

Configuration Manual

MSc Research Project Data Analytics

Pranavi Pusapati Student ID: x20155301

School of Computing National College of Ireland

Supervisor: Jorge Basilio

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:	Pranavi Pusapati		
Student ID:	x20155301		
Programme	Data Analytics	Year:	2021
Module:	Configuration Manual		
Supervisor	lawas Dasilia		
Supervisor.	Jorge Basilio		
Submission Due Date:	16/12/2021		
Submission Due Date:	16/12/2021 Loan Under writing prediction using Deep	learnin	ng techniques

Word Count: 1160..... Page Count 9.....

I hereby certify that the information contained in this (my submission) is information pertaining to research I conducted for this project. All information other than my own contribution will be fully referenced and listed in the relevant bibliography section at the rear of the project.

<u>ALL</u> internet material must be referenced in the bibliography section. Students are required to use the Referencing Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature: Pranavi Pusapati

Date:

.....

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple	
Attach a Moodle submission receipt of the online project	
submission, to each project (including multiple copies).	
You must ensure that you retain a HARD COPY of the project, both	
for your own reference and in case a project is lost or mislaid. It is not	
sufficient to keep a copy on computer.	

Assignments that are submitted to the Programme Coordinator Office must be placed into the assignment box located outside the office.

Office Use Only	
Signature:	
Date:	
Penalty Applied (if applicable):	

Configuration Manual

PRANAVI PUSAPATI x20155301

1. Introduction

The following configuration manual illustrates the requirements for implementing the system which was designed for predicting the loan under writing by using the Deep Learning models and dropout function. Further, the manual will thoroughly explain the software and hardware requirements that were used for the successful implementation of the project.

2. System Configuration

Following are the hardware and software configuration which were used for the implementation of this Project.

The hardware configurations used for implementation are as follows:

2.1. Hardware Requirement

Hardware	Configurations
System	Lenovo Z580 Idea pad
Operating System	Windows 10 (64 Bits) Pro
RAM	4 GB
Hard Disk	1 TB
Graphics Card	NVIDIA RTX 2060 (6 GB)
Processor	Intel Core i5-3230M

Table 1: Hardware Requirements

Control Panel Home	View basic information	about your computer	
Device Manager	Windows edition		
Remote settings	Windows 10 Pro		
System protection	© 2019 Microsoft Corporat	tion. All rights reserved.	Windows 10
Advanced system settings			
	System		
	Processon	Intel(R) Core(TM) i5-3230M CPU @ 2.60GHz 2.60 GHz	
	Installed memory (RAM):	4.00 GB (3.86 GB usable)	
	System type:	64-bit Operating System, x64-based processor	
	Pen and Touch:	No Pen or Touch Input is available for this Display	

2.2. Software Requirement

Software	Version
Python	3.8 (64 Bits)
Google Colab Community	2021.2 (64 Bits)

Table 2: Software Requirements

Figure 2: Google Collaboratory with Python

Figure 3: Python code files in Google Colab

3. Project Implementation

3.1. Data Collection

=	каддіе	Q search	Club	-							
t	Create	Python · Lending		data							
Ø	Home	Notebook Da	ita L	ogs Comments	(2)						
Φ	Competitions		_								
	Datasets	Data									
<>	Code										
	Discussions	loan_data	.csv	(751.25 kB)					Ŧ	>	Input (751.25 kB) Data Sources
ଚ	Courses	Detail Comp	act (Column				10 of 14	columns	~	 Eending Club data Ioan_data.csv
~	More	# credit.policy	-	▲ purpose	-	# int.rate	=	# installment		# lo	
Rece	ntly Viewed			debt_consolidation	41%						
A	Loan Repayment Predi			all_other	24%				_		
-	Loan Default Predictio			Other (3290)	34%	0.02	0.22	15.7	0.40	755	

Figure 4: Data Collection from the source

Jata	columns (total 14	columns):	
#	Column	Non-Null Count	Dtype
0	credit.policy	9578 non-null	int64
1	purpose	9578 non-null	object
2	int.rate	9578 non-null	float64
3	installment	9578 non-null	float64
4	log.annual.inc	9578 non-null	float64
5	dti	9578 non-null	float64
6	fico	9578 non-null	int64
7	days.with.cr.line	9578 non-null	float64
8	revol.bal	9578 non-null	int64
9	revol.util	9578 non-null	float64
10	ing.last.6mths	9578 non-null	int64
11	deling.2yrs	9578 non-null	int64
12	pub.rec	9578 non-null	int64
13	not.fully.paid	9578 non-null	int64
ttyp	es: float64(6), int	64(7), object(1)	

Figure 5: Data description analysis

3.2. Data Description

credit_policy: 1 if the customer meets the credit underwriting criteria and 0 otherwise. **purpose**: The purpose of the loan such as: credit_card, debt_consolidation, etc.

int_rate: The interest rate of the loan (proportion).

installment: The monthly installments (\$) owed by the borrower if the loan is funded.

log_annual_inc: The natural log of the annual income of the borrower.

dti: The debt-to-income ratio of the borrower.

fico: The FICO credit score of the borrower.

days_with_cr_line: The number of days the borrower has had a credit line.

revol_bal: The borrower's revolving balance.

revol_util: The borrower's revolving line utilization rate.

inq_last_6mths: The borrower's number of inquiries by creditors in the last 6 months.

delinq_2yrs: The number of times the borrower had been 30+ days past due on a payment in the past 2 years. **pub_rec**: The borrower's number of derogatory public records.

not_fully_paid: indicates whether the loan was not paid back in full (the borrower either defaulted or the borrower was deemed unlikely to pay it back).

3.3. Data Pre-processing

Figure 6: Conceptual framework

S.R.	Feature selection based on customer behavior	Description of features
1	loan_policy	1 If the customer meets the loan underwriting criteria, and 0 otherwise
2	type_of_purpose	This refers to the purpose of the loan
3	int_rate	The interest rate of the loan
4	days_	The no. of days to loan sanctioned
5	inq_	The loan holder inquiries
6	no_of_installment	The monthly installments owed by loan holder if the loan is sanctioned
7	loan_fully_paid_or_not	This indicates whether the loan was fully paid r or not

Figure 7: Feature selection and description

4. Model Building

Figure 8: Methodology Diagram

Output Shape	Param #
(None, 94)	1504
(None, 30)	2850
(None, 15)	465
(None, 1)	16
	(None, 94) (None, 30) (None, 15) (None, 1)

Layer (type)	Output Shape	Param #
dense_4 (Dense)	(None, 94)	1504
dropout (Dropout)	(None, 94)	0
dense_5 (Dense)	(None, 30)	2850
dropout_1 (Dropout)	(None, 30)	0
dense_6 (Dense)	(None, 15)	465
dropout_2 (Dropout)	(None, 15)	0
dense_7 (Dense)	(None, 1)	16
Total params: 4,835 Trainable params: 4,835 Non-trainable params: 0		

Figure 9: Model summary for deep learning model without dropout function

Figure 10: Model summary for deep learning model with dropout function

References

- Brahma, A., Goldberg, D. M., Zaman, N., & Aloiso, M. (2021). Automated mortgage origination delay detection from textual conversations. *Decision Support Systems*, 140, 113433.
- [2] Breeden, J. L., & Leonova, E. (2021). Creating Unbiased Machine Learning Models by Design. *Journal of Risk and Financial Management*, 14(11), 565.
- [3] Bwire, A. C., Tenai, J. K., & Odunga, R. M. (2021). Loan Growth, Loan Deposit Ratio and Prediction of Bank Fragility in Kenya Using Generalised Linear Model. *African Journal of Education, Science and Technology*, 6(3), 103-113.
- [4] Ekin, T. (2020). Discussion of "Machine learning applications in nonlife insurance". *Applied Stochastic Models in Business and Industry*, *36*(4), 541-544.
- [5] Gikay, A. A. (2021). The American Way—Until Machine Learning Algorithm Beats the Law?. *Case Western Reserve Journal of Law, Technology & the Internet, Volule, 12,* 1-56.
- [6] Goldberg, D. M., Zaman, N., Brahma, A., & Aloiso, M. (2021). Are mortgage loan closing delay risks predictable? A predictive analysis using text mining on discussion threads. *Journal* of the Association for Information Science and Technology.
- [7] Knight, E. (2019). AI and Machine Learning-Based Credit Underwriting and Adverse Action under the ECOA. *Bus. & Fin. L. Rev.*, *3*, 236.
- [8] Kumar, A., Shanthi, D., & Bhattacharya, P. (2021, August). Credit Score Prediction System using Deep Learning and K-Means Algorithms. In *Journal of Physics: Conference Series* (Vol. 1998, No. 1, p. 012027). IOP Publishing.
- [9] Li, J. P., Mirza, N., Rahat, B., & Xiong, D. (2020). Machine learning and credit ratings prediction in the age of fourth industrial revolution. *Technological Forecasting and Social Change*, *161*, 120309.
- [10] Munoz, J., Rezaei, A. A., Jalili, M., & Tafakori, L. (2021). Deep learning based bi-level approach for proactive loan prospecting. *Expert Systems with Applications*, *185*, 115607.

- [11]Pallathadka, H., Ramirez-Asis, E. H., Loli-Poma, T. P., Kaliyaperumal, K., Ventayen, R. J. M., & Naved, M. (2021). Applications of artificial intelligence in business management, ecommerce and finance. *Materials Today: Proceedings*.
- [12]Perkins, D. W. (2018). Marketplace lending: Fintech in consumer and small-business lending. *Congressional Research Service*, *12*(7), 1-30.
- [13]Pillai, S. G., Woodbury, J., Dikshit, N., Leider, A., & Tappert, C. C. (2019, October). Machine Learning Analysis of Mortgage Credit Risk. In *Proceedings of the Future Technologies Conference* (pp. 107-123). Springer, Cham.
- [14]Rezina, S. (2020). Non-Performing Loan in Bangladesh: A Comparative Study on the Islamic Banks and Conventional Banks. *Indian Journal of Finance and Banking*, 4(1).
- [15]Sabharwal, C. L. (2018). The rise of machine learning and robo-advisors in banking. *IDRBT Journal of Banking Technology*, 28.
- [16]Sachan, S., Yang, J. B., Xu, D. L., Benavides, D. E., & Li, Y. (2020). An explainable AI decisionsupport-system to automate loan underwriting. *Expert Systems with Applications*, 144, 113100.
- [17]Shrivastava, A. (2018). Usage of Machine Learning In Business Industries and Its Significant Impact. *International Journal of Scientific Research in Science and Technology*, 4(8).
- [18] Tappert, C. C. (2019, October). Machine Learning Analysis of Mortgage Credit Risk. In Proceedings of the Future Technologies Conference (FTC) 2019: Volume 1 (Vol. 1069, p. 107). Springer Nature.