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1 Introduction

For the given research extensive analysis and various experiments were performed. This
configuration manual shows detailed specification about the hardware and software re-
quirements along with the steps taken from data gathering to model implementation that
can help to replicate the given project.

2 System Specification and Requirements

The section shows details about the Hardware and Software configurations which was
required and utilized for implementation of the research.

2.1 Hardware Specification

Table 2| shows about the Hardware configuration required for the experimentation. For
the given research local machine was utilized as different investigation were carried out.

Hardware Dell inspiron 5000
Processor Intel(R) Core(TM) i5-5200U CPU @ 2.20GHz
RAM 12.0 GB DDR-4
System Type 64-bit operating system, x64-based processor
Graphics / Graphics Card 2GB - Nvidia 920M Chipset

Table 1: Hardware Specifications

2.2 Software specification and Requirements

The required software and libraries were installed on Windows 10 Pro Operating System.
The program was implemented on Jupyter Notebook 6.1.4 version. Following Table
shows the libraries along with the version taken into consideration. These libraries were
helpful from data gathering using Tweepy, cleaning data using SpaCy, Model building
with tensorflow and SKlearn, and evaluation based on Matplotlib and Seaboard.Other
supporting libraries like pandas, numpy, regular expression, string were used throughout
for storing, access and manipulation of data which was fetched from Twitter.



Libraries Version

Python 3.8.5
Tweepy 3.10.0
Tensorflow 2.7.0

Tensorflow Hub  0.12.0
Sci-kit Learn 0.24.2

SpaCy 3.2.0
Seaborn 0.11.0
Imblearn 0.8.0
nltk 3.5

Pandas 1.1.3
Numpy 1.19.2
Malplotlib 3.3.2
Seaborn 0.11.0

Table 2: Libraries Required

3 Data Preparation

As the dataset was not readily available data was gathered for the given research. The
below given are the steps followed to gain data from Twitter.

Step 1 - Setup Twitter API: Since, data was fetched from Twitter therefore to
get authorization token Twitter Developer Account E] needs to be setup. Further, based
on the approval from Twitter a Twitter application can be created where it will provide
authentication keys /] which was required to access Tweets. The figure [1] shows dashboard

Developer
Portal

Settings Keys and tokens

Dashboard

Consumer Keys

API Key and Secret © ® Revesl AP K

Authentication Tokens

Bearer Token © Revoke

Revoke Regenerate

Bearer Tokens

Figure 1: Twitter Developer Account Dashboard

where the keys can be accessed.

Step 2: Data Collection using Tweepy: The data was collected using Tweepy [
library that can be used to access Twitter API to fetch the data from Twitter. Before
fetching the Tweet, the API needs to be setup with help of authentication tokens as seen
in figure 2] The data was gathered in 2 ways, first the tweets were fetched from user

'https://developer.twitter.com/
Zhttps://developer.twitter.com/en/docs/authentication/overview
3https://docs.tweepy.org/en/stable/api.html


https://developer.twitter.com/
https://developer.twitter.com/en/docs/authentication/overview
https://docs.tweepy.org/en/stable/api.html

import tweepy #https:/ github.com/tweepy/tweepy
import csv
import pandas as pd

#Twitter API credentiols

consumer_key = "YOUR COMSUMER KEY"

consumer_secret = "vYOUR SECRET KEY"
access_key = "YOUR ACCESS KEY"™
access_secret = "YOUR ACCESS SECRET KEY"

auth = tweepy.oAuthHandler(consumer_key, consumer_secret)
guth.set_access_token{access_key, access_secret)
api = tweepy.API{auth)

Figure 2: Setup API with Authentication token

accounts which are associated with Human Rights. As seen in the figure |3| , a function
was created to fetch Tweet of certain accounts like Amnesty, Human Rights Watch and
activist like Nadia Murad and Malala which are current active Human Rights activist
and NGO’s that stands for equal Human Rights for all people around the world.

max_idecldest, Ueeel sode-"extendod”, isclude sis =

. EATiTies, Twesl user Screen fase] For Deest in &1LTw

Figure 3: Method 1 for Fetching Tweets of Users

Further, more data was gathered by shooting different situational queries like ”attack
on civilians”, "ban on education”, ”child abuse” etc. The figure [l shows the same
functionality as discussed above but various filters were applied like exclude retweets, get
recent tweets, and language set to English.Only constrain was Twitter allows only 1000
Tweet per search call therefore, multiple calls were required to get relevant data.

Step 3: Data Annotation: The given data was annotated manually based on



#query to be sent
query = 'attack on civilians'

#Fetch Tweets Bas

fetched_tweets = ‘}:

d on Query using search method
- !

eepy . Cursor{api.search,g=query +
timeout=993999, lang='en',tweet_mode

-filter:retweets', result_type="recent’',
extended" }.items({1eaa)

#6et relevant columns from the fetched Tweets dota

cuttweets = [[tweet.id_str, tweet.created_at, tweet.full_text, tweet.entities,
tweet.user.screen_name] for tweet in fetched_tweets]

tueetdf - pd.DataFrame(ocuttweets, columns =['Tueet_ID', 'Created_at", 'tweet_text’,

t_entities®,"tweet_username'])
#5tore in Excel
datatoexcel = pd.ExceluWriter{query+"_tweets.xlsx"}

tueetdf.to_excel{datatoexcel)
datatoexcel.save()

Figure 4: Method 2 for Fetching Tweets of Users

the understanding. The Target Variable was set to yes if it was a factual tweet about
Human Right Violation else target was set to no for all the excels fetched and were finally
combined into single excel data which can be seen in figure [f

Tweet I [~|  Created at ~ tweet text - tweet entities - tweet ¢ Ei target -

As the climate crisis gets worse, so do the
threats to our rights.

As this year's UN Climate Conference
#COP26 takes place, it is imperative that all
governments adopt new and improved
emission reduction targets, They must take
1453697848084680704 | 2021-10-28 12:19:10|action now. https://t.co/WPMw2j5254 {'hashtags" [{'text': "COP26", 'indices"{amnesty yes
M When #G20 leaders met in 2020, 1.5 million
peaple had died of #Cavid19. Since then,
another 3.5m lives have been lost, while
many G20 membaers are sitting on millions
of surplus doses. As @g20arg leaders
gather in Rome, they must ensure that
their promises are matched by action &
1453687004634533899 | 2021-10-28 11:36:04 | https://t.co/ OKDSTLIENQ {'hashtags" [{'text: 'G20", 'indices" [5|amnesty no

Figure 5: Annotation of Tweets

Step 4: Data Cleaning and Pre-processing using SpaCy: The combine dataset
was uploaded and accessed for cleaning and pre-processing which was performed using
Natural Language Processing based SpaCyEl Library. The follow figure |§| shows function
create for cleaning tweets

nlp = spacy.load{'en_core_web_sm')

def spacy_clea
#Encode

try:

decoded = unidecode.unidecode{codecs.decode(text, 'unicode_escape”)})
except:
deccded = unidecede.unidecode(text)
#Handle Apostrophe
apestrophe_handled = re.sub("'", "'", decoded}
expanded ".Jjoin{[contraction_mapping[t] if t in contraction_mapping else t for t in apostrophe_handled.split(" ")])

Xt
1p{expanded)
#Creote Tokens
final_tokens = []
#remove whitespaoce, URLS, Numbers, Usertags
for t in parsed:
if t.is_punct or t.is_space or t.like_num or t.like_url or str(t).startswith{'@'):
pass
else:
#lemmatize anm
if t.lemma_ - -t
final_tokens.append(str(t))
else:
sc_removed = re.sub{"["&-zA-Z]", » str{t.lemma_))
if len(sc_removed) > 1:
final_tokens.append(sc_removed)
joined = ' '.join{final_tckens)
spell_corrected = re.sub{r*({.)\1+", r*\1\1', joined)
return spell_corrected

Figure 6: Cleaning and Pre-processing of Tweets

“https://spacy.io/api


https://spacy.io/api

4 Experimental Setup

This section will give detailed steps for setting up the parameters for different models.

4.1 Experiment 1 - Classification using Machine Learning

As the Dataset was imbalanced as seen in the figure [7] the ratio was of around 90% of
tweets not about Human Rights Violation and only 10% tweets were about Human Rights
Violation.

Target Variable: No Violation =0, Human Rights Violation=1

8000 1

G000 A

count

4000 A

2000 1

violation

Figure 7: Imbalanced Dataset

The Dataset was balanced by using SMOTE technique that up samples minority class.
But before data was given to SMOTE it was tokenized using Term Frequency - Inverse
Document Frequency(TF-IDF) that generated vectorized data as seen in the figure

tvec = Tfidfvectorizer(stop_words=None, max_features=12e98a)
smote = SMOTE (sampling_strategy='minority')

X_tf = twec.fit_transform({dataset.text)

¥_sm, y_sm = smote.fit_resample(X_tf,dataset.viclation)

import seabern as sns

plt.title{"Target variable: Mo Viclation =2, Human Rights violation=1"})

sns.countplot(x ='Target', data=df)

<Axessubplot:title={'center':'Target variable: no violation =2, Human Rights vielation=1'}, xlabel="Target', ylabel='count'»

Target Vanable: No Violation =0, Human Rights Violahonz_l

8000

G000
B
émn

2000

o

Target

Figure 8: balanced Dataset

The usage of Random Forest Classifier was ispired by |[Fitri et al. (2019). For Hyper-
parameter i.e. n-estimator for Random Forest Classifier was found using GridSearchCV
as it gives the best score as observed in the figure [0] Also, the criterion set was entropy
as it helps for information gain.




print{"Apply GridSearchCV im Random Forest Classifier to get best n_estimators")

rfc = RandomForestClassifier(critericon="'entropy', max_features='autc', random_state-=1)
grid_param = {'n_estimators': [2@@, 258, 328, 358, 488, 458]}

gd_sr = GridSearchlviestimator=rfc, param_grid=grid_param, cv=5)

gd sr.fit{x_train, y_train)

best_parameters = gd_sr.best_params_

print{best_parameters)

best_result = gd sr.best_score_ # Mean cross-validoted score of the best estimotor
print{best_result)

apply GridSearchCv in Random Forest Classifier to get best n_estimators
{'n_estimaters': 258}
B8.9786488531278630

Figure 9: Hyper-Parameter tuning for Random Forest

Based on the parameter the Model was fit over the dataset which was 75-25 train-test
split as depicted in figure

print({"Applying Random Forest based on GridSearchcv n_estimators")

rfc = RandomForestClassifier(n_estimators=best_parameters['n_estimaters'], criterion="entropy', max_features='autc',
fandom_state=1)

rfc.fit(x_train,y_train)

rfc_pred = rfc.predict{X_test)

cf_matrix_rfc - confusion_matrix(y_test, rfc_pred)

print(classification_report(y_test, rfc_pred))

sns.heatmap{cf_matrix_rfc, annot = True, cmap='Blues', fmt="g"}

plt.title(label ="Confusion Matrix for Random Forest Classifier ")

Figure 10: Random Forest Classifier Model

Further, observed in the figure the Results were obtained based on the model
prediction.

applying Random Forest based on Gridsearchov n_estimators

precision recall Ffil-score support

=] 2,98 B.99 a.98 2255

1 a.99 B.98 .98 2255

goocuracy a.98 4518
macra avg a.98 2.28 a.98 451a
welighted awvg a.98 2.98 a.98 451G

Text{®.5, 1.8, "Conmfusicn Matrix for Random Forest Classifier ")

Confusion Matrnx for Random Forest Classifier

= 1750
1500
1250
10040

- TS0

— 500

= 350

Figure 11: Results for Random Forest Classifier

Similarly, the model of Support Vector Machine was developed with same balanced
Dataset and results were obtained which can be observed in figure. As the research was
majorly motivate from |Alhelbawy et al.| (2020]) as they used SVM which gave good results.
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SWMC = SWwmM.SWC{D)
swmc . Fit(x_train,y_train}

swmc_pred = swmc.predict{x_ftest)
swvwme_cf_matrix = confusion_matrixi{y_test, swvmc_pred)
print{classification_report{y_test, swvmc_pred))
sns.heatmap{swvmc_cf_matrix, annct = Truwe, cmap="Blucss', fmt="g")
plt.titleflabel ="Confusicm Matrix for SvM Classifier ")
preci=sion recall fi1l-score Supporit
a a.a9 2.98 a.99 2255
a a.a8 2.99 a.99 2255
BCCUracy a.a99 as1a
macro awvg a.a9 2.99 a.99 aA51aE
weighted avg a.99 a.929 a.o9 aslia

Text{(&.5, 1.8, "confusion Matrix for sSvM Classifier ')

Confusion Matnx for SWM Classifier

- F0NH

ATSH

15 N

— 1250

— TLIOHOHD:

— T=0

— S0

=11}

Figure 12: Model built and Results for Support Vector Machine

4.2 Experiment 2 - Classification using One Class Classification
Technique

For the given experiment imbalanced dataset was given as input and the model was fit
on majority class is what the concept of One Class Classification is all about as noted
by [Seliya et al| (2021). Here one Class Support Vector Machine was utilized as it has
extension over the given technique. The following figure shows the implementation
along with the classification report.

traink, testX, trainy, testy = train_test_split(x_tf,dataset.viclation, test_size-8.%, random_state-2,
stratify-dataset.vielation)

# define outlier detection model

model = OneClasssvM(gamma='scale', nu=8.81)

# fit on majority class

traink_ = trainx.toarray()[trainy==]

model.fit(trainx_)

yhat = model.predict{testx.toarray(})

# mork inliers 1, outliers -1

testy[testy == 1] = -1

testy[testy == @8] = 1

||:f_rnatrix_|3cswl = confusion_matrix(testy, yhat)

print{classification_report(testy, yhat))

precisien recall fl-score  support

-1 6,89 2.25 8.13 525

6.89 8,69 8.78 4518

accuracy g.54 5833
macro avg 8.4 2.47 @.45 B@3s
weighted avg 8,82 2.64 8.71 5039

Figure 13: Model built and Results for One Class Support Vector Machine



4.3 Experiment 3 - Classification using Functional Neural Net-
work

For the given experiment BERT base model was utilized which has 12 encoders with 768
hidden layers. Following figure shows the initialization of BERT pre-processor and
BERT encoder.

import tensorflow as tf

import tensorflow_hub as hub

import tensorflow_text as text

bert_preprocess = hub.kKerasLayer("https://tfhub.dev/tenscrflow/bert_en_uncased_preprocess/3a")
bert_encoder = hub.KerasLayer{"https://tfhub.dev/tensorflow/bert_en_uncased L-12_ H-768_A-12/4"}

Figure 14: Pre-process and Encoder initialization of BERT

Further, the BERT Model was built over Functional Neural Network as depicted in
figure [15]

def bertmodel():
# Bert Lavers
text_input = tf.keras.layers.Input(shape=(), dtype=tf.string, name='text"')
preprocessed_text = bert_preprocess(text_input)
outputs = bert_encoder(preprocessed text)

Neural network Layvers
= tf.keras.layers.Dropout(@.1, name="dropout™){outputs[ 'pooled_output'1)
tf.keras.layers.Dense{l, activation='sigmoid', name="cutput™}(l)

(Sl T

# Use inputs and outputs to construct a final model

return tf.keras.Model{inputs=[text_input], outputs = [1])}

bertmodel = bertModel()
bertmodel. summary ()

Figure 15: Functional Model built over BERT

based on the parameters set and number of hidden layer the model was build and
summary can be seen in figure [16| where there are 3 hidden layer and rest was input and
output layer.



Layer (type) output shape Faram # Connected to

text (InputLayer} [{mMone, )] [} [1
keras_layer_2 {KeraslLayer) {'input_mask': {(Ncn @ ["text[e][a]"]
e, 128},

'input_type_ids":
{Mone, 128},

'input_word_ids":
{Mone, 128)7}

keras_layer_3 ({KeraslLayer) {'default': (Mone, 189482241 ["keras_layer_2[1][®]",
758], "keras_layer_2[1][1]",
'encoder_cutputs”: "keras_layer_2[1][2]"]

[(mone, 128, 7&8),
(Mone, 128, 7&8),
(Mone, 128, 7&8),
(Mone, 128, 788},
(Mone, 128, 7&8),
(Mone, 128, 788},
(Mone, 128, 7&8),
(Mone, 128, 7&8),
(Mone, 128, 7&8),
(Mone, 128, 7&8),
(Mone, 128, 7&8),
(Mone, 128, 7&8)],
'pocled_cutput': (
Mone, 788},

'sequence_cutput”:
(Mone, 128, 788)%

dropout {Dropout} {Mcne, 768} 2 ["keras_layer_3[1][132]1"]
output {Dense) {Mone, 1) 759 ["dropout[e][e]"]

Total params: 123,483,218
Trainable params: 769
Non-trainable params: 189,482,241

Figure 16: Summary of Functional Neural Network Model

The model was compiled where the parameters like optimizer, loss and metrics were
setup which can be seen in figure

METRICS = [
tf.keras.metrics.BinaryAccuracy(name="accuracy'y,
tf.keras.metrics.Precision(name="'precision"},
tf.keras.metrics.Recall{name="recall"}

bertmodel.compile{optimizer="'adam’,
loss="binary_crossentropy’',
metrics=METRICS)

Figure 17: Fine-Tune parameters

As dataset was imbalanced, Class weights were calculated depicted in figure as it was
also one of the parameter set which training.



class _wts = compute_class_weight('balanced’, mp.unigue{y_train},v_traim)

class_wis

array([@.55861916, 4.76481715])

Figure 18: calculating Class Weight

The model was further fit over the dataset along with class weights and was run for
10 epochs displayed in figure [19] and evaluated as seen in figure

bertmodel.fit(¥_train, y_train, epochs=18, class_weight= clswt )

Epoch 1/1@
237/237 [

27285 125/step - 10SS: @.645@ - 3CCUracy:

@

.6193 - precision: @.1621 - recall: @.&3@

5

Epoch 2/1@

237/237 [ 1 - 31875 12s/step - loss: @.5725 - &CCUracy:
2

@

.7811 - precision: 2.2174 - recall: 8,711

Epoch 2/1@

237/237 [ 1 - 27395 12s/step - loss: @.5283 - acCCuracy:
7

Epoch 4718

237/237 [

@

.7294 - precision: @.2542 - recall: @.766

'
®

26285 11s/step - loss: @.5873 - accuracy: @.749% - precision: 2.2847 - recall: @.773

1
Epoch 5718
237/237 [ ]

®

26875 11s/step - loss: @.4885 - accuracy: @.7581 - precision: 2.2653 - recall: @.781
7

Epoch &/18

2377237 [ ] - 28995 1ls/step - leoss: @.4813 - accuracy:
4

Epoch 7/1@

237/237 [ 1
4

Epoch 8/1@

237/237 [ 1
2

Epoch 9/18

2374237 [ ] - 2781s 12s/step - loss: @.45%% - accuracy:
1

Epoch 18/18

2374237 [ 1
4

®

.7667 - precision: @.2854 - recall: 8.813

®

25615 1ls/step - loss: @.4733 - accuracy: 2.769% - precision: 2.2848 - recall: @.789%

®

27635 12s/step - loss: @.4714 - accuracy: @.7737 - precision: 2.28%2 - recall: @.792

@

L7766 - precision: 2.2943 - recall: 8.887

@

27145 11s/step - loss: @.4528 - accuracy: @.7888 - precision: 2.2882 - recall: @.812

Figure 19: Training of Functional Neural Network

bertmodel..evaluate(X_test, y_test)

79/79 [ ] - 8%8s 11s/step - loss: ©.535% - accuracy: ©.7536 - precision: @.2842 - recall: @.&%e2

[©.5355487663345337,
B8.7535714587182966,
@.2841596807347187,
8.5281515227819842]

Figure 20: Evaluation of Functional Neural Network

Post evaluation the Model Results were obtained as seen in figure.
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bert_predicted = bertmodel.predict(x test)
bert_predicted = bert_predicted.flatten()
bert_predicted = np.where{bert_predicted » 8.5, 1, @)

from sklearn.metrics import confusion_matrix, classificaticon_report

om = confusion matrix{y_test, bert_predicted)

from matplotlib import pyplet as plt
import seaborn as sn

sn.heatmap{cm, annot=True, fmt="4d")
plt.xlabel( "Predicted’)
plt.ylabel("Truth'}

Text{3z.8, 8.5, "Truth"}

- 1600
1400
- 1200

1000

Futh

Fredictles

print{classiftication_report(y_test, bert_predicted})

precision recall fl-score  support

2 2.98 2.74 @82 2255

1 8.25 2.89 .43 284

accuracy .75 2528
macre avg 2.563 2.81 o, 5= 2528
weighted avg 8.91 2.75 a8.52 2528

e e s o GTsane—. 0000 (|

Figure 21: Results of Functional Neural Network
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