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Enhancing the accuracy of Autism detection using
fMRI images with Graph Autoencoder and Graph

Neural Networks

Sumit Rai
x20207603

Abstract

Autism Spectral Disorder (ASD) is a neurological developmental disorder. It
affects the brain and the symptoms usually manifest as challenges in social skills,
restrictive interests and repetitive behaviour. The traditional methods for ASD
detection have been based on behavioral observations which are neither efficient
nor accurate. Recently, resting-state Functional Magnetic Resonance Imaging (rs-
FMRI) has been used to understand the mechanisms of brain disorders such as
ASD. In this paper, a graph neural network with graph auto-encoder is proposed
and implemented to enhance the accuracy of the ASD detection using rs-FMRI. The
correlation between blood oxygen level-dependent (BOLD) signals in the region
of interest (ROI) in the brain is used to create functional connectivity matrix.
Then, the graph auto-encoder is used for feature representation and a graph neural
network is used for the classification task. Both the networks (GAE & GNN)
are trained together to tune the latent representation by graph auto-encoder for
classifying the subjects as Autistic or non-Autistic. An accuracy of around 55%
is achieved on ABIDE preprocessed dataset, which is less than ideal for medical
applications. The results show that the proposed framework should be improved
further to achieve an improved classification accuracy over other research which are
usually above 78% on ABIDE-I preprocessed dataset.

1 Introduction

Autism Spectral Disorder (ASD) consists of multiple common neurodevelopmental dis-
orders such as Autism and Asperger’s Syndrome. The clinical symptoms usually observed
are challenged social communication and interaction skills, unusual interests, repetitive
behaviours (stereotypical movements) and delayed cognitive skills. According to the
World Health Organization (WHO), ASD is very prevalent and 1 in 160 children suffers
from it globally. The prevalence of ASD in the USA by gender, ethnicity and age is shown
in Figure 1a, Figure 1b and Figure 1c respectively. 1

1The statistics are from Statista.
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(a) Prevalence by gender (b) Prevalence by ethnicity (c) Prevalence by age

Figure 1: Prevalence of autism spectrum disorder among children aged 3 to 17 years in
the U.S. from 2016 to 2019

Although ASD is a lifelong disorder, but the early detection may help in reducing the
severity of the symptoms, better supervision and thereby providing a better quality of
life.

The cost of treating an ASD patient is a major financial burden for any economy and
is expected to increase. There has been a lot of research going on for ASD treatment
and huge amount of money have been getting invested by many countries actively for the
neurobiology and neurogenetics research for ASD. However, the etiology of ASD is still
not fully known and its pathology is unknown. There has been no conclusive identification
of unified structural traits due to multiple varieties of causes of ASD.

The traditional methods for detection of ASD are based on symptoms. These methods
are neither efficient nor accurate. The current clinical diagnosis depends on a checklist of
criteria available in diagnostic and statistical manuals. Furthermore, the ASD diagnostic
metrics and categories suffer from limitations in its observational capabilities. Moreover,
the reduction in distinction due to dynamicity in the definition of ASD has further made
the situation complex, due to which the chances of misdiagnosis and dual diagnosis have
increased.

The current advancement in neural imaging technologies and machine learning al-
gorithms have sparked interest in utilizing deep learning techniques in the detection of
ASD. These techniques are non-invasive in nature and aid in investigating the structural
and functional patterns in the brain. Specifically, the resting state functional magnetic
resonance imaging (rs-FMRI) has been used in the detection of Autism through func-
tional abnormalities in an autistic brain. These abnormalities are based on resting-state
blood oxygen level-dependent contrasts. These contrasts represent the energy used by the
cells and help in providing the subject’s baseline BOLD variance. For these analyses, the
brain is parcellated into different regions known as biomarkers. The pairwise interactions
between the biomarkers hold the key to deciphering the complex functional interactions
to detect and differentiate between ASD patients and normal individuals.

The paper is organized as follows: Section 2 describes the literature review or related
work, section 3 descibes the methodology. The design specification is provided in sec-
tion 4. Section 5 illustrates the implementation. The model evaluation is discusses in
section 6 followed by discussion in section 6.3. Finally, the paper is concluded in section 7.

2 Related Work

The spark in the study of mental disorders using functional connectivities as a potential
biomarker has led to an increase in the developmental efforts of computer diagnostic mod-
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els (CAD). Many studies on mental disorders have utilized these functional connectivities
as biomarkers such as mental states classification.(e.g. emotions (Kassam et al.; 2013)
and mental disorders (e.g. Schizophrenia, ASD (Yahata et al.; 2017)), semantic categories
(O’toole et al.; 2005) and learning (Bauer and Just; 2015) ). Few of the relevant research
in this field is summarised below:

2.1 Traditional Machine Learning

To reduce the variability in fMRI images collected from multiple sites, data harmonization
is suggested in Ingalhalikar et al. (2021). The sources of site variability are differences in
scanner, difference in image acquisition parameters, movement of head etc. The Combat-
ing batch effect when combining batches (ComBat) technique for data harmonization is
used. The difference in classification accuracy between harmonized vs. non-harmonized
data is compared using ANN, Autoencoders and Random Forests. The dataset used
is ABIDE-I preprocessed and the parcellation method used is CC200. Similar to other
research, the dataset is used to create an adjacency matrix using Pearson coefficient to
calculate co-activation between regions of the brain. The ablation study is also carried
out by creating 12 brain sub-networks. The discriminative power of sub-networks on
classification accuracy is studied across sites. The highest accuracy of 71.35% is achieved
on harmonized data using ANN as a classifier.

2.2 Convolutional Neural Networks

The enhanced convolutional neural network is discussed in Kashef (2022) for the efficient
diagnosis of ASD consisting of two temporal convolutional blocks with a kernel of size 4.
The filter size of the first block is 32 and then a filter of size 64 is used. The max pooling
layer is used to decrease overfitting and for regularization, a dropout layer is used. The
ReLU function is used for the activation function with Softmax classifier. This proposed
enhanced convolutional neural network achieved an accuracy of 80% on ABIDE-I prepro-
cessed dataset.

An improvement to classical CNN is suggested in Wang (2021). The input is con-
verted from 2-D to 1-D with a 1-D kernel & a pooling filter. The activation function
ReLU is replaced with PReLU activation function. The Softmax classifier is used before
pre-training and after pre-training, a parameterized SVM is used. The issue of overfit-
ting is avoided by replacing L1 with L2 regularization for cross entropy loss. A dataset
containing 416 Autistic and 441 non-Autistic subjects is used. The accuracy is 84.44%
using 10-fold cross validation, whereas sensitivity is 85.39% and specificity is 80.57%.

In M and Jaganathan (2021), the summary of sMRI data is combined with rs-FMRI
data to get better results. A 3D CNN is used for dimension reduction of summary data
while a sparse matrix is created from fMRI images by passing through variational auto-
encoder. Both of these data are used as input to the graph convolutional network for the
classification of Autism. The accuracy achieved is 60.9% - 62.6% on ABIDE preprocessed
dataset.
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2.3 Siamese Neural Networks

A different approach is provided in Tummala (2021). A deep learning framework which
uses T1-weighted MRI images is proposed. The Siamese Neural Nets (SNN) using Res-
Net50 (pre-trained computer vision residual network model) for the ASD classification
is utilized. The preprocessing steps include reorientation, cropping and registration of
affine. A validation accuracy of 99% using 5-fold stratified cross-validation is achieved
but the test accuracy hasn’t been mentioned.

2.4 Federated Learning

The privacy issues and access rights while sharing 3D MRI brain scans is discussed in
Fan et al. (2021) which hinders aggregated analysis. The result is low performance and
lack of generalizability of local models which are trained using data from a single site due
to limited data size. A solution is proposed that uses a guide-weighted federated learning
framework of deep learning (3D-GWFDL). The training of local models is perfomed at
each site and then the federated model is updated with gradients from each site. There is
no sharing of private raw data, but instead, encrypted private site information is shared
using differential privacy method. In contrast to other research, the structural MRI data
(ABIDE-I and ABIDE-II) is used. An increase in accuracy ranging from 0.92% to 4.02%
from local models trained on a single site is seen.

2.5 Graph Neural Networks

A graph-based network using deep belief network (DBN) is proposed by Huang et al.
(2021). DBN is a graph extension of K-nearest neighbours. The further refinement is
performed by using a restricted path-based depth-first search algorithm. The dataset
ABIDE-I is used, having 505 and 530 ASD patients and typical controls respectively.
The raw rs-fmri data is preprocessed by extracting the mean time series and converting
it into a matrix T of features. The matrix T is a 2 dimensional matrix in which the
element Tij is the mean time series of ith region of interest (ROI) and jth timestamp.
The graph-based feature selection (GBFS) is utilized to select remarkable functional con-
nectivities using external and internal measures. The level of co-activation between the
ROI’s time series is measured by using Pearson’s coefficient. The remarkable connec-
tions are chosen from a total of 19900 [(200 x (200-1)/2 = 19900] possible connections by
filtering out those connections for which the following conditions satisfy: FCASD(i,j) ≥
meanASD + α * STDASD for ASD subjects, FCASD(i,j) < meanASD + α * STDASD for typ-
ical controls where FCASD(i,j) is connection mean, meanASD is global mean and STDASD

is global standard deviation. The graph is extended by choosing K nearest neighbours
for K=6 selected empirically and exploring it with a restricted path-based depth-first
search algorithm implementation (RP-DFS). Finally, A DBN layer consisting of 3 layers
is used and an accuracy of 0.764 ±0.022 based on 10-fold cross-validation is achieved with
a sensitivity of 0.778 and specificity of 0.750.

In Yin et al. (2021) , a connectivity-based graph attention network is proposed for the
detection of ASD from rs-FMRI data. The dataset ABIDE-I is used with Powell atlas
as parcellation method. The preprocessing step uses Analysis of Functional Neuroimages
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(AFNI) and FMRIB’s Software Library (FSL) software packages for fMRI processing.
The cleaning of data is performed using the similar steps mentioned in Mostafa et al.
(2020) for motion artifacts and noises. A sparse connectivity matrix of size 264 x 264
is generated from the ROI’s time series and using Pearson’s coefficient for determining
connectivity strength. The connectivity matrix is converted into an adjacency matrix
representing a graph for each subject.There are 2 groups of features, one related to graph
statistics such as centralities, betweeness, eccentricity and others related to statistics of
time series such as mean, variance, skewness, and kurtosis. So, the number of dimensions
for each node feature vector is 7. The latent representation of the nodes is learnt using
a graph attention network and classification is performed using the MLP layer. The
adjacency matrix represents a learnt graph and time series characteristics embedding of
a single graph. A 5-fold cross validation with 3:1 train-test split is used and a mean
accuracy of 82.3% is achieved with a sensitivity of 83.6% and specificity of 78.3%.

A multi-class classification of ASD subtypes is presented in Al-Hiyali et al. (2021).
The ABIDE dataset labelled with ASD subtypes such as ASD, APD, PPD-NOS and
normal control (NC) are classified using a Convolutional Neural Network with dynamic
input functional connectivity. The BOLD signals are extracted using DPARSF Matlab
tool. The dynamic functional connectivity between nodes of the brain is quantified by
a new metric wavelet coherence (WCF). This gives the overall coherence variability over
time. The standard brain atlas, Automated Anatomical Labelling (AAL) is used as for
brain parcellation. The matrix R has time series as columns of 90 nodes related to cortical
regions are selected out of a total 116 nodes. It is then used to create a 2-D matrix of
wavelet conherence (WC). The element in the coherence matrix denotes the pairwise node
coherence over a period of time at a frequency F. The RMS value over the time points
is used to calculate the average over the frequency range. The filtration of the nodes is
peformed by graph-based filtering to create a scalogram containing coherent synchronous
features. A CNN is used for classification with 10-fold cross-validation and an accuracy
of 88.6% is achieved.

In Wang et al. (2022), a multi-altlas graph convolutional networks are combined for
the automatic diagnosis of ASD with ensemble learning on preprocessed ABIDE-I dataset
having different brain atlases. The Configurable Pipeline for Analysis of Connectomes
(CPAC) is used for the preprocessing of the time-series brain regions. The correlation
between brain regions are calculated using Pearson coefficient for each subject. The fea-
ture selection is performed using recursive feature elimination (SVM-RFE). The relevant
features for automatic diagnosis of ASD are selected by the multi-atlas graph convolu-
tional network method(MAGCN). The Ridge classifier is used for the final automatic
ASD diagnosis after combining the feature representation with the proposed ensemble
learning method. The accuracy achieved is 75.86% while corresponding figures for spe-
cificity is 71.53% and sensitivity of 79.24%.

A graph convolutional network is presented in Ma et al. (2021). A region of interest
is represented by a node in the graph. The functional connectivities between ROIs is
averged over the population and used as feature vectors. The parcellation method di-
vides the brain into 200 regions to create a square matrix of functional connectivity with
size 200. This is created for each subject using Pearson’s correlations. All these matrices
are averaged to calculate a mean matrix from the connectivity matrix of all the subjects.
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A backbone adjacency matrix is created from the mean matrix where elements Ai,j = 1 if
Ai,j ≥ τ else 0. A combination of layers (convolutions, pooling, dense) to create different
networks is analysed such as as C2PCP, CPCP, C2P, C2P + Dense1 and CP are used
to study the effect on classification performance. Additionally, the ablation study is also
performed using phenotypic attributes. The best accuracy of around 78% is achieved
with a C2P (GraphConv(20)– GraphConv(10)–GraphPool(10)) model.

The BrainGNN, a graph neural network for the analysis of fMRI image data is presen-
ted in Li et al. (2021). It consists of Region of interest (ROI)-aware Graph Convolution
Layer (Ra-GConv) for embedding weights learning, ROI-top K pooling layer for reduc-
tion of dimesnions and for flatterning, a readout layer. The datasets used are Biopoint
and HCP. The BrainGNN achieved an accuracy of 79.8 and 94.4 on Biopoint and HCP
datasets respectively.

In Yin et al. (2022), an unsupervised autoencoder is used for learning the latent fea-
tures from the fMRI data, while a supervised classifier is used for ASD classification.
This is different from commonly used two staged networks in which learning takes place
separately. Instead, the loss functions of the two stages are combined together so that the
learning of the latent features is guided to improve classification accuracy. The unlabeled
data is used to experiment with the learning of the encoder part of the autoencoder net-
work and then labeled data to train both the networks jointly. The accuracy using 5 fold
cross-validation is 87.2% while sensitivity is 89.9% & specificity is 80.3%.

2.6 Convolution Neural Networks and Transferred Learning

A transfer learning based approach is given in Liang et al. (2021). A convolutional net-
work is used for the extraction of features. The learning of category prototypes takes place
automatically. Also, the learning of CNN and prototype happen together for ASD clas-
sification using cross-entropy as loss function. The weights are initialised using weights
from non-medical applications for achieving early convergence of the training algorithm.
The dataset ABIDE-I preprocessed is used. The accuracy using 10-fold cross validation
is 77.3%. Also, using all sites except one for training and remaining site for testing gives
an inter-site acccuracy of 67.8%.

2.7 ABIDE information

In Di Martino et al. (2014), the information on Autism Brain Imaging Data Exchange
(ABIDE) dataset is provided. The process of collection is explained. The ASD subjects
are 539 while typical controls are 573, making a total of 1112 fMRI images.

In summary as shown in Table 1, most of the mentioned papers used ABIDE dataset.
A correlation matrix of functional connectivities is created from the dataset and then
an adjacency matrix is created whose elements are 0 if they are less than cutoff and 1
if greater than or equal to the cutoff value of correlation. The adjacency matrix is used
for the classification task. There are two kinds of data representation using graphs -
one graph per subject with nodes as regions of interest having phenotypic attributes and
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Table 1: Summary of the literature review

Research paper Dataset Technique Accuracy

Ingalhalikar et al. (2021) ABIDE-I preprocessed Traditional Machine
Learning

71.35%

Kashef (2022) ABIDE-I preprocessed Deep Learning 80%
Wang (2021) Custom dataset Traditional Machine

Learning
84.44%

M and Jaganathan (2021) ABIDE preprocessed Deep Learning 60.9% - 62.6%
Tummala (2021) Custom Dataset Deep Learning NA
Fan et al. (2021) ABIDE-I and ABIDE-

II
Deep Learning 0.92% to 4.02% increase

Huang et al. (2021) ABIDE-I Deep Learning 76.4%
Yin et al. (2021) ABIDE-I Deep Learning82.3%
Al-Hiyali et al. (2021) ABIDE Deep Learning 88.6%
Wang et al. (2022) ABIDE-I Deep Learning 75.86%
Ma et al. (2021) BIDE Deep Learning 78%
Li et al. (2021) Biopoint and HCP Deep Learning 79.8 on Biopoint,

94.4 on HCP dataset
Yin et al. (2022) Custom dataset Deep Learning 87.2%
Liang et al. (2021) ABIDE-I preprocessed Deep Learning 77.3%

edges as functional connectivities or a single graph with nodes as subjects and functional
connectivities as node attributes and edges having phenotypic information.

3 Methodology

3.1 ABIDE dataset

The preprocessed neuoroimaging (FMRI) dataset known as Autism Brain Imaging Data
Exchange (ABIDE) is a public open source dataset. It is available at ABIDE - I Pre-
processed as part of the Preprocessed Connectome Project (PCP). The dataset is already
available as pre-processed using Configurable Pipeline for the Analysis of Connectomes
C-PAC pipeline. The dataset is available as a set of subject files along with a csv file hav-
ing phenotypic attributes of all the subjects along with additional information. In total,
there are 1102 files aggregated by the collaboration of 16 international imaging sites.
It contains neuroimaging data of 539 individuals with ASD and 573 typical controls.
The phenotypic file (Phenotypic V1 0b preprocessed1) has information about the site
(SITE ID), individuals (SUB ID, AGE AT SCAN, SEX, HANDEDNESS CATEGORY,
HANDEDNESS SCORES ), category (DX GROUP), file identifier (FILE ID) along with
other information.

A sample of time series is illustrated in fig Figure 2 for the first 10 regions of the brain
(CC200 parcellation (Caltech)). The data is a blood-oxygen-level-dependent (BOLD)
signal for each small volume (cubic) known as a voxel. The BOLD values of voxels within
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a region are averaged to get a representative value for a region for each of 200 brain
regions.

Figure 2: A sample time series containing 146 datapoints for the first 10 regions of the
brain

3.1.1 Subject file structure

For each subject, the whole brain region is divided into 200 regions using Craddock
200 (CC200) functional parcellation method. Each subject file contains a time series
containing 146 data points from each of the 200 brain regions arranged as 200 columns
for that subject. The subject files are available in tab delimited format. The column
names are given in the format #<column-position> for e.g. #1, #2 , .. #200. For each
of the brain regions, a time series consisting of 146 data points is taken which are the
values within a column. The values are numerical (positive and negative) in nature.

3.1.2 Phenotypic file structure

The information about the fields in the ABIDE phenotypic file is summarised in the
Table 2. Following the HIPAA guidelines and 1000 Functional Connectomes Project
/ INDI protocols, the datasets are anonymous and are free from any protected health
information.

Table 2: Description of fields

COLUMN LABEL DATATYPE DESCRIPTION CODING SPECIFICATION
SUB ID Numeric ABIDE unique ID number
DX GROUP Numeric Diagnostic Group
DSM IV TR Numeric DSM IV TR Diagnostic Category
AGE AT SCAN Numeric Age at time of scan in years
SEX Numeric Subject Gender
HANDEDNESS CATEGORY String Subject Handedness Category
HANDEDNESS SCORES Numeric Subject Handedness Scores
FIQ Numeric FIQ Standard Score
VIQ Numeric VIQ Standard Score

Continued on next page
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Table 2 – continued from previous page
COLUMN LABEL DATATYPE DESCRIPTION CODING SPECIFICATION

PIQ Numeric PIQ Standard Score
FIQ TEST TYPE String IQ Test Administered for full scale IQ
VIQ TEST TYPE String IQ Test Administered for verbal IQ
PIQ TEST TYPE String IQ Test Administered for performance IQ
ADI R SOCIAL TOTAL A Numeric Reciprocal Social Interaction Subscore (A)

Total for Autism Diagnostic Interview-Revised
ADI R VERBAL TOTAL BV Numeric Abnormalities in Communication Subscore (A)

Total for Autism Diagnostic Interview-Revised
ADI RRB TOTAL C Numeric Restrictive, Repetitive, and Stereotyped Patterns of Behaviour

Subscore (C) Total for Autism Diagnostic Interview-Revised
ADI R ONSET TOTAL D Numeric Abnormality of Development Evident at or Before 36 Months

Subscore (D) Total for Autism Diagnostic Interview-Revised
ADI R RSRCH RELIABLE Numeric Was ADI scored and administered by research reliable personnel?
ADOS MODULE Numeric Autism Diagnostic Observation Schedule Module
ADOS TOTAL Numeric Classic Total ADOS Score

(Communication subscore + Social Interaction subscore)
ADOS COMM Numeric Communication Total Subscore of the Classic ADOS
ADOS SOCIAL Numeric Social Total Subscore of the Classic ADOS
ADOS STEREO BEHAV Numeric Stereotyped Behaviors and Restricted Interests

Total Subscore of the Classic ADOS
ADOS RSRCH RELIABLE Numeric Was ADOS scored and administered by research reliable personnel?
ADOS GOTHAM SOC AFFECT Numeric Social Affect Total Subscore for Gotham Algorithm of the ADOS
ADOS GOTHAM RRB Numeric Restricted and Repetitive Behaviors

Total Subscore for Gotham Algorithm of the ADOS
ADOS GOTHAM TOTAL Numeric Social Affect Total + Restricted and Repetitive Behaviors Total
ADOS GOTHAM SEVERITY Numeric Individually Calibrated Severity Score

for Gotham Algorithm of the ADOS
SRS VERSION Numeric Social Responsiveness Scale Version
SRS RAW TOTAL Numeric Total Raw Score the Social Responsiveness Scale
SRS AWARENESS Numeric Social Responsiveness Scale

Social Awareness Subscore Raw Total
SRS COGNITION Numeric Social Responsiveness Scale

Social Cognition Subscore Raw Total
SRS COMMUNICATION Numeric Social Responsiveness Scale

Social Communication Subscore Raw Total
SRS MOTIVATION Numeric Social Responsiveness Scale

Social Motivation Subscore Raw Total
SRS MANNERISMS Numeric Social Responsiveness Scale Autistic Mannerisms

Subscore Raw Total
SCQ TOTAL Numeric Social Communication Questionnaire Total
AQ TOTAL Numeric Total Raw Score of the Autism Quotient
COMORBIDITY String Any other comorbidities?
CURRENT MED STATUS Numeric Currently Taking Medications?
MEDICATION NAME String Active ingredient of any currrent psychoactive medications
OFF STIMULANTS AT SCAN Numeric Off stimulus 24 hours prior to scan?
VINELAND RECEPTIVE V SCALED Numeric Vineland Adaptive Behavior Scales

Receptive Language V Scaled Score
VINELAND EXPRESSIVE V SCALED Numeric Vineland Adaptive Behavior Scales

Expressive Language V Scaled Score
VINELAND WRITTEN V SCALED Numeric Vineland Adaptive Behavior Scales

Written Language V Scaled Score
VINELAND COMMUNICATION STANDARD Numeric Vineland Adaptive Behavior

Scales Communication Standard Score
VINELAND PERSONAL V SCALED Numeric Vineland Adaptive Behavior Scales

Personal Daily Living Skills V Scaled Score
VINELAND DOMESTIC V SCALED Numeric Vineland Adaptive Behavior Scales

Domestic Daily Living Skills V Scaled Score
VINELAND COMMUNITY V SCALED Numeric Vineland Adaptive Behavior Scales

Community Daily Living Skills V Scaled Score
VINELAND DAILYLVNG STANDARD Numeric Vineland Adaptive Behavior Scales

Daily Living Skills Standard Score
VINELAND INTERPERSONAL V SCALED Numeric Vineland Adaptive Behavior Scales

Interpersonal Relationships V Scales Score
VINELAND PLAY V SCALED Numeric Vineland Adaptive Behavior Scales

Play and Leisure Time V Scales Score
VINELAND COPING V SCALED Numeric Vineland Adaptive Behavior Scales

Coping Skills V Scales Score
VINELAND SOCIAL STANDARD Numeric Vineland Adaptive Behavior Scales Socilaization Standard Score
VINELAND SUM SCORES Numeric Sum of Vineland Standard Scores

(Communication + Daily Living Skills + Socialization)
Continued on next page
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Table 2 – continued from previous page
COLUMN LABEL DATATYPE DESCRIPTION CODING SPECIFICATION

VINELAND ABC STANDARD Numeric Vineland Adaptive Behavior Coposite Standard Score
VINELAND INFORMANT Numeric Vineland Adaptive Behavior Scales Informant
WISC IV VCI Numeric WISC-IV Verbal Comprehension Index
WISC IV PRI Numeric WISC-IV Perceptual Reasoning Index
WISC IV WMI Numeric WISC-IV Working Memory Index
WISC IV PSI Numeric WISC-IV Processing Speed Index
WISC IV SIM SCALED Numeric WISC-IV Sim Scales
WISC IV VOCAB SCALED Numeric WISC-IV Vocabulary Scaled
WISC IV INFO SCALED Numeric WISC-IV Information Scaled
WISC IV BLK DSN SCALED Numeric WISC-IV Block Design Scaled
WISC IV PIC CON SCALED Numeric WISC-IV Picture Concepts Scaled
WISC IV MATRIX SCALED Numeric WISC-IV Matrix Reasoning Scaled
WISC IV DIGIT SPAN SCALED Numeric WISC-IV Digit Span Scaled
WISC IV LET NUM SCALED Numeric WISC-IV Letter-Number Sequencing Scaled
WISC IV CODING SCALED Numeric WISC-IV Coding Scaled
WISC IV SYM SCALED Numeric WISC-IV Symbol Search Scaled
EYE STATUS AT SCAN Numeric Eye Status During Rest Scan
AGE AT MPRAGE Numeric Age at Anatomical Scan in years
BMI Numeric Body Mass Index

The phenotypic fields used as node attributes in the current paper are SITE ID,
AGE AT SCAN, SEX, HANDEDNESS CATEGORY, while other time-related node at-
tributes such as mean, variance, skewness and kurtosis are generated from time-series
data from the subject file.

3.2 Functional connectivity

The pairwise correlation is calculated to find the function connectivity between regions
of the brain known as regions of interest (200 ROIs). The Pearson coefficient is used to
calculate the correlation value whose equation is shown below:

ρi,j =

∑tn
t1 (xi,t − xi)(xj,t − xj)√∑tn

t1 (xi,t − xi)
√∑tn

t1 (xj,t − xj)

A heatmap of the correlations between the first 30 regions of the brain is given in
Figure 3
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Figure 3: A sample heatmap of correlations between first 30 regions of the brain

3.3 Additional Preprocessing

For each subject, the raw time-series file containing signals from 200 brain regions as
per Craddock parcellation file is read and a correlation matrix is created whose elements
represent the correlation between brain regions. The correlation matrix is converted into
an adjacency matrix by replacing values with 0 which are less than a cutoff value and with
1 which is greater than or equal to the cutoff. Then, the adjaceny matrix is converted
into a sparse matrix/edge index by keeping only non-zero elements. The sparse matrix is
converted into a directed matrix by adding a connection (j,i) for each (i,j) in the sparse
matrix as required for model training. Also, for each subject, there are two types of
node features: time series related and phenotype related. The time series related node
features such as mean, variance, skew, kurtosis are calculated from the time series data
from the file, whereas the phenotypic attributes such as SITE ID”, ”AGE AT SCAN”,
”SEX”, ”HANDEDNESS CATEGORY” are read from the phenotype file provided as
part of the ABIDE dataset. The classification label DX GROUP is also read from the
same phenotypic file. The node features and edge index along with classification label
are used to generate an object (torch geometric.data) and saved on the disk for later use
during model training.

4 Design Specification

The proposed model is shown in Figure 4. It consists of a graph autencoder followed by
a graph neural network.
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Figure 4: Flow diagram of the proposed novel model

4.1 Graph Autoencoder

The autoencoder network is a neutral network that consists of an encoder, hidden layer
and a decoder. The encoder converts the input data from one space into a latent space.
Depending on the hidden layer and input dimension, the encoder converts the input to a
lower dimension or higher dimension representation.

The decoder part regenerates the original input from this lower or higher dimensional
representation. The corresponding version which is used for graphical data is known as
graph autencoder. An autoencoder diagram is shown in Figure 5. A graph autoencoder is
used to learn the latent representation of the data while discarding the useless redundant
information.
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Figure 5: Diagram of an autoencoder

4.2 Graph Neural Network

The fMRI data can be represented efficiently by a graph. A graph is represented by nodes
and edges. In the current paper, the regions of interest are represented as nodes with
phenotypic attributes as node attributes, while edges represent functional connectivities
between regions of interest for each subject. The graph neural network is used to classify
the graph as either ASD or non-ASD for each subject.

Figure 6 shows the representation of brain functional connectivities as correlation
matrix and graph.

Figure 6: Representation of brain functional connectivities as correlation/adjacency mat-
rix and graph

The loss function of both the graph autoencoder and graph neural network is combined
and they are trained jointly to direct the graph autoencoder learning towards enhancing
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the classification accuracy by the graph neural network.

5 Implementation

5.1 Preprocessing

The Pytorch library is used for the transformation and modelling the solution. First,
for each of the fmri files, it is loaded into a numpy array (ndarray). Then, pairwise
correlation is calculated using ndarray corrcoef function in numpy for each pair of the
possible combination of columns, such as column 1 & 2, column 1 & 3 etc. till column
199 & 200 to create a correlation matrix of size 200 x 200 corresponding to 200 regions of
interests in the brain. After that, the correlation matrix is converted into an adjacency
matrix by using the where function in numpy to convert the values in the correlation
matrix by using the formula: 1 if cij >= cutoff value and 0 for cij < cutoff, where
cutoff value is used as 0.1. Then, the correlation matrix is converted into sparse matix.
The sparse matrix is then converted into a directed matrix by adding the corresponding
connections i.e. (j, i) for every (i, j) in the sparse matrix.

Then, for each sparse matrix (graph), the DX GROUP column from the phenotype
file is used to get the class of the graph (1 for control group and 2 for Autistic group)
and the converting these classes to zero based class i.e. (0 for control and 1 for Autism).
After that , the phenotypic features such as SITE ID, AGE AT SCAN, SEX, HANDED-
NESS CATEGORY and time related features such as mean, variance, skewness and
kurtosis are calculated and used as node features.

Then, the node features, label and adjacency matrix are used to construct an object
known as Data and saved on the disk for later use during training.

5.2 Modelling

The model consists of an autoencoder and a graph neural network for the task of classi-
fication of the graph for Autism detection.

The autoencoder consists of encoder and decoder part. The encoder network encodes
the input into another dimension whereas decoder converts it to original dimension.

The graph neural network consists of multiple layers of graph convolutions and ac-
tivation functions. There are two GCN networks used in the current paper. The layer
configurations of the two GCN’s are shown in the table Table 3 and 4 below:

The model is implemented using modules torch geometric & torch which are available
in Pytorch. For the graph autoencoder, the phenotypic attributes are encoded to 21
features from 7 features and then decoded back to 7 features. A new class GCNEncoder
is coded which is passed as an encoder to the GAE. The encoder uses 2 graph convolutions
with a relu activation function as shown in Figure 7.
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Table 3: Classification model I

Layer Name Parameters

0 GAE Graph Autoencoder

1 GCNConv Graph Convolution layer

2 ReLU Activation

3 GCNConv Graph Convolution layer

4 Global Mean Pooling Mean Pooling layer

5 Dropout layer To prevent over-training

6 Linear Layer For flattening

Table 4: Classification model II

Layer Name Parameters

0 GAE Graph Autoencoder

1 GCNConv Graph Convolution layer

2 ReLU Activation Layer

3 GCNConv Graph Convolution layer

4 ReLU Activation Layer

5 GCNConv Graph Convolution layer

6 Global Mean Pooling Mean Pooling layer

7 Dropout layer To prevent over-training

8 Linear Layer For flattening
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Figure 7: Encoder of the graph autoencoder

(a) Graph Neural Network I

(b) Graph Neural Network II with additional
GCNConv & relu layer

Figure 8: Graph Neural Networks

The encoder ouptput is fed to a graph neural network. The graph neural network con-
sists of 2 graph convolutions GCNConv with a relu activation in model I and 3 graph con-
volutions GCNConv with two relu activation in model II . For pooling, global mean pool
is used with a dropout layer to prevent over-training and then finally, a linear layer for
flattening in both the models.

6 Evaluation

For the evaluation of the model, the ABIDE-I preprocessed dataset consisting of 1102
subjects after additional preprocessing is divided into 2 sets: 80% training set and 20%
testing set. The training set is shuffled before training. A batch size of 256 is used for
the training. The results using the two models are discussed below:

6.1 Experiment / Case Study 1

One model as shown in Figure 8a is trained for 500 epochs with a learning rate of 0.0001.
The graph of loss vs. epoch is shown in Figure 9 for graph auto-encoder used for latent
representation learning and in Figure 10 for graph neural network used for classification.
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The two losses are combined during training to direct the latent representation learning
towards enhancing ASD classification accuracy.

Figure 9: Loss vs. epoch for the graph autoencoder

Figure 10: Loss vs. epoch for the classification graph neural network

6.2 Experiment / Case Study 2

The second model as shown in Figure 8b is also trained for 500 epochs. A different
learning rate of 0.001 is used for training. The graph of loss vs. epoch is provided in
Figure11 and Figure 12 for the graph autoencoder for latent representation and gnn for
classification respectively.
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Figure 11: Loss vs. epoch for the graph autoencoder

Figure 12: Loss vs. epoch for the classification graph neural network

The graphs of loss vs epoch for experiment case I and case II is shown together for
comparison in Figure 13 for graph autoencoder whereas for graph neural network, it is
shown in 14.
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Figure 13: Loss vs. epoch comaprison between model I and II for the graph autoencoder

Figure 14: Loss vs. epoch for the classification graph neural network between model I
and II

6.3 Discussion

As shown in Figure 9, the loss decreases as epoch progresses and maximum learning take
place from epoch 100 to 250 as evident by steep decrease in loss. However, after epoch
250 onwards, the rate of decrease in loss reduces and graph almost becomes asymptotic
suggesting learning by the model has almost stopped.

For the GNN as shown in Figure 8a, there is a downward trent but there is more vari-
ance. The value keeps on fluctuating around a value. The maximum accuracy achieved
is around 55%.

A similar trend can be seen in Figure 11 but maximum learning take place between
epoch 75 and 175. For the GNN, the loss value is decreasing but the variance observed
in loss is high.

As can be seen from transposition of graphs of model I and model II for graph au-
toenoder in Figure 13 and graph classification neural network in Figure 14, the values
decrease faster in model II as compared to model I for GAE but remains almost similar
for GNN. However, the final accuracy observed is still around 55%.
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The above discussion suggests that the phenotypic attributes used in the current
paper and a cutoff value of 0.1 for functional connectivity are not enough to classify
Autism successfully. The additional phenotypic attributes and variation of cutoff values
for functional connnectivities might help in making the differentiation between Autistic
and non-Autistic subjects which might help in enhancing ASD classification accuracy.

7 Conclusion and Future Work

In this research paper, a novel approach for enhancing the accuracy of the Autism classific-
ation by using phenotypic attributes and functional connectivities between brain regions
as features is proposed and implemented in Pytorch. A graph autoencoder is trained
for learning the latent representation and graph neural network for the classification on
ABIDE-I preprocessed dataset. The training is performed jointly to optimize latent rep-
resentation learning for enhancing classification accuracy. This is in contrast to other
methods in which the training is performed separately.

For each subject , the nodes in the graph represents phenotypic attributes while
edges represent functional connectivities between brain regions. The whole graph for
each subject is classified as Autistic or non-Autistic.

However, the test accuracy has been around 55% which is not ideal for medical applic-
ations. A further investigation with other graph convolution layers such as ChebConv,
SAGEConv, GraphConv, GATConv, GATv2Conv etc. and other pooling layers such as
global max pool, SAGPooling etc.) might help in enhancing the accuracy.

The ABIDE-II dataset which is currently available as unprocessed dataset on the web
at ABIDE-II can also be used in the future either by pre-processing it locally (out of
scope for current research) or when its pre-processed version becomes available (similar
to ABIDE-I) in the future.
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