ﬁ

\‘
National
Collegeof

Ireland

Configuration Manual

MSc Research Project
MSc Data Analytics

Janvi Rajesh Rajani
Student ID: X20148712

School of Computing
National College of Ireland

Supervisor: Dr. Catherine Mulwa

National College of Ireland
MSc Project Submission Sheet

School of Computing

‘—-
\ National

Collegeof
Ireland

Student Name:

Janvi Rajesh Rajani

Student ID: X20148712

Programme: MSc. Data Analytics Year: |2021
Module: MSc. Research Project

Lecturer: Dr. Catherine Mulwa

Submission Due
Date:

31/01/2022

Project Title:

Taxi Trip Time and Trajectory Prediction Using Machine Learning

Word Count:

832 Page Count: 15

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project.

All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section.

Students are

required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

Date:

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Janvi Rajesh Rajani

Attach a completed copy of this sheet to each project (including multiple | o
copies)
Attach a Moodle submission receipt of the online project i

submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both | o

for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Janvi Rajesh Rajani
X20148712

1 Hardware Setup

The hardware setup for the research is shown in Table 1. It features a RAM of 8.00 GB and

runs on a 64-bit operating system. AMD Ryzen 5 is the processor used.

Table 1. Hardware Setup

Processor AMD Ryzen 5 4500U with Radeon Graphics
RAM 8.00 GB
System Type | 64-bit operating system, x64-based processor

2 Software Setup

The Software used in this research is Anaconda- Jupyter Notebook. It is downloaded from its
official website'. It has multiple applications, Jupyter Notebook is used in this particular

research as shown in the Figure 1.

Web-based, interactive computing notebook
environment. Edit and run human-readable
docs while describing the data analysis.

o)

e
jupyter
S’
Notebook

6.1.4

Launch

Figure 1: Jupyter Notebook

1

After Launching the Jupyter Notebook application, a new window will be launched and on
the right-hand corner click on New Python 3 Notebook as shown in the Figure 2. This will
open a new Python Notebook.

Upload =

Motebook
Name ¥ e
Python 3

:::..E,‘ Create a new notebook with Python 3
Text File
Folder

Terminal

Figure 2. Python Notebook

3 Package Requirement and Instalment

The primary software used for the research is Python. Table 2 shows the list of packages
used:
Table 2. Required Python Packages

Numpy

Pandas
Matplotlib

Sklearn

Math

Datetime

Seaborn

A list of libraries required to complete this project are provided. Ensure the libraries are
installed on Python to ensure a smooth operation.

4 Data Preparation and Transformation

The data used in this research is publicly available on kaggle'. The Figure 3 shows the data
loading in python.

#Storing the data in Csv file
#Loading the data from Csv file
import pandas as pd

taxi_df = pd.read_csv("train.csv")
taxi_df

Figure 3. Data Loading

The Figure 4 shows the libraries imported for the smooth execution of the project.

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

import datetime

from sklearn.model selection import train_test_split
from sklearn.preprocessing import StandardScaler

from sklearn.model_selection import GridSearchCV

from sklearn.model_selection import RandomizedSearchCV
from sklearn.metrics import mean_squared_error as mse
from sklearn.metrics import r2_score

from math import sqgrt

from sklearn.metrics import mean_absolute_error as mae
from sklearn.neighbors import KNeighborsRegressor
from sklearn.linear_model import Ridge

from sklearn.linear_model import Lasso

from sklearn.tree import DecisionTreeRegressor

from sklearn.ensemble import RandomForestRegressor
from sklearn.svm import SVR

from xgboost import XGBRegressor

from sklearn import neighborq

Figure 4. Essential Packages Imported

5 Data Pre-Processing

The Figure 5 shows data pre-processing where the NULL values are replaced with 0, so that
the NULL values does not affect the performance of the machine learning model.

taxi_df['ORIGIN_CALL']=taxi_df['ORIGIN CALL'].fillna(®)
taxi_df['ORIGIN_STAND']=taxi_df['ORIGIN_STAND'].fillna(@)

Figure 5. NULL replaced with zero

The Figure 6 shows how timestamp column is divided into year, month, month day, hour and
week day. Later, these features are used in the Machine Learning techniques.

#Extracting year, month, hour from TIMESTAMP column

taxi_df['year'] = taxi_df['TIMESTAMP'].apply(lambda x :datetime.datetime.fromtimestamp(x).year)
taxi_df['month'] = taxi df['TIMESTAMP'].apply(lambda x :datetime.datetime.fromtimestamp(x).month)
taxi_df['month day'] = taxi_df['TIMESTAMP'].apply(lambda x :datetime.datetime.fromtimestamp(x).day)
taxi_df['hour'] = taxi_df['TIMESTAMP'].apply(lambda x :datetime.datetime.fromtimestamp(x).hour)
taxi_df['week_day'] = taxi_df['TIMESTAMP'].apply(lambda x :datetime.datetime.fromtimestamp(x).weekday())

Figure 6: Timestamp Divided into Other Attributes

The Figure 7 shows using polyline feature and lambda function, new attribute is made
Polyline Length. It depicts the total length of the taxi trip in seconds.

taxi_df['Polyline Length'] = taxi_df['POLYLINE'].apply(lambda x : len(eval(x))-1)

taxi_df['Trip Time(sec)'] = taxi_df['Polyline Length'].apply(lambda x : x * 15)

Figure 7: Polyline Length Feature

6 Additional Exploratory Data Visualization

The Figure 8 shows the bar chart of the total trips for each month. It is seen that May has
highest number of taxi trips.

Count of trips per month

Month

0 Eﬂdﬂﬂ 406{]:] EDCIH]!J BUCII'{]:] muhnu 121};'.]01] 140;1101} 1ED'i:]!Jﬂ
Count
Figure 8. Trips Per Month

The Figure 9 shows the bar chart of the total trips for entire day. It is seen that there are less

trips in the morning whereas it is substantially increased 5 throughout the day and then
gradually decreases at night. It means that maximum taxi trips are taken in the day.

Count of trips per hour

S T

W

Hours
B B B B

5 o

B R EBEBEEBER

T T T T T
0 20000 40000 BO000 80000 100000

Count

Figure 9. Trips per Hour

7 Data Standardization

The data is divided X and y. Initially all the values are considered for X and only the
dependent value is taken for y as shown in the Figure 10. The data is then Standardized using
the StandardScaler function. Data Standardization is essential since it improves the quality of
data and gives consistency to the data which in turn makes it easy for use.

taxi_df = taxi_df.reset_index()

X = taxi_df[['ORIGIN_CALL', 'ORIGIN_STAND', 'TIMESTAMP',
'year', 'month', 'month_day', 'hour', 'week_day', 'lon_1st', 'lat_lst', 'lon_last', 'lat_last', 'delta_lon',
'delta_lat', 'Polyline Length', 'CALL_TYPE_A', 'CALL_TYPE_B', 'CALL_TYPE_C','DAY_TYPE_A']]

y = taxi_df['Trip Time(sec)']

Data Standardization

s = StandardScaler()
X = s.fit_transform(X)

print(np.mean(X))
np.std(X)

1.9355573050760493e-14

0.9176629354822471

Figure 10. Data Standardization

8 Feature Selection

The Figure 11. shows the feature selection using Linear Regression. It uses importance
feature and it gives features score.

from sklearn.datasets import make_regression

from sklearn.linear_model import LinearRegression

from matplotlib import pyplot

model=LinearRegression()

model.fit(X,y)

importance=model.coef_

for i,v in enumerate(importance):
print('Feature:%0ed,Score:%.5F'% (i,v))

pyplot.bar([x for x in range(len(importance))],importance)

pyplot.show()

Figure 11. Feature Selection using Linear Regression

The Figure 12. shows the score of each feature and the unwanted features are given 0 score

by the Linear Regression model.

Feature:
Feature:
Feature:
Feature:
Feature:
Feature:
Feature:
Feature:
Feature:
Feature:
Feature:
Feature:
Feature:
Feature:
Feature:
Feature:
Feature:
Feature:
Feature:

9,5core:
1,S5core:
2,5core:
3,5core:
4,5core:
5,S5core:
6,S5Score:
7,5core:
8,5core:
9,Score:

18,Score:

11,Score

12,Score:
13,Score:

14,Score

15,Score:

16,Score

17,Score:
18,Score:

-9.00000
-9.00000
©.000800
.15368
.93916

. 00000

. 00000

. 00000
.06428
.61688
-12.83310
:8.97671
13.52261
-9.97386
:685.91455
3.52336
:4.278080
3.87050
©.00000

Figure 12. Feature Score

Figure 13. shows the feature selection using co-relation matrix.

plt
cor
sns
plt

.figure(figsize=(18,15))
= taxi_df_tra.corr()

.heatmap(cor, annot=True, cmap=plt.cm.Reds)

.show()

Figure 13. Co-relation Matrix

Figure 14. shows the feature selection using Co-relation Matrix.

#Correlation with output variable
cor_target = abs(cor["lon_last"])
#Selecting highly correlated features

relevant_features = cor target[cor target»d.1]
relevant_features

Figure 14. Features Using Co-relation Matrix

9 Splitting into Test and Train

Figure 15. shows the test train data split taxi trip time Prediction

X = taxi_df[[‘'year', 'month','lon_1st', 'lat_1st', 'lon_last', 'lat_last', 'delta_lon’,
'delta_lat', 'Polyline Length', 'CALL_TYPE_A', 'CALL_TYPE B', 'CALL_TYPE C']]
y = taxi_df['Trip Time(sec)']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 8.2)

print("The size of training input is", X_train.shape)
print("The size of training output is", y_train.shape)
print(50 *'*")

print("The size of testing input is", X_test.shape)
print("The size of testing output is", y_test.shape)

The size of training input is (4ee@8, 12)

The size of training output is (46ee9,)

ok RoRkok R Rk R ok Rk ok Rk R R kR Rk oR R R R ok ok Rk R R R R Rk ok
The size of testing input is (1eeee, 12)

The size of testing output is (1@eee,)

Figure 15. Data Split for taxi trip time Prediction

Figure 16. shows the test train data split taxi trip trajectory Prediction

X_tra = taxi_df_tra[["lon lst", "delta lon","delta lon"]]

y_tra = taxi df tra[["lon last","lat last"]]

X_train_tra, X test_tra, y train tra, y test tra = train test split(X tra, y tra, test size=0.3, random state-1)

Figure 16. Data Split for taxi trip Trajectory

10 Machine Learning Models to Predict Taxi Trip Time

Figure 17. shows the implementation of the Baseline Model

y_train_pred = np.ones(X_train.shape[@]) * y_train.mean() #Predicting the train results
y_test_pred = np.ones(X_test.shape[@]) * y_test.mean() #Predicting the test results

print("Test Results for Baseline Model:")
print(5@ * '-')
print("Root mean squared error: ", sqrt(mse(y_test, y_test_pred)))
print("R-squared: ", r2_score(y test, y test pred))
print("Mean Squared Error:",mse(y_test, y test_pred))

(

print("Mean Absolute Error:",mae(y_test, y test_pred))

Figure 17. Baseline Model

Figure 18. shows the implementation of KNN Regressor.

10

rmse_val = [] #to store rmse values for different k
for K in range(20):
K = K+1
knn_regressor = neighbors.KNeighborsRegressor(n_neighbors = K)

knn_regressor.fit(X_train,y train) #fit the model
y_test_pred=knn_regressor.predict(X_test) #make prediction on test set
error_test = sqrt(mse(y_test,y_test_pred)) #calculate rmse on test set
rmse_val.append(error_test) #store test rmse values
print('RMSE value for k= ', K, 'is:', error_test)

Figure 18. KNN regressor

Figure 19. shows implementation of Lasso Regressor

parans ={'alpha' :[0.0801, 0.091, 0.01, 0.1, 1, 10, 100, 1000, 1000, 100000]}
lasso_regressor =GridSearchCV(Lasso(), params ,cv =15,scoring = 'neg mean_absolute error', n_jobs =-1)
lasso_regressor.fit(X_train,y train)

Figure 19. Lasso regression

Figure 20. shows the implementation of Decision Tree Regressor

depth =list(range(3,30))

param_grid =dict(max_depth =depth)

regr =GridSearchCV(DecisionTreeRegressor(),param_grid,cv =19)
regr.fit(X_train,y_train)

Figure 20. Decision Tree Regressor

11

Figure 21. and Figure 22. Shows the visualization of Decision tree Regressor

import graphviz
from sklearn.tree import export_graphviz
from sklearn import tree

dot_data = tree.export_graphviz(regr.best_estimator_, out_file=None,

filled=True)
graphviz.Source(dot_data, format="png")

Figure 21. Decision Tree Regression visualization

Figure 22. Decision tree regressor Visualization

12

Figure 23. shows XGBoost Regression implementation

tuned params = {'max_depth': [1, 2, 3, 4, 5], 'learning rate': [0.01, 0.05, 6.1], 'n_estinators': [100, 208, 300, 400, 500]
model = RandomizedSearchCV(XGBRegressor(), tuned params, n_iter=20, scoring = 'neg mean_absolute error’, cvs5, n_jobs=-1)
model.fit(X train, y_train)

Figure 23. XGBoost Regression

Figure 24. shows implementation Random Forest Regression

tuned parans = {'n_estinators': [100, 200, 306, 400, 500], 'min_samples split': [2, 5, 18], 'min_samples leaf': [1, 2, 4]}
random_regressor = RandomizedSearchCV(RandomForestRegressor(), tuned params, n_iter = 20, scoring = 'neg mean_absolute error',
random_regressor. fit(X_train, y_train)

Figure 24. Random Forest Regression

11 Machine Learning Algorithms to Predict Taxi Trip
Trajectory

11.1 Normality and Histogram for Checking Linearity

Figure 25. shows the first target variable lon_last histogram and Normality plot.

#Normality

#histogram and normal probability plot

from scipy.stats import norm

from scipy import stats
sns.set(rc={'figure.figsize':(7,5)})
sns.distplot(taxi_df_tra['lon_last'], fit=norm);

fig = plt.figure()

res = stats.probplot(taxi_df_tra['lon_last'], plot=plt)

Figure 25. Histogram and Normality plot for lon_last

13

Figure 26. shows the first target variable lat_last histogram and Normality plot.

#Normality

#histogram and normal probability plot

from scipy.stats import norm

from scipy import stats
sns.set(rc={"figure.figsize':(7,5)})
sns.distplot(taxi_df_tra['lat_last'], fit=norm);

fig = plt.figure()

res = stats.probplot(taxi_df_tra['lat_last'], plot=plt)

Figure 26. Histogram and Normality plot for lat_last

Figure 27. shows Multiple Linear Regression implementation

from sklearn.linear_model import LinearRegression
#Fitting the Multiple Linear Regression model

mlr = LinearRegression()

mlr.fit(X_train_tra, y_train_tra)

LinearRegression()

Figure 27. Multiple Linear Regression

Figure 28. shows Gradient Boosting Regression implementation

from sklearn.multioutput import MultiOutputRegressor
from sklearn.ensemble import GradientBoostingRegressor
bosting = MultiOutputRegressor(GradientBoostingRegressor(random_state=0))

Fitting

bosting = bosting.fit(X_train_tra, y_train_tra)
y_train_pred_tra = bosting.predict(X_train_tra)
y_test_pred_tra = bosting.predict(X_test_tra)

Figure 28. Gradient Boosting Regression

14

12 Evaluation Metrices

Figure 29. shows the evaluation metrices used to evaluate all the Machine Learning Models.

n

print("Root mean squared error: ", sqrt(mse(y_test, y_test pred)))
print("R-squared: ", r2_score(y_test, y test pred))

print("Mean Squared Error:",mse(y_test, y_test_pred))

print("Mean Absolute Error:",mae(y test, y test pred))

(
(
(1
(

Figure 29. Evaluation Metrices

"https://www.anaconda.com/products/individual

it https://www.kaggle.com/crailtap/taxi-trajectory

15

https://www.anaconda.com/products/individual
https://www.kaggle.com/crailtap/taxi-trajectory

