenates all layer to make a 2D convolutional layer model with Adam a s optimizer

and loss is calculated using mean absolute error method.

Figure 9 Functions of CNN Model

Figure 10 Down Sampling

Figure 11 CNN Model

6

Figure 12 Model Evaluation

The above cell is for saving the model

Figure 13 Model Saving

The above cell is for calculating PSNR and MSE

7

Figure 14 Supplementary functions used in CNN

Figure 15 Functions to plot images

3.4.2 Multi scale learning
Here the usage of a Multiscale model is shown. The Multiscale model can have numerous

branches which all together end up giving result to the final layer and we can have high level

of precision in prediction of the data. In the following code two branches are created of a

network both have similar configuration. Each branch has 3 layers, and each layer consists of

a sequence of layer such that 2D convolutional layer is connected to dropout layer (which helps

in preventing overfitting of model) which is then down sampled using 2D Maxpooling layer.

Each h layer of branch is different from previous layer as number of neurons or filters are

doubled from the previous layer. Both these branches are then concatenated to form a single

network w which is then up sampled (increased dimensions) and given to 2D Convolutional

layer which pr edicts data, in our case the predicted image.

Figure 16 Global variables of function The

below code is for methods of multi-layer model .

8

Figure 17 Multi-CNN Model

9

Figure 18 Compiling the model

Figure 19 Model Training

Figure 20 Model Evaluation

10

3.4.3 Auto-Encoder Model
The encoder part of the model has 15 layers in it. The model consists of 9 2D convolutional

layers each with same parameters such as 2D strides and ReLU as activation function except

for number of neurons of the layer. The model starts with 2D convolutional layers then

Maxpooling layer is added to down sample the data, the same sequence of layers is added again

with different parameters, further a residual block layer is added which helps in maintaining

quality of data, then data is unsampled (increased in dimension) using an umsampling2D layer

and at last the layers are added. The decoder part consists of just 1 2D convolutional layer and

has same parameters as the convolutional layer present in the encoder part.

Figure 21 Function to generate residual block

Figure 22 Auto-Encoder Model

11

Figure 23 Model call

Figure 24 Model Training

Figure 25 Supplementary Functions

3.4.4 EDSR Model
This code shows the use of an Enhanced Deep Super Resolution network. The input layer is of

fixed size, the next layers are sequence of fixed set of layers.

12

Here the input layer is connected to the residual layer that we generate through a customized

function, the residual layer is then unsampled (dataset dimension increased) using another

customized function, the output of this layer is down sampled using the Maxpooling layer and

at last 2D convolutional layer is added with 1D stride. This sequence of fixed layers is repeated

for 5 times and output of one instance is input to the other hence a DNN is created. At last batch

normalization is applied to standardize the inputs and output of this layer is then unsampled

and given to Maxpooling which will give output to the 2D convolutional layer which will

thereby predict the image.

Figure 26 Functions to Generate Residual Blocks

Figure 27 Functions to generate deep neural network

13

Figure 28 Model Building

Figure 29 Model Training

Figure 30 Model Evaluation

14

The following is a simple explanation of the terms used while building the model.

Down-sampling:

When a given image is down sampled, the number of pixels in the image is reduced based on the

frequency of sampled data. Consequently, image resolution and size are decreased.

Up-sampling:

Up-sampling techniques can be used to increase the number of pixels in a down-sampled image. As a

result of up-sampling, the image has a higher resolution and a larger size.

Epoch:

The process of passing an entire dataset through the neural network one time is called an "epoch".

Adam:

Adam is a computationally efficient optimization solution for the Neural Network technique that takes

little memory and is ideally suited for situations with a large dataset, parameters, or both.

Activation functions used for model building:

The activation function is a simple function that changes input values into output values based on

a specified range.

• ReLU:

In brief, if the input is positive, the rectified linear activation function (ReLU) outputs it directly;

otherwise, it returns 0. Which means it ranged from 0 to infinity. All negative numbers are

translated to zero in this situation, and the conversion rate is so quick that it cannot map to or fit

into data properly, which creates an issue.

• Leaky ReLU:

In ReLU, negative input values turn into zero very quickly. We don't make all negative inputs

zero while using Leaky ReLU. Rather, we reduce them to a value close to zero. This resolves the

main problem with ReLU activation.

• Sigmoid:

A sigmoid activation function receives input and converts output values between 0 and 1 in

different ways.

Kernel:

The kernels are simply filters that extract the features of a small portion of an image. They are utilized to

extract features in convolutional layers.

Convo2D:

It stands for 2D convolution layer. The operation involves sliding a weighted matrix or kernel across a

2D dataset and multiplying the data under the kernel element by element.

Convo2DTranspose:

It applies convolution with a fractional stride. In simple terms, these convolutions compute the matrix

transposition of a conventional convolutional layer, switching between the effects of the forward and

reverse passes.

Learning rate:

This hyperparameter determines how quickly the neural network learns to cope with the challenge.

Learning rate is usually between 0 and 1 and has a small positive value.

