

Configuration Manual

MSc Research Project Data Analytics

Rajat Student ID: x20232225

School of Computing National College of Ireland

Supervisor: Dr. Catherine Mulwa

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:	Rajat		
Student ID:	X20232225		
Programme:	Msc Data Analytics	Year:	2022
Module:	Msc Research Project		
Supervisor:	Dr. Catherine Mulwa		
Submission Due Date:	15/08/2022		
Project Title:	Configuration Manual		
Word Count:	1157 Page Count 11		

I hereby certify that the information contained in this (my submission) is information pertaining to research I conducted for this project. All information other than my own contribution will be fully referenced and listed in the relevant bibliography section at the rear of the project.

<u>ALL</u> internet material must be referenced in the bibliography section. Students are required to use the Referencing Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature: Rajat

Date: 15/08/2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple copies)	
Attach a Moodle submission receipt of the online project	
submission, to each project (including multiple copies).	
You must ensure that you retain a HARD COPY of the project, both	
for your own reference and in case a project is lost or mislaid. It is not	
sufficient to keep a copy on computer.	

Assignments that are submitted to the Programme Coordinator Office must be placed into the assignment box located outside the office.

Office Use Only	
Signature:	
Date:	
Penalty Applied (if applicable):	

Configuration Manual

Rajat X20232225

Introduction

This manual contains all the details on the software tools needed to carry out to "Identify the foliar diseases in apple trees using deep learning techniques" from scratch to end and also all the other details that could not be shared in the technical report are also provided in this configuration manual. The main objective of this research is What transfer learning techniques could be most effective for dealing with the disease-related issue? Which ones perform best and why? To answer this, multiple deep learning techniques have been used to identify diseases such as LittleVGG, MobileNet, and EfficientNet. The dataset used for this study has been taken from the open-source platform Kaggle. This configuration manual, which comes with the project report, helps in properly understanding the project's configuration procedure.

1 Hardware and Software Specifications

To classify the apple foliar disease below are the hardware and software used to train the models on the image dataset.

1.1 Hardware Requirement

System	Specification
OS edition	macOS
Processor	Apple M1 chip
RAM	16 GB
CPU/GPU	8-core CPU, 8-core GPU
Neural Engine	16-core Neural Engine

Table 1: System Specification

1.2 Software Requirement

Table 2: Software Require	ement
---------------------------	-------

Programming Language	Python
Development Tool	Anaconda Navigator, Jupyter Notebook
Other Tools	Microsoft Excel and PowerPoint

2 Software Installation Guide

2.1 Installation steps of Anaconda Navigator and Jupyter Notebook on macOS

- 1. Download the GUI of the macOS <u>installer</u> for the respective version of Python
- 2. After downloading, open the file and click on the Continue button to start the process.
- 3. Click the check box on the Read Me screen and then on the License screen
- 4. In the Select Destination window, click on **Install for me only** and then select Continue as shown in Figure 1.

• • •	💝 Install Anaconda3	8
	Select a Destination	
IntroductionRead Me	How do you want to install this software?	
LicenseDestination Select	Install for all users of this computer	
Installation TypeInstallation	install for me only	
DataSpellSummary	Install on a specific disk	
🔿 ANACONDA.	Installing this software requires 616.1 MB of space. You have chosen to install this software in your home folder. Only the current user will be able to use this software.	
	Go Back Continue	

Figure 1: Select Destination

5. In the Installation Type, Select the appropriate location for installation and click Install for Anaconda installation as shown in Figure 2.

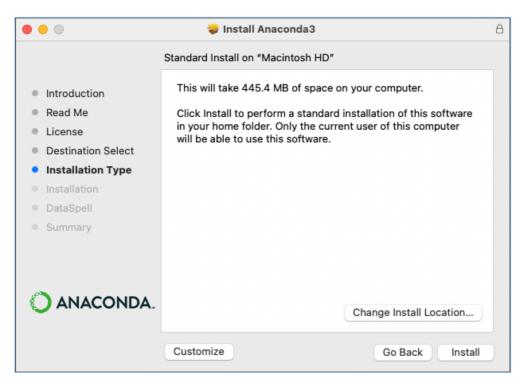


Figure 2: Installation Type

- 6. After completion of installation, click Continue.
- 7. After completion of installation, click Continue, and after the successful installation the below summary screen will come up.

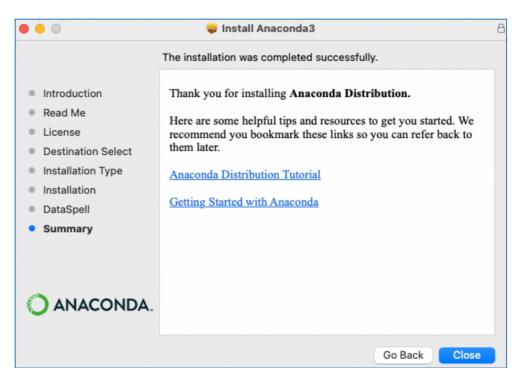


Figure 3: Summary

3 Project Implementation Guide

All of the implementation, codes, packages, and logic that couldn't be presented in the report section are explained in this section.

3.1 Python Libraries

During the project, below are the important python libraries that are used to achieve the goal of identifying the apple foliar disease.

Libraries	Version
tensorflow	2.8.0
Pandas	1.4.1
sklearn	1.0.2
cv2	4.6.0
numpy	1.12.2
matplotlib	3.5.1
plotly	5.9.0
seaborn	0.11.2

Table 3: Important Python Libraries

3.2 Data understanding and Pre-processing

Understanding the data is necessary before applying a model to any dataset. For instance, it is important to know what kind of data we have and how well it is functioning.

<pre>train_data = pd.read_csv(TRAIN_PATH) train_labels = train_data.loc[:, 'heal1 train_data.head()</pre>					
	image_id	healthy	multiple_diseases	rust	scab
0	Train_0	0	0	0	1
1	Train_1	0	1	0	0
2	Train_2	1	0	0	0
3	Train_3	0	0	1	0
4	Train_4	1	0	0	0

Figure 4: Label Extraction

The below code is used to extract all the classes in respective class variable name.

healthy_data = train_data.query("healthy == 1") # Healthy leaves
scab_data = train_data.query("scab == 1") # Scab disease leaves
rust_data = train_data.query("rust == 1") # Rust disease leaves
multiple_data = train_data.query("multiple_diseases == 1") # Mulitple_Diseases leaves

Figure 5: Class variables

The image below demonstrates how distinct test and train folders were made for each class image. Before moving the dataset images to other folders, the code below was only executed once. For implementing LittleVGG and MobileNet models, separate folders for all the images have been created programmatically so that it would be easy to recognise classes and diseases by the models.

#creating sepa	rate train folder for each class images
<pre>srcImage_PATH multipleDiseas test = glob.ig for i in multi path = src</pre>	<pre>s cell, bec images have already been moved to their respective folder = "/Users/rajatthakur/Desktop/Thesis/Prjoect/plant-pathology-2020-fgvc7/images/" eImagePath = "/Users/rajatthakur/Desktop/Thesis/Prjoect/plant-pathology-2020-fgvc7/multipleDise lob(os.path.join(srcImage_PATH, "*.jpg")) ple_data.image_idi Image_PATH+1+'.jpg' e(path, multipleDiseaseImagePath)</pre>
#Doult num thi	s cell, bec images have already been moved to their respective folder
<pre>scabDiseaseIma for i in scab_</pre>	gePath = "/Users/rajatthakur/Desktop/Thesis/Prjoect/plant-pathology-2020-fgvc7/scabDiseaseImage data.image_id:
	Image_PATH+i+'. <mark>jpg</mark> ' e(path, scabDiseaseImagePath)
<pre>shutil.mov #Don't run thi rustDataImage for i in rust_ path = src</pre>	e(path, scabDiseaseImagePath) s cell, bec images have already been moved to their respective folder = "/Users/rajatthakur/Desktop/Thesis/Prjoect/plant-pathology-2020-fgvc7/rustDataImage"

Figure 6: Moving Images to separate folder for LittleVGG and MobileNet

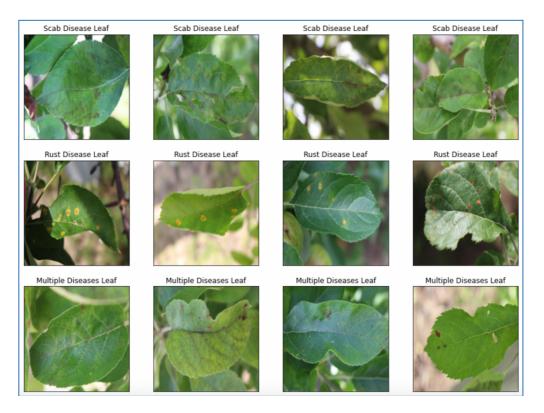


Figure 7: Sample Diseases images

By removing excess noise and smoothing the images, a Canny Edge Detector method has been utilized to identify the edges of an input image as shown below figure.

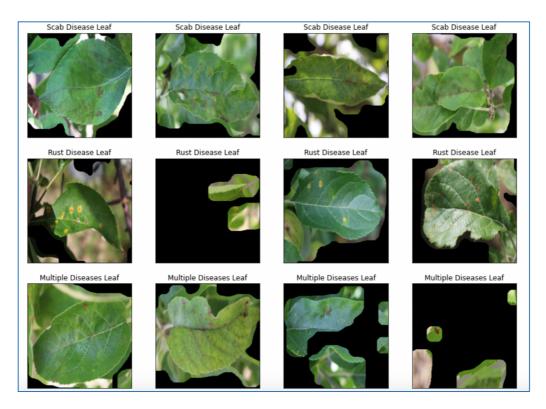


Figure 8: Canny Edge Detection Sample Images

GAN Model Implementation sample: The below screenshot shows the GAN model-generated sample image to resolve the data imbalance issue.

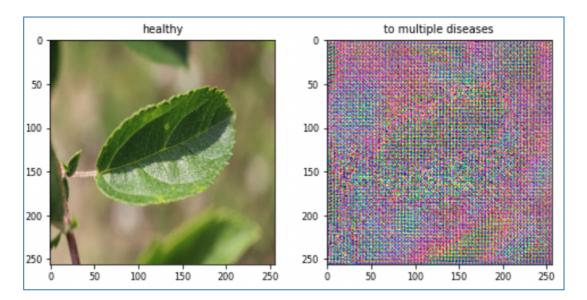


Figure 9: GAN, healthy to multiple diseases image

3.3 Model Implementations

Two of the top models are reviewed in this section and their epochs and degree of accuracy are displayed below.

MobileNet Implementation Output: The second best model for identifying the foliar disease in apple trees is MobileNet Model, and below is the epoch screenshot attached for reference.

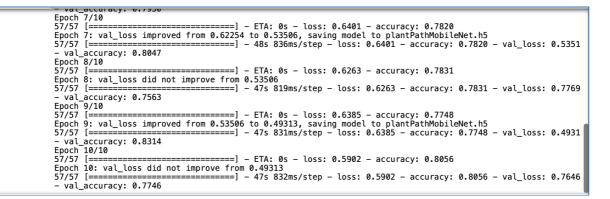


Figure 10: MobileNet Model output for 10 Epoch

EfficientNet Implementation Output: According to our research, EfficientNet performed better than LittleVGG and MobileNet, the other two models. Overall the EfficientNet model identified the apple foliar diseases with a 97.72% accuracy rate.

```
Epoch 6: LearningRateScheduler setting learning rate to 2.625e-05.
Epoch 6/10
198/198 [==
           e-05
Epoch 7: LearningRateScheduler setting learning rate to 2.95e-05.
Epoch 7/10
198/198 [==
        e-05
Epoch 8: LearningRateScheduler setting learning rate to 3.2749999999999996e-05.
Epoch 8/10
                         ===] – 802s 4s/step – loss: 0.1532 – categorical accuracy: 0.9484 – lr: 3.2750
198/198 [=
e-05
Epoch 9: LearningRateScheduler setting learning rate to 3.6e-05.
Epoch 9/10
198/198 [==
             =================] – 802s 4s/step – loss: 0.1026 – categorical_accuracy: 0.9691 – lr: 3.6000
e-05
Epoch 10: LearningRateScheduler setting learning rate to 3.925e-05.
e-05
```

Figure 11: EfficientNet output for 10 Epoch

3.4 Trainable Parameters

Below is the summary of the developed LittleVGG and MobileNet models.

dense_1 (Dense)	(None, 256)	65792
activation_7 (Activation)	(None, 256)	0
batch_normalization_7 (Batc hNormalization)	(None, 256)	1024
dropout_4 (Dropout)	(None, 256)	0
dense_2 (Dense)	(None, 4)	1028
activation_8 (Activation)	(None, 4)	0
Total params: 2,266,692 Trainable params: 2,263,876 Non-trainable params: 2,816		

Figure 12: LittleVGG Trainable params

conv_pw_13_relu (ReLU)	(None, 7, 7, 1024)	0	
global_average_pooling2d (G lobalAveragePooling2D)	(None, 1024)	0	
dense (Dense)	(None, 1024)	1049600	
dense_1 (Dense)	(None, 1024)	1049600	
dense_2 (Dense)	(None, 512)	524800	
dense_3 (Dense)	(None, 4)	2052	
Total params: 5,854,916 Trainable params: 2,626,052 Non-trainable params: 3,228,864			

Figure 13: MobileNet Trainable params

3.5 Model Implementation Prediction

Here are a few examples of sample images of apple foliar diseases that the models had predicted.

Figure 14: Prediction of Healthy leaf image

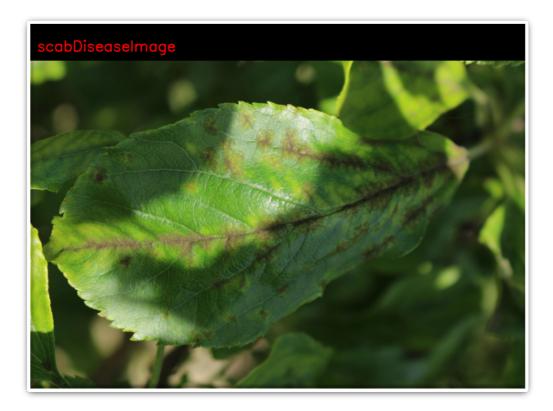


Figure 15: Prediction of Scab leaf image

Figure 16: Prediction of Multiple Disease leaf image

Figure 17: Prediction of Rust Disease leaf image

4 Comparison of Developed Models

Below is the table which shows the accuracy of the developed model used for this research.

Model Name	Accuracy
LittleVGG	41.39%
MobileNet	80.56%
EfficientNet	97.72%

5 Conclusion

For the detection of foliar disease in apple trees, transfer learning algorithms including LittleVGG, MobileNet, and EfficientNet have been deployed. It has been debated which approach may help with the identification of foliar disease more precisely.

6 References

Thapa, Ranjita et al. "The Plant Pathology Challenge 2020 data set to classify foliar disease of apples." Applications in plant sciences vol. 8,9 e11390. 28 Sep. 2020, doi:10.1002/aps3.11390