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Abstract

During the era of Global warming and Russia’s war in Ukraine, there has never
been more urgency in helping Ireland’s electric grid migrate from fossil fuels to
renewables. However, renewable power supply sometimes exceeds demand, leading
to the disconnection of wind farms and the wastage of potential electricity. This
paper is primarily concerned with providing forecasting tools for users to find when
electricity rates are lowest due to high supply. In addition, this paper proposes an
alternative expenses model for electricity providers which could results in savings
for users and increased demand at peak times. This model was found to be 25%
cheaper then current pricing models, using whole-sale electricity prices.

1 Introduction

1.1 Motivation

As part of the UN’s Climate Report in 2022, Jim Skea, Co-Chair of IPCC Working Group
ITI, stated that it’s ”Now or Never” to limit climate change to 1.5° CelsiusE]. As of 2020,
electricity generation represented 22% of Ireland’s total greenhouse gassef’} The Irish
electric grid has one of the highest national percentages of potential variable renewable
electricity generation, Glynn et al.|(2019)). Variable renewable power is power which varies
in it’s supply depending on the wind or the sun, inhibiting it’s ability to meet demand
on time. Variable power is contrasting to base-load power, such as coal or gas which is
always available to meet demand. These varying levels of generated available renewable
power create challenges for Ireland’s grid operator, SEMO (The Single Electricity Market
Operator) and Eirgrid who balance supply to meet demand.

Despite the challenges that variable power sources face, Ireland’s government is at-
tempting to phase out coal and gas power, |Glynn et al. (2019). In addition E], Ireland’s
electricity grid operator has forecast that energy demand will increase between 23% and
47% in the next 10 years. The phase out of fossil fuels combined with increasing demand
means that current production of renewable power will need to be dramatically increased.
As of June 2022, only 30% of Ireland’s electricity is generated using wind power (A total
of 80% of all renewable energy). Ireland’s government aims to increase this share to 70%

Thttps://news.un.org/en/story/2022/04 /1115452

https://www.seai.ie/data-and-insights/seai-statistics/key-statistics /co2/

3http://www.eirgridgroup.com/site-files /library /EirGrid /EirGrid-Group-All-Island-Generation-
Capacity-Statement-2019-2028.pdf



of electricity (This is an increase of two and a half times the total amount of wind power
energy.)

Simply increasing wind capacity is a naive approach to meeting Irish demand. The
associated problem of renewable power is that it is not always available when needed.
Wind Energy Ireland| has raised growing concerns about the increasing amount of lost
renewable power every year. 1.4 million MWh of renewable electricity was lost in 2020
when wind farms were disconnected from the grid due to excess supply. This represents
enough electricity to power 70,000 houses for a year, or a total of 11.5% of all renewable
power generated in Ireland E] Electricity providers incentivise owners by making rates
lower at times where supply exceeds demand. As coal stations cannot be switched off,
most often these times occur at night, but as we move to a renewable grid, they will
happen during times of high wind.

One possible way to resolve the issue is with smart storage facilities in the form of
pumped storage, batteries or kinetic flywheels. In this regard, Electric Vehicles (EVs)
have a major role to play. On average, each EV represents a 60KwH battery, which
can be charged when electricity rates are low. Helmers and Marx (2012) documented
that a typical 60kWh vehicle battery requires just below 8 hours to charge completely
at a TkW charging point. Most drivers are not completing a full charge every night and
are instead top-up’ charging, to keep their cars full and ready to drive. If drivers were
informed effectively about high-supply/low demand times (charge windows), Ireland’s
EV fleet could be using electricity that has historically been wasted. Ireland’s EV owners
would be incentivised by the cheaper electricity. A key role to play in this is informing
EV owners of these approaching charge windows.

The purpose of this project is to investigate how effective predictive analytics is in
finding optimal charge windows for EVs. To do this, historical demand, the ideal length
of a charge window and the weather will be used to provide predictions. This leads us to
the central question of the paper:- "Can a real-time prediction system be used to
alert EV owners to optimal charging times and thereby minimise the load on
Ireland’s electricity grid”

2 Related Work

2.1 The state of renewable power in Ireland

In Western Europe, variable renewable power sources such as solar and wind are inter-
mittent (Simons et al.|(2001)). This is particularly the case if there are large low pressure
weather systems without wind or sun blowing over the continent. This unreliability can
result in dramatic drops in the supply of electric power across the continent.

This presents a problem as the failure of energy supply to meet demand can result
in rolling blackouts and serious damage to infrastructure. Wind and solar intermittency
reduces their suitability for meeting demand. Renewable base-load alternatives do exist,
in the form of hydro-electric and geothermal electricity sources. |[Zhong et al.| (2021))
highlights that Sweden is leading the EU’s change to renewable power, generating a higher
share than any other country in the EU at 60.1%. It generates 70% of it’s renewable
power through constant base-load hydroelectric power, utilising its geography of lakes

4https://windenergyireland.com/latest-news/5364-annual-report-confirms-wind-energy-leads-fight-
against-climate-change
Shttps://www.seai.ie/data-and-insights/seai-statistics /key-statistics/co2/



and mountains. However, hydroelectric power itself won’t be enough to meet capacity
there. This capacity can be met instead with wind power in order to make Sweden
100% renewable. It’s mentioned that the fluctuation of (wind) renewable energy capacity
and consumption, unless power to gas, electric vehicle and V2G technologies are mature
won’t allow it to meet demand. This highlights the role that battery technology will
play in supporting renewables. However, both the geographical terrain, and attitude
to nuclear power make Ireland’s potential renewable make-up more like Germany then
Sweden, having a more densely populated landscape with a lack of hydro-electricity.

Germany’s energy transition policy, the ”Energiewende”, has been controversial, with
article’s like[” Energy Price Increases Pose Challenge for Merkel”, 2012||” Germany’s Green|
[Energy Meltdown”, 2016| and ["'The Worlds Dumbest Energy Policy, 2019”] Critics em-
phasise the higher electricity prices that consumers are paying, and how the shutdown
of zero carbon electricity nuclear power resulted in retaining coal plants. However, their
polluter-pays policy has begun to bare fruit as Rechsteiner| (2021)) highlights that the
Energiewende has created an electricity market that incentivises users to minimise CO2
emissions through premiums and tenders for users. Originally, the system sought price
guarantees for users but now ”dynamic efficiency” is considered a core part of their energy
policy.

Despite major progress in Ireland, Fitzgerald (2020) highlighted that a major policy
shift is necessary to reduce Ireland’s dependency on fossil fuels. (Crilly and Zhelev| (2008)))
analysed the Irish electricity market, completing projections for the future about it’s
Optimal Energy Resource (OER) mix, containing a balance of both renewable and fossil
fuel sources optimised to meet demand while producing a minimum amount of wasted
electricity. In 2005, renewable power made up 6.9% of Ireland’s total grid capacity. For
2010, he predicted an optimal OER mix would include 19% renewable electric power,
which it exceeded with 20.4%. Now Ireland’s grid capacity contains 42.5% placing it
outside of the predicted OER mix. However the analytics tool used for predicting the
OER mix (The CEPA Methodology), is outdated by today’s standards and as part of
the analysis, he strongly penalises imported electricity and doesn’t account for excess
wind power. Even then, it’s highlighted that Ireland’s renewable makeup, which consists
mostly of variable wind power, places it distinctly in need of electric storage capacity.
The current estimate for the OER mix stands at 50%]] While Ireland’s SEMO system
does set variable prices for electricity vendors in Ireland such as Electric Ireland or Bord
Gais, the current hourly system rates employed by vendors are set monthly. This means
that everyday consumers are broadly protected from large swings in electricity prices due
to demand-supply fluctuations. This may need to change in order to create the same
dynamic demand environment which is present in Germany. This poses the central issue
of this thesis:- Can users be informed of excess power supply times and be incentivised
to use them?

In addition to financial incentives for consumers, (C.A. Goldman and Eto| (2002) found
that in California a public information campaign on the need to reduce electricity con-
sumption during one hot summer in California changed consumers behaviour. It was
found that consumers dramatically changed their usage habits in response to a shortage
of power generation. This averted the worst of the blackouts and reflected a willingness in
individuals to modify behaviour when facing short supply. While this indicated a strong
support for carbon mitigation in the population from this case study, it must be kept in

Shttps://en.wikipedia.org/wiki/Renewable.nergy;n:he grepublic, frreland
Thttps://assets.gov.ie/221399/86¢h99f5-58e3-4821-bedc-e1bb1fa706fb. pdf



mind that the population group studied were Californians, who are typically more envir-
onmentally conscious then the average population of the United States, with California
dominating in green initiatives, (Lubell et al.| (2009)).

Lastly, the introduction of EVs will be putting additional pressure on Ireland’s electric
grid, which if completely adopted by all combustion engine vehicles could double the
total demand on Ireland’s grid. This point however, may be decades away, as Mukherjee
and Ryan (2020) highlights. (Mak et al. (2013])) mentions that policy makers should
adopt more financial incentives and mandate the installation of chargers in all strategic
locations. Given that EVs can be charged at specified times, this presents an opportunity
to balance the intermittency of renewable power with storage ability of EVs, [Helmers
and Marx| (2012)). As seen from the section above, the renewable market in Ireland varies
dramatically from having abundant supply to having none. Energy storage solutions, as
explored in the next paragraph have a role to play in preventing energy wastage in the
Irish market.

2.2 What can be done about wasted electricity in Ireland?

Eirgrid takes responsibility for balancing electricity supply with demand. The total sup-
ply of electricity must meet this demand in real time. Failing to meet demand would
result in infrastructure damage and blackouts, as |[C.A. Goldman and Eto (2002) has
shown. Thus, demand is generally treated as the controlling constraint in the equation,
resulting in times where supply exceeds demand. When this happens, the following are
possible (DeCarolis and Keith| (2006)):-

e Power used for hydroelectric storage (Currently only Turlough Hill)
e Power exported to UK (Wind may create surplus power there too)
e Powering down gas and wind power (They can rarely be switched off)

e Wind farms are disconnected from the grid, causing power losses

Additional power outlets for Ireland’s fluctuating supply need to be found urgently.
EVs could play an important role in helping demand meet supply if they are informed
about peak supply times.

2.3 The role of electric vehicles

Failure to inform EV owners about optimal charge times could create stress on Ireland’s
grid infrastructure. Creating a more efficient electricity grid would both lower the chance
of transformer overloads, reduce our reliance on fossil fuels, voltage fluctuations and power
losses which (Shibl et al.| (2021])) showed. The alternative would result in greater fossil
fuel reliance and increased grid stress with increased demand at sub-optimal charging
times.

Lim et al.| (2020) found that the wide scale adoption of EVs will have a large impact
on total grid use. In their paper, they found that EVs could play a role in creating
demand to meet peak supply, by using Vehicle to Grid (V2G) systems. These would utilise
automated systems to feed stored electricity back to the grid. This stored electricity could
play a major role in supporting renewable technology, but the volume of EV owners must
reach a critical amount for it to be feasible. They found that EV owners could be making
an average of 100,000 KRW ($77) per year. However their study looks at the current



habits of EV owners with technology that was modern as at the release date of their
paper. Furthermore, if the timing of charging EVs is coordinated, it could also improve
grid resilience. (Rahimi and Davoudi (2018)) explored the possibility of car batteries
being used during blackouts as emergency power supplies for homeowners. During the
study, they showed that a residential customer could be served for 9 days in the summer
and up to 6 days in the winter, running their home completely on the battery from the
car. However, their study was carried out in a temperate part of California, and these
results could be unsuitable for residents of more extreme weather varying locations like
Ireland.

Ireland currently has no centralised system for smart control of power usage by dis-
tributed energy resources (DERs), i.e. smart appliances and large batteries. ESB has
recently begun to roll out a program to pay those with excess electricity to contribute to
the grid. From July 2022, ESB will begin paying Findividuals for their solar power energy.
The scheme is open to being used by other micro-contributors, be they wind or electric
storage. While this system is a step forward, EV owners may need more information
or incentives to contribute. The possibility of implementing a large scale energy distri-
bution system in New Jersey using Machine Learning (ML) was investigated by [Wang
et al.| (2021)). They propose a fully distributed energy trading framework based on using
machine learning. This framework used the electric batteries of idle cars, charging and
discharging them on a regular basis to utilise EV’s demand to assist wind variability.
However, they are now completing numerical simulations of their project and have yet to
implement it.

The use of a central smart power or distributed power to utilise the storage power of
EVs to minimise grid development costs could be difficult to implement. It would require
additional smart meters and boxes being installed in homes. Power being routed across
the country could produce high transmission costs. Lastly, Kaviani and Hedman (2019)
showed this connected Smart Grid could be open to attack. One final factor is that owners
would be disincentivised by the gradual wear on their vehicles battery. Unfortunately,
the scale a Smart Grid distribution project would be out of the scope for this proposal.

In their seminal review, Tao Hong et al.| (2020), explores the most influential papers
in the energy forecasting sphere, placing special emphasis on the last 10 years. When
exploring supply forecasting using the weather, he mentions that wind power forecasting
and renewable forecasting are the fastest growing fields in the literature of forecasting
over the last 10 years. The methods mentioned are explored later in the ”Methodology”
section. However, historical research on forecasting EV usage has focused on demand
forecasting, not supply forecasting. For example, Jun Bi and Guan| (2018)) employed
regression and time series models to predict the charging times of EVs in Beijing. Their
goal was to accurately predict charge times and to help drivers determine the time needed
to prepare for long drives. Their study focuses on charge distribution management in
sending EV owners to locations where there are empty charge stations available.

The software providing predictive analytics for EV owners has been the subject of
numerous studies. [Nait-Sidi-Moh et al. (2018)) reviewed the need for EV drivers to be
sent to usable charging stations. Cars being routed to stations with low demand charge
faster than those loaded with multiple vehicles, minimising waiting times at stations
and reducing load on infrastructure. |Arias and Bae| (2016) proposed a large demand
forecasting model using Internet Of Things (IOT) and big data technologies. This involves

8https://www.independent.ie/news/environment /over-21000-customers-to-be-paid-by-esb-for-their-
solar-power-energy-41629327.html



using weather conditions and real world traffic distributed data to forecast EV charging
demand. This model would be used to increase supply to prepare for high demand hours,
and so would be more use to power systems engineers then EV owners. The use of big
data and IOT could be the subject of future analytics, i.e. forecasting EV power supply.

2.4 Creating suitable analytics systems

Effective easy-to-understand analytics have been shown to optimise electricity use. |Friis
and Haunstrup Christensen| (2016) found that Smart Grid power dashboards changed
homeowner behaviour to use power at non-peak times. In his study he looked at a
population sample who were asked to employ energy saving techniques in line with the
available power. He found that many people, especially those with young families, found
it difficult to modify their established habits, such as dish-washing etc. However, the
study did find that participants began to pay more attention to the weather, and would
modify some of their practices to reduce electricity consumption. Consumers may not be
aware of some of the relationships between electricity costs and the weather until it is
outlined to them. If electricity rates change to reflect the wholesale price, i.e. charging
users less when electricity is abundant, this could adversely effect those who can’t change
their behaviours such as young families.

The importance of presenting analytics in a user friendly way was demonstrated by
Sebastian Stein et al. (2017)). Their aim was to give accurate preference reports based on
a users need. They highlighted that there is a need for EV-owners to be presented with
uncomplicated, user-friendly interfaces. Limiting the amount of information presented
to users reduced the time they spent deciding on charging times and actually improved
their overall charging behaviour by an average of 70%. This was done by improving
the efficiency of their charging, provided they were presented with key information. The
importance of simple analytics will be realised in the real-time execution of this project.

2.5 Forecasting electricity prices on the Irish market

Tao Hong et al| (2020) found that the field of electricity forecasting "has evolved way
beyond standard implementations of existing forecasting methods onto “new” prob-
lems.” They give a large range of advanced artificial intelligence (AI) and ML tech-
niques that have been applied in recent studies. These include deep learning |Wang et al.
(2017)),(Heng Shi and Li| (2018), random forest (Mei et al.| (2014)), reinforcement learning
(Cong Feng and Zhang] (2020)) and transfer learning (Cai et al.| (2020)). Random forest
and transfer learning is often used to discover hidden patterns within the algorithms.
Deep learning and reinforcement learning acts as a black box to provide predictions with
very little initial input.

Due to Ireland being a small market, these studies on predicting price variability have
only been carried out a handful of times. The first most relevant study was carried out
by (Crilly and Zhelev| (2008]), who investigated the optimal fuel mix to minimise the cost
of electricity while meeting Ireland’s Kyoto guidelines. As part of this study, accurate
forecasts of Ireland’s share of renewable power was created. Furthermore, Francesco Arci
et al.| (2018)) investigated forecasting the short-term wholesale prices on the Irish single
market. The forecasting algorithm was built with artificial neural networks (ANNs) using
weather data and historical demand. The created model was 80% accurate to the total
price for up to 24-hours ahead of the predicted time. This is a useful benchmark for



electricity prices, but for our model to be useful to drivers, we would hope to increase
this predicted time period to one week. Lastly, |(Christian O’Leary et al.| (2021]) studied K-
Nearest-Neighbour (KNN) algorithms and found that they out-performed ANNs. These
KNNs can have a high dependency on input variables, and a failure to match historical
results may be due to missing information.

2.6 Literature review Conclusion

In conclusion, the variable renewable power supply in Ireland has led to moments in time
where there is excess electricity in the market, resulting in wind farms being disconnected
form the grid. Research has shown that there is a growing need for electric storage, either
as hydroelectric storage or electric batteries. EVs will be increasing the total electricity
demand in Ireland, and unfortunately, information on abundant electricity supply times is
not being conveyed to owners. A suitable analytics system for forecasting these abundant
supply times will improve demand at critical times and reduce electricity wastage.

3 Methodology

3.1 Data Selection and Pre-processing

In Wholesale electricity prediction Publicly available weather datasets and the electricity
generation are the two most important and easily attainable sources of data, (Tao Hong
et al.| (2020)). Both are used for this study. The Knowledge Discovery in Datasets
(KDD) methodology was chosen due to it’s historical use in predictive trends, identifying
correlations and use in forecast prediction,Plotnikova V| (2020). The use of the Cross-
Industry Standard Process for Data Mining(Crisp-DM) methodology was considered, but
as this report was focused on exploring theoretical models ahead of investigating business
understanding KDD was chosen. Secondly, the waterfall order of tasks carried out suited
the simple implementation of the project, as other stakeholders were not involved.

In order to create predictions of low demand periods in the grid, two datasets are
necessary. One on the historical weather (The predictor variables) and one on the histor-
ical energy generation and demand (Target Variables). Forecasts of the available wind
power are generated using the weather forecast. A third dataset was chosen from the
wholesale electricity price in Ireland to investigate correlations between supply/demand
and the wholesale price of electricity prices. The three datasets for the project are taken
from Met Eireann, The Sustainable Energy Authority of Ireland (SEAI) and The Single
Electric Market Operator (SEMO) respectively. All are publicly owned companies and
publish their data publicly, and so the data was published under a Creative Commons
Attribution 4.0 International (CC BY 4.0). The first pertaining to historical weather,
the second to electricity usage and the last to wholesale electricity prices.

Pre-processing of the data involved the investigation of outliers and backfilling missing
data. When backfilling, it’s important that reasonable values are used to fill gaps (ie if a
weather station stops recording above a specific temperature). The data is transformed to
be numerical and continuous so that it’s suitable for feeding to ML algorithms. The data
is then mined, both by exploratory analysis and ML algorithms to produce an alternative
model to predict a numerically continuous variable.

Missing data is backfilled using seasonal adjustment and interpolation. This is be-
cause of it’s historical popularity when dealing with data Missing Completely at Ran-



dom(MCAR). These null values are filled when creating the join between the two data-
sets using pythons seasonal interpolation function. Seasonal interpolation was chosen
because of it’s historical popularity when dealing with data Missing Completely at Ran-
dom(MCAR),(Velasco-Gallego and Lazakis| (2020) ).

As part of the transformation, three time-series variables were extracted, the time of
year, day of week and hour of day. Both electricity generation and demand have been
found to vary due to seasonality of heating houses, traditional dinner cooking times and
varying work week habits. All of these variables are cyclical, however when training a
numerical model, the number 24 and 0 despite meaning the same time of day, would
create completely different inputs. Thus a sin and cos of each period was created to
allow improved modeling of time-series data. Next the wind-power and wind-direction
variables were transformed into a single x-y wind vector, which gives the wind strength
in each x-y axis at a given point in time, as shown in figure 1.

Figure 1: Wind Direction Transformation

Wind direction vs wind strength Transformed Wind Vector

“

As part of their overview of ML models, Tao Hong et al.| (2020) highlighted the
importance of having an understanding of the relationships of the variables when creating
ML models for electricity forecasting. |[Heng Shi and Li (2018)) found in their case it
improved the accuracy of their ANN results. An Independence test is carried out on the
variables to explore relationships and find eigenvalues. This is done to have the possibility
to create an initialized first layer of the ML algorithms which reflects the dynamics of the
System.

3.2 Machine Learning Techniques

The methods chosen in the creation of real-time forecasting depend highly on the gran-
ularity of the demands which are being met. As the exploration is intended to provide
a week-ahead forecast based on the weather, the granularity level expected is low, at
approximately one hour to a half hour. The techniques in theory could be scaled up for
industrial use, but this would require increased granularity in the provided data. If the
simple model proves effective, the predictions could be integrated into IOT technology,



automatically charging EVs or Distributed Energy Resources (DERs) when excess capa-
city is expected in the Irish Grid. In this project, simple ML techniques are explored in
their predictive power.

Suitable ML techniques explored as part of this project include multivariate Autore-
gressive Integrated Moving Averages (ARIMA) modelling (Heng Shi and Li| (2018)),
deep learning (Wang et al.| (2017)), Random forest (Mei et al. (2014)) and K-nearest-
Neighbours (KNN) (Cong Feng and Zhang (2020)). The ARIMA model generates a
timeseries forecast based on historical trends having some impact on future values. The
multivariate type of ARIMA model takes into account other variables in it’s predictions.
It’s broadly expected that electricity prices will reflect historic patterns so the ARIMA
model will provide a baseline model to compare results. Despite the model being far sim-
pler then other deep learning algorithms studied, the results of the model may provide
insight into seasonal trends in the data.

Random forest produces probabilistic forecasts which provide useful information re-
garding the probabilities of different outcomes for power generation. A low probability,
but high wind-generation forecast would provide less security for EV-owners, than if
the following day may have a more secure, but lower probability of producing results.
Moreover the impact of each variable on the results can be separated to find how strong
it’s impact on producing forecasts is. This model is completed first, to ensure only vari-
ables which have a strong impact on results are chosen for future models. In literature
by |[Mei et al. (2014), the random forest model had been shown to give high fl-accuracy
when predicting electricity prices.

The KNN model provides useful benchmarks which are used to compare to historical
results in Ireland. (Christian O’Leary et al.| (2021) showed KNN algorithms are useful for
forecasting electricity in Ireland. In contrast to this Al-Qahtani and Crone| (2013) found
that feature engineering for KNN can be a daunting task. Initial analysis plays a critical
role in generating eigenvalues and features.

ANNs can permit the modelling of nonlinear and complex relationships through
straight forward ”plug and chug” modelling by users. Despite this, highly accurate ANNs
often have an input layer which reflects the dependence of different variables, as explored
by [Tao Hong et al. (2020). Thus the generation of our ANN input layer is informed by
our initial analysis, and by the results from the random forest models. However, Wang
et al.| (2017)) highlights that the input layers don’t always need to reflect the functional
relationship between load and weather variables, suggesting a weak dependence.

A useful benchmark for the results of the models is provided by SEATI which generates
a forecasted wind variable, which is compared to the results of the outputs of each model.

Lastly, the analytics were generated in a simple and effective way to communicate
optimal charging times to EV owners. Following the principals in |Sebastian Stein et al.
(2017)), suitable visualisation were created using outputs from a trained ML model using
the weather forecast for that week. In this context, a dashboard is a reporting mechan-
ism that displays key metrics so they can be examined easily by users. The dashboard
is tailored for EV owners, highlighting periods which represent the most appropriate
charging time during the week.



4 Design Specification

4.1 Data Analysis

The merged weather-electricity use dataset has over 27000 rows and 144 columns. The
weather data was stored in zipped historical data files for all the various weather stations
in Ireland. The data was scraped using a bash script to pull and unzip the data from 8
weather stations. Data is published on a monthly basis.

The electricity usage data is pulled on a monthly basis from the SEAI website. Each
yearly csv pull is separated, as too many api calls to the SEAI website caused it to crash,
thus each bash file was split between two yearly files, with 12 csv’s being pulled on 4
different variable sets. If execution of each bash file is split over a 5 minute interval, the
website doesn’t crash.

Electricity prices are published on a weekly basis, and aren’t stored publicly on the
SEMO website , and so need to be scraped and stored on a regular basis. A ﬂcrontab was
created with bash file using curl and awk to create a query to generate a csv. The three
csv’s are then joined together using python on the date-time column. Both the SEAI
and SEMO datasets are half-hourly, whereas the Met Eireann dataset is hourly so the
half hourly tick data is lost during processing, however, abundant training data over the
three years is left over.

Pre-processing involved filling rows in the data which were MCAR. The datasets were
then joined together. Only columns which can be forecasted by Met Eireann’s forecasting
API were used. Transformation firstly involved using min-max scaling to standardize the
weather columns. Then periodic variable such as the time and the wind direction were
converted into cos-sin variables. Additional input variables were created which could
reflect dynamics of weather systems in Ireland.

4.2 Machine Learning

The machine learning algorithms were taken from literature on electricity price forecast-
ing and included random forest models, ARIMA models, Artificial neural networks and
convolutional neural networks spanning multiple hours of the day.

The simpler model ARIMA model was used as a baseline to complete cost/benefit
trade-off against the more complex algorithms involving the weather as an input. The
seasonal adjusted arima model was applied to the generated wind electricity.

For the random forest model, different variations of input variables were selected
for training, as the model itself can over-fit training data, growing multiple unpruned
branches. Scikit-Learn’s Randomized-Search-CV method was used to select hyperpara-
maters for both random forest and the ANN model. A grid of hyperparameter ranges was
defined from which random samples were chosen. K-Fold cross validation was performed
with each combination of values. Hyperparamaters which were tuned for the ANN mod-
els included the number of layers, the nodes in each layer, the learning rate and the batch
number.

9https://www.tutorialspoint.com /unix.ommands/crontab.htm
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4.3 Data Pipeline Architecture

Several central principles of pipeline design listed by Helu et al| (2020)) were followed.
Firstly, the pipelines were built to be re-playable to ensure data availability in the case
of a server-failure. However, some of the files which were being downloaded vary week
on week, such as the electricity price dataset or the weekly weather forecast.

The data pipelines were also built to be reliable, scalable and secure. If other weather
stations are added to training data, their co-ordinates can be used to generate additional
forecasts. The data is stored on a secure remote server and the code base is backed up
to a private git-hub in the case of an outage.

4.4 Website Design

Following the principals laid out by Beaird et al.| (2020), the web site is designed to
be simple, providing a minimalist layout. The site’s logical layout follows the inverted
pyramid; The most essential data has been placed in a central spot on the dashboard.
Following this, the remaining data is displayed in a logical order.

As |Sebastian Stein et al. (2016]) has highlighted, the ease of use of the chosen UI is
essential in changing customer behaviour. To keep the dashboard simple, no emphasis
was placed on making the dashboard interactive.

5 Implementation

5.1 Data Analysis

A brief analysis was completed on the cleaned weather dataset, and overall both data
sources from Met Eireann and from SEAI were excellent bar some missing rows. However,
wholesale price data on electricity was collected on a weekly basis, which meant that only
four weeks worth of training data was available, so it was left out of machine modelling,
but included in co-linearity analysis and used to test minima price forecasting. From the
Eirgrid dataset there are 28 missing rows and 59 entries from the SEAI dataset, which
were backfilled using seasonal adjustment and interpolation. Training data from eight
weather stations in Ireland was initially pulled, with this number narrowed down to four
to improve the efficiency the ML algorithms. Columns such as the dew point, the wet
bulb temperature and the cloud cover are not available as weekly forecasted variable from
met Eireann.

Outlier analysis was carried out on each set of variables, as shown below in figure 2.
The average actual wind generated at 1241 MW is far below the the average demand
of 4231 MW. The highest outliers on the graph are in Actual Generation, when the
generated electricity can exceed demand. Looking at the actual demand, we can see that
at all times there is demand in the Irish grid, however the actual wind generation at times
goes to zero, and some negative values were found in the dataset. This is due to cyclical
aerodynamic loads on blades, which are caused by highly turbulent, variable conditions
which adversely effect turbine performance.

Below in figure 2, a correlation map is shown for the combined dataset of SEAI
generation and wholesale price of electricity, taken from SEMO. The imbalance settlement
price is a key feature, which according to Ireland’s grid operator "gives a key indication
of the performance of the market”. Sensibly, the actual demand is more highly correlated
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Figure 2: Outlier analysis of Generation and demand
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with this variable than the supply. However, the difference between these two isn’t as
correlated with the price of electricity as the difference between the forecast electricity
and the actual generated wind power. In preparation for peek times in Ireland, gas and
coal power stations are switched on, however, if incorrectly predicted, this results in the
importation of electricity from abroad and stress being applied to the Irish market.

Figure 3: Correlation Heat Map for prices and
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A brief investigation into the rolling supply - demand variation (That is the averaged
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rate of change of the difference between supply and demand) is shown to have been
highest in 2022, this is possibly due to the integration of more renewable sources into the
grid, which can create a more varying supply-demand difference. The war in Ukraine,
which began around the 24th of February has gradually increased the price of electricity
for consumers due to increased fossil fuel prices. However, this change was found to have
minimal impact on either supply or demand, as both are in line with average for the last
3 years. The integration of variable renewable power sources has had a larger impact
then the war on supply-demand variations.

Figure 4: Average Rolling Supply-Demand Differential
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5.2 Data Pipeline Architecture And Processing

The importance of transforming variables to be continuous and sensible is mentioned in
the literature so the following transforms were carried out. Firstly a mapping of the wind
direction and velocity to a singly x-y wind vector as shown below. This maps the 0-360
variable to a smooth cos-sin input and ensures that the wind direction has no effect on
the model if the wind is absent. This mapping is shown in figure 1.

The next transform involved looking at the periodicity of thee predicted variables
in order to transform the time variable to the appropriate period. Electricity demand
is shown to have both a daily and a yearly component. This variation is accounts for
the increased demand for home heating in the winter, and the collective daily habits of
individual electricity use. The daily periodicity however is missing from the the daily
wind speed graph, reflecting the lack of wind during summer months.

From these graphs two distinct time periodicities were decided on and created that
reflected the sin and cos of the yearly and daily periodicity.

5.3 Machine Learning

The cleaned dataset was loaded into an ML notebook, where it was split into training
and validation datasets. Normally, a scikit-learn split will split the data after a set cut-off
point, which could be 80 % of the dataset. However, with increased renewable penetration
the dataset and it’s dependencies are always changing. Secondly, the split dataset was
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Figure 5: Fourier Transforms vs time
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not randomized. Adjacent values can be used to improve predictions for a given hour.
If a sustained period of high winds, gas powered stations are deactivated, which can
increase the likelihood of higher renewable power penetration into the market.
. Thus a train-test split was chosen to split each month in the dataset into a
train and validation dataset. The 23rd of each month was taken. An example of a similar
split can be found here

The second model chosen was random forest. This model was an ideal early candidate
for model production as it highlights the feature importances of it’s constituent columns.
In the case of highly technical models, the default random forest can become large and
over-fitted. Despite this, the random forest model trained in under 10 minutes and
proved to have very accurate results. Tao Hong et al| (2020) highlighted other studies
completing power prediction work have used random forest as it couples with non-linear
relationships quite well. This usually lead to low bias vs variance. The use of randomized
dataset can lead to data leakage, as neighbouring hours have similar wind generation,
or actual generations, which was avoided in the historical weather dataset by using a
train-test split dividing each month. For the latest testing, which completed on the 5th
of August, an r2 value of 81.2 % .
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Figure 6: Random Forest Outlier Plot
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From the outliers, we can see that there is no single month that has outsized number
of outliers, except that there tends to be more outliers during winter months. Outlier
plots like the one above help to highlight periods where forecasted data is outside of an
expected range. The plot shows that there could be some seasonal variation of the errors
in prediction.

Figure 7: Random Forest Column Importances
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Figure 7 displays the feature importances of a random forest model created with a
selection of columns. Due to the co-linearity between the wind speeds at the different
stations, these columns are not eigenvalues and so may have hidden dependencies. How-
ever they give an idea of the importance of each feature to other models. Surprisingly,
the wind speed in Dublin is one of the most important stations for determining Ireland’s
generated electricity. This could be down to gusts occurring along coastal stations which
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are not associated with higher wind speeds in wind farms. A future model could invest-
igate the use of more inland stations and their impact on power generation using random
forest.

ANN'’s are often used to model complex systems while digesting large volume’s of data.
Nielson et al.| (2020) Showed that ANN’s have had a proven track record when forecasting
both electricity generation and demand. The ANN’s used in this study were taken from
Google’s KERAS library. A worked through example of forecasting day ahead weather
is found here. Different versions of the ANN were trained, with parameters varying the
layers between 3 and 5, with the neurons varied between 50 and 200 neurons for the
middle layers.

For this model, three activation layers were used, each with 110 units and each using
the "relu” activation layers. In early models, attempts were made to engineer the first
activation layer. One possible dependency explored was that a difference between wind
directions or the average wind speeds in coastal stations could effect wind generation,
say if a low pressure anticyclone was passing over Ireland. However, when tested, these
columns were found to have no correlation to the wind power. There was no difference
between the engineered layer and non engineered input layer. Thus the model depended
on the sheer volume of data being used to train the model. Future work could examine
engineered columns in the dataset.

Two variations of ANN’s were used, one in which an hourly window of forecasted
weather data was taken of the data to predict, and another in which 24 hours worth of
data points were used to predict the generated wind power of the hour at the end of the
window. This means for a given output, the model was being passed 240 input variables
if all columns are used. The general theory of this is that the hours leading up to the
time of prediction could have some impact, say if gas powered electric generators get de-
activated due to high wind penetration, this could improve total renewable penetration.
However, this model failed to produce more accurate results. This could possibly be due
to the over-fitting of the fitting data. For future work, a smaller window could be used,
with a selection of the most significant columns being used.

In figure 8 shown above, we see an example prediction window being used. Eirgrid’s
model, shown in blue, frequently overshoots the actual wind generation at higher wind
generations (from the 26th-27th), but outperforms the ANN and Random Forest model
at lower powers.

5.4 Website Design

The website was designed to be simple and user friendly. This meant showing only a
handful of metrics, such as the most optimal time to charge, the forecast for the week
ahead. A mock up of the site design, which can be found the code base is shown below
in figure 9.

On the bottom of the page a charging forecast is generated using the forecasted
weather for the week ahead. To keep the model simple, it highlights in a binary way,
where the greyed out windows on the graph shown are the optimal charging windows.

Initial prototypes of the model involved highlighting the rolling peak times every 12
hours. However, during a time of low supply, a relative peak may be too small to have
a large impact in the total amount of wind power being generated. Initial versions of
this model were highlighting windows which have a slightly above average charging cost.
And so it was decided that the model would only highlight if the total generation was
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Figure 8: ANN vs Random forest vs SEAI forecasted wind electricity
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Figure 9: ANN vs Random forest vs SEAI forecasted wind electricity
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above the average for the previous year (in this case it was approximately 1500 MW).
Highlighting only these windows means that it could be a week before users would have a
time highlighted to them. Therefore, an ensemble model was created, where if the total
predicted generation was below average, then the nightly rate would be highlighted.

If the generation was expected to be above average, then the peak would highlighted,
with neighbouring windows in the direction of the nightly rate would then be highlighted.
The difference between the new nightly rate and the average is double the difference
between the regular nightly rate. Additionally, 10% more hours were being highlighted
in the future as possible cheaper charge windows for consumers. Applying the Chi-
sqaure test with 95% significance and we fail to reject the null hypothesis, that this
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Figure 10: ANN vs Random forest vs SEAI forecasted wind electricity
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model predicts cheaper electricity rates for 8 hour windows then the current electricity
rates.

6 Evaluation

6.1 Machine Learning Model Accuracy

The ESB provides a useful benchmark for the machine learning models created in this
paper used in forecasting wind power. As part of their historical database on electricity,
SEAI provides both the actual generated power and their own forecasted electricity gen-
eration. We can measure the difference between their forecasted power and the actual
power generated, in the same way we measure the error in each ML model. In figure
11 the R-Squared(R2) scores of the three machine learning models are compared with
ESB’s own electricity penetration:- The highest R2 score is achieved by ESB with an
R2 of 90 %. The ANN and Random forest model both achieve an R squared of 81 %.
This is surprising, as it could be expected that an ANN model would pick up on hidden
complexities in the model, which the random forest model would not. However, as the
model is highly dependent on the wind speed in Phoenix park for predictions, it could
be the over-fitting play’s a roll in the case of the ANN.

The outliers in the random forest plot shown above had some seasonal variation.
When investigated more thoroughly, it was found that some of the deviation from the
expected values was occurring due to hetero-scadacity in the results. This was particularly
apparent with the ESB’s weekly forecast. At higher expected windspeeds, their model
would repeatedly over estimate the total wind generation possible. This was most likely
due to the limit on the total renewable penetration, as coal power stations can’t be
switched off easily, instead wind farms are disconnected from the grid. This is also
evidenced in figure 10 above where the ESB’s forecast overshoots at higher expected
wind generations.

In an ideal homoscadatic model, the blue line highlighted in the error plot shown in
figure 12 would be horizontal.
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Figure 11: R2 scores of ML Algorithms
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Figure 12: Error spread for the ESB forecasted results
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6.2 Evaluation of optimal charge time Forecasting

To evaluate the forecasting model, the highlighted charge time windows were used to
select prices from the historical price times dataset. As this dataset only consisted of
approximately one months worth of data, it was only used for testing the trained wind
production model. The mean cost of electricity over the test period was 191 euro per
kWhr. The price at rolling peak production times, was found to be 138 euro per kWhr,
but these points only represnt 10 % of the dataset. The average price of nightly electricity
(Between 12:00 pm and 8 am) is 175 euro per kWhr. This is below average by 16 euro,
and highlights one third of the dataset.

Figure 13: Average Price of electricity per window
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The Final column in figure 13 is the combined night time and peak time electricity
price, which uses a combination of peak time prediction and nightly prediction to calculate
a mean price of 171 euro per kWhr. This is 25% increase in the difference of the price
between the mean price, compared to the nightly rates model. In addition, the model
highlights 40% of the times in the dataset. The transition from nightly rate prediction
to peak time prediction can be seen in the model in figure 10.

7 Conclusion and Future Work

The goal of this thesis was to forecast cheaper times for electricity users to charge electric
vehicles or use other distributed energy resources. The difference between the cost of
charging a vehicle during these periods is up to twice the difference as the traditionally
used nightly rates. The model pulls on a weather forecast for a handful of locations in
Ireland to generate a future time series of the electrical wind power. These times are
turned into charge windows, which for a given 24 hours, highlight the cheapest charging
times for EV owners based on wholesale electricity prices.

Future improvements could be made both on the machine learning algorithms, to
match the R2 values of the Eirgrids own wind electricity power predictions. This could
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involve more complex combinations ANN window’ing models, or the combination of ran-
dom forest and an ANN to produce an Ensemble model. Secondly, if the wholesale cost
of electricity was collected for a long period, it could be used as training data, instead of
the total wind power produced.

Wholesale electricity prices are currently not used by major electricity providers to set
rates for individual consumers. In order for this model to be viable wholesale electricity
providers did switch to this type of model, it could incentivize EV owners to use electricity
at times where there is abundant power in the market. The dynamic pricing model
is currently in use in Germany which has dramatically changed it’s electricity market.
While there has been no announcement of plans to change pricing models, in light of
recent developments regarding shortages in Ireland["%} this may be a step the government
will be taking to avoid blackouts.

A definite element of the reason why electricity providers are not using these pricing
models is because consumers look for simple pricing models, as consumers are often bound
by household tasks and have little scope to adjust their consumption to fit demand.
Therefore future work should look at investigating methods of integrating a smart charge
prediction system as part of a smart home. This would remove the need for individual
consumers to plug in or plug out electric vehicles.
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