—

\\ .
National
Collegeof

[reland

Configuration Manual

MSc Research Project
Data Analytics

Priyal Narendra Patil
Student ID: x20193394

School of Computing
National College of Ireland

Supervisor: Dr. Giovani Estrada

\—ﬁ
National College of Ireland \ National

MSc Project Submission Sheet Collegeof
c Project Submission Shee I
reland
School of Computing
Student Priyal Narendra Patil
Name:

Student ID: X20193394
Programme: MSc in Data Analytics Year: 2021-2022
Module: Research Project

Supervisor: Dr. Giovani Estrada
Submission
Due Date:

Hierarchical Classification of Insects using a Combination of Resnet

Project Title: and VGG Networks

Word Count: 2785 words Page Count 16 Pages

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Priyal Narendra Patil

Date: 15% August 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o
copies)

Attach a Moodle submission receipt of the online project m
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both | o
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual
Priyal Narendra Patil
X20193394

1 Hardware/Software Requirements

This Configuration manual encompasses the steps which must be followed to run the python
notebooks. These deep learning models require certain minimum hardware requirements to
be executed. Due to the nature of the scripts, a single experiment is divided into 2-3 parts
where 1 -2 parts are of the training of the model and the last part is about the prediction.

2 System Specification

The entire project had been developed on the “Google Colab” which is a service by google
where everyone who needs to run the python code can be provided with the online python
notebook where they can run any python code. And it also provides a high ram as well as
GPU. Basically, cloud-based Jupyter notebook.

2.1 Hardware Requirements

If someone wants to run on their personal computer, they should have at least the following
hardware to make sure the script doesn’t run out of resources. These are not the exact
specification because google collab in every session and allocates the system based on
available resources.

e Processor: Single Core 2.2-2.3 GHz

e RAM: 12GB

e GPU: Nvidia Tesla T4, 16GB memory

Any system equivalent to the above can run the script

2.2 Software Requirements

The following program should be required
e Google Collaboratory (or Jupyter Notebook for on-system execution)
e Python 3
o Microsoft Excel

3 Setting up the environment
This section information about the enabling of Google Collab in the Gmail account.

First using the Gmail account’s Google drive, create a folder named “Project” And there
upload all the “Jupyter notebooks” and the “ipynb” files are uploaded.

By Default google, the collab is not installed in google drive. To install that right click and
select more> Connect more apps as follows

3] Newfolder

File upload

Folder upload

B Google Docs >

Google Sheets >

(] Google Slides >

B Google Forms >

More >

B} Google Drawings
K] Google My Maps
E Google Sites
EJ Google Apps Script
co Google Colaboratory
] Google Jamboard
4 Connect more apps

Figure 1 Options to add more apps
Search for Collaboratory

= 0 Google Workspace Marketplace =~ Q Colaboratory X @ @ B X

Search results for Colaboratory
Google doesn't verify reviews or ratings. Learn more about reviews and results

Colaboratory
Colaboratory team

This allows Google
Colaboratory to open and
create files in Google Drive. Iti.

* 47 . 4 10,000,000+

Figure 2 Search Collaboratory

On clicking on the Collaboratory select an option to install it, if it shows uninstall button that
means the tool has been installed,

< 0 Google Workspace Marketplace =~ Q Searchapps X @ @ & X

Colaboratory e
CO

This allows Google Colaboratory to open and create files in
Google Drive. It is automatically installed on first use:
uninstalling this will not prevent access to Colaboratory.

By: Colaboratory team 4
Listing updated: June 17, 2022

orks with:) r 3.46 = 10, anisin
Works with * Rk hk 3.464 ¥, 10,000,000

Figure 3 Installed Collaboratory

Now once that’s done. One can open the “ipynb” notebooks by right-clicking on it and
selecting the “Open with > Google Collaboratory” as shown in the following window.

dixAun NniceReculf inunh A%

@© Preview
wgM
<} Open with >
€0 Google Colaboratory
VHyl
2+ Share
-+ Connect more apps
i616] o Getlink
L1 Apps on your Computer
[Show file location
(s Add shortcut to Drive
Class Move to
% Add to Starred
Ter_A
Z. Rename
er.ip
() View details
ifierii £T) Manage versions
[Makea copy
kRes! D
Y, Download
kResl
[l Remove
isian\

Figure 4 Option to open Jupyter notebook files

4 Data Selection

Data can be collected from the following GitHub link. The author had provided the link to
google drive, from where data either can be downloaded or can directly be used if using the
google Collaboratory

master + P 1branch © 0tags Go to file Add file ~ Code ~ 4

|
‘ xpwu95 Update README.md 924dda9 on 7 Apr YO 47 commits f
BB pretrained_models Update README 3 years ago [

b
[READMEmd Update README.md 4 months ago

<
[classes.txt Add files via upload 3 years ago §
‘= README.md

IP102: A Large-Scale Benchmark Dataset for Insect Pest Recognition J

This work was accepted by CVPR 2019.

The IP102 datset contains more than 75,000 images belongs to 102 categories. A natural long-tailed distribution
presents on it. In addition, we annotate 19,000 images with bounding boxes for object detection. The IP102 has a
hierarchical taxonomy and the insect pests which mainly affect one specific agricultural product are grouped into the
same upper-level category.

Data Download
You can download the IP102 v1.1 through the Drive or AliyunDrive.

The index and name of each insect pest sub-class in the classification task of the IP102 dataset can be found in
classes.txt.

Figure 5 1P102 Dataset Download Location Link: hitps://github.com/xpw 1P102

This data can be downloaded as well as it will show up in the “Shared With Me” section in
Google Drive as well,

_/ L] arive.googie.co
L Drive Q Search in Drive
Shared withme > [P102 v11 ~ 2a
|- New =
Name
» [B] MyoDrive

Classification
» O Computers M

2> shared with me B3 Detection

Recent

Trash

o
v Starred
]
(@)

Storage

Figure 6 IP102 Data Files

https://github.com/xpwu95/IP102

5 Implementation

Following libraries are required to run the script, however, most of it will be already installed
in the google collaboratory session, and 1-2 will not will but the installation commands are
integrated into the scripts already. But others should be installed if used into the local system.

e Numpy

e SklLearn

e PyTorch

e Matplotlib
e Seaborn

e Shutil

e Barbar

import os
import pandas as pd
import shutil

import torch

import os

import numpy as np

import torch

from torch import nn

import matplotlib.pyplot as plt

from torch.utils.data import Dataset, Dataloader
from torchvision.datasets import ImageFolder
from torchvision import transforms

import torch.optim as optim

import argparse

from distutils.util import strtobool

from barbar import Bar
import copy
import time

from sklearn.metrics import confusion matrix
import matplotlib.pyplot as plt
import seaborn as sns

Figure 7 Libraries

5.1 Importing Data

File “ip102_vl1.1.tar” and “classes.txt” should be placed into the “Project” Folder which was
created earlier in google drive. One can also make the shortcut of the same file from the
shared with me section.

And Executing the following command copies, the content of that “tar” file to the disk space
provided by the google collab session.

ltar -xf /content/drive/MyDrive/Project/ipl02 vl.1l.tar

Fil M X + Code + Text
iles

. B kRS

(+ B
» [drive
ip102_v1.1
(- » mp - ¥ [1] ‘!tar -xf /content/drive/MyDrive/Project/ip182_wvi.1.tar
+ [sample_data

~ Prepare Files for Classification
&)

plly _—

Figure 8 Extracting the IP102 data and Keeping in the disk space

5.2 Reading Data

Once the data is imported into the Google Collaboratory Session, can be arranged in folders

such that it can be accessed via the Image Loader of the PyTorch.

First, the train, test and val folders are created.

Lry:
os.mkdir ("train")
os.mkdir ("test")
s.mkdir ("val"™)

except Exception as e:

8]

/]

o=
=

o
f

Listing 1 To create Train, Test and Validation folders

Following has the functions to move and copy files in the respective folders which is

necessary for the image data loaded.

def read actual labels(file name):
list to store the names of the image files
file names = []

@ T

List tostore the actual lables of each image
actual labels = []
Read train, test and val file to get the list of files names for

eacn categories
train_file = ;;c;(";pLOE_vl.lr"+file_name)
for 1 in train file:
file names.append(l.split (" ") [0])
actual_labels.append(‘;t(l.split(" "y[-1][:-1]))
train file.close()
return file names,actual_ labels # Return the pair of the list with

same size but content diffe
Creating list to vert the label to actual name of categories

super calss = ["Rice", "Corn", "Wheat", "Beet", "Alfalfa", "vitis", "Ci
trus", "Mango"]

super class count = [14, 13, 9, 8, 13, 16, 19, 10]

Create the subclass in the train, test and val folders to store image

s

for ¢ in super calss:
try:
os.mkdir{"train/"+c)
sexcept Exception as e:
continue
try:
os.mkdir{"test,/"+c)
except Exception as e:
continue
try:
os.mkdir{"val/"+c)
except Exception as e:
continue
This will continue previous process
class_ceteqaries = []
prev = 0
for i in range(0,len{super_class count)):
cl = list{range{prev,prev+tsuper_class count[i]))
class cetegories.append{cl)
prev = prev + Euper_class_cuunt[i]

Define functicn to map the label number ot the image name
def find category{inp cat):

for i in range({len{class cetegories)):

if inp_cat in class_cetegories([i]
return super_calss[i]
Function to move files to the respectiwve folder
def movefiles(f type,f name,f label):
root_image folder = "iplOZ wl.l/images/"
Following for loop to move images to the trianing folder
for 1 in range {len{f_name)) :
name = £ name[i]
label = £ label[i]
subfolder = find_categury{lahelj
shutil .move {root_image folder+name, £ typet+"/"+subfolder+" /" +nam
e)
Create Folders for the sub classificaticn
grror = "V
try:
os.mkdir{"new train™)
os.mkdir{"new train/train™)
os.mkdir{"new train/test"™)
os.mkdir{"new trainfwval™)
for c in super_calss:
os.mkdir{"new train/train/"+c)
os.mkdir{"new train/test/"+c)
os.mkdir{"new train/val/"+c)

except Exception as e:

File to BFead the Actual Cl: the
classes_path = "/content/driwve/MyDrive/F
dataclass = [}

class file = open {classes path)

or 1 in class file:

class idx = int{l.split{) [0])-1
class_name = " ".Join{l.split{)[1:]})
dataclasﬁ[class_idx] = class_name

clasﬁ_file.clcﬁe{?

Following is the function to create the folder,
def copy images to sub categories{r folder,dict file):
r folder = r folder + "/"

muper clasms neames - om.limtdir{r folder)

for sc in super class names:

for img n in os.listdir{r folder+sc):

image label = dict file[img n]
sub name = dataclass[image label]
1if not os.path.exists{"new train/"+r folder+"/"+sc+"/"+sub
namej :
os.mkdir{"new_train/"+r_ folder+"/"+sc+"/"+sub_name}
shutil.copy{r_folder+sc+"/"+img_n, "new_train/"+r_folder+" /"
+sc+"/"+sub_name+"/"+img_n)

Listing 2 Functions and Code to create the folders

f train,l_train = read _actual_ labels{"train.txt")
f_val.l_val = read_actual_labelﬁ4"u£l.txt"3

train £ = {£:1 for £,1 in zip{f train,l train)}

val £ = {£:1 for £,1 1n zipl{f wval,l wal)l
Mowe files to the super categories

movefiles ("train",f train,l train)

movefiles ("val"™, £ wval,l wal)

4 Meawa F41las F IR . | =
7 MOovwe Illes Lo the 55Ul Ca

-
in
i
(m]
H
I
in
1

copy images to sub categories{"train",train £)
copy images to sub categories("val",wval £)

Listing 3 Script to move files for the training

f test,l test = read actual labels{"test.txt")

test £ = [f:1 for £,1 1n zip(f test,l test)]
Mowve files to the super categories

movefiles ("test",f test,l test)

B Meawrs F1iae + o el o g L
MOwVe IL1les [Oo the SubD Categorles

copy images to sub categories{"test",test £}

Listing 4 Script to move files for the prediction or test
These last 2 Scripts are executed depending on it if it is training or prediction.

5.3 Data Processing

data transforms = |

rain': t ms . Compose { [
transfo .Fesize (.]
transfo ugMix{),
transf ndomCrop {input size),
transf ensor (),
transf rmalize ([] [
11
1)
LT ! rransforms Compaoasa [
transforms.Resize | 1]
transforms.CenterCrop {input sizae),
transforms.ToTensar (),
transforms . Normalize ([0.485, .4 . .4 1, I

1

Listing 5 This is the data preprocessing enclosed into the data transform for training

data trans

ocrms

~-

= ': transforms.Compose([
transforms.Resize (size=(input size,input size)),
transforms.ToTensor (),
transforms . Hormalize {([0.485, .4 . .4 1. [

11

Listing 6 This is the data preprocessing enclosed into the data transform for testing/ prediction

5.4 Data Splitting

Since the dataset is a benchmark dataset, it comes with pre slited and, as in the previous part.
Respective data copied in respective folder based on the split provided by the owner of the
dataset.

5.5 Resnet50

Using the pytoch library a ready built structure is used which can be imported using
following script. And is modified based on the number of target class.

res net model = torch.hub.load{'pytorch/vision:v0.10.0"', '"resneti3d', pr
etrained=Trus])
dropout =
num ftrs = res net model.fc.in features
Listing 7 Script to create ResNet50 model for the super class classification
models = [}
for m 1in super calss:
models [m] = torch.hub.lgad({'pytorch/vision:v0.10.0"', "resnet30', pret
rained=Trues)
dropout =
num ftre — models(m] .£2.in Scatures
models [m] . £fc = nn.Seguential |
nn.oDropout {(dropout),
nn.Linear {num f£ftrs, len{os.listdir{"/content/new train/
trainS"+m)))

Listing 8 Script to create ResNet50 model for the sub class classification

5.6 VGGI16

Here again similar to the ResNet50 method, for the VGG16 porch library is used to get the
pre bult structure along with the pretrained weights.

def get model {super category data,type m):

model = torch.hub.load{'pytorch/vision:v0.10.0", "wgglé', pretrained=
True)

to = lenf{os.listdir{"new train/"+type m+",/"+super category data))

model .classifier = nn.Sequential (model.classifier,nn.Linear (1 , Lt
i

torch.cuda.empty cache ()

moadel = model . to{"cuda™})

return model

Listing 9 Script to create the V(G116 model for the sub class

model = torch.hub.leoad({'pytorch/vision:wv0.10.0", "wgglé', pretrained=Tr
e)

model .classifier = nn.S3eguential (model.classifier,

nn.Linear {1 r 2h)

Listing 10 Script to create the VGG L6 model for the super class

5.7 Training

Initially there are individual script for training of the models for the sub class but later a
single code was used which had following logic in it.

10

def get model (super category data,type m) :

model = torch.hub.load({'pytorch/vision:v0.10.0"', 'wgglé', pretrained=
True)

tc = lenf{os.listdir("new train/"+type m+"/"+super category data))

model .classifier = nn.Sequential (model .classifier, nn.Linear{l000, tc)

torch.cuda.empty cache()
moadel = model.to{"cuda™)
return model

def add nocise{inputs):
noise = torch.randn like{inputs)*0.2
return inputs + noise

Following is to train the model
def train model {(in model,train set,valid set,n epochs):

weight_decay = 0.00001

wval acc history = []

train_acc_history = []

val loss _history = []

train_ loss_history = []

dataloaders = {'train': train set, "'wval': walid set}

criterion = nn.CrossEntropylLoss ()

params_to_update = in_mndEl.paramEterE{h

cptimizer £t = optim.Adam{params to update, lr= 0.0001, betas= (0.9,
0.999),

eps= le-

02, weight decay= weight decay)

scheduler = optim.lr scheduler.ExponentiallR{optimizer ft, gamma= 0.9
B

cptimizer = gptimizer_ ft

is_sawve_checkpoint = False

is inception = False

ckpepoch = 0

since = time.time ()

best_acc = 0.0

num_epochs = n_epochs

device = "ougde™

for epoch in range {ckpepoch, num epochs):

print {"Epoch {1/{}'.£format {epoch, num epochs - 1)}
print{"-" * 10}
for phase in ['train', 'val'l:

i0 pligse — "Lrain®z

1n_moael . rraini()
glse:x
in _model.eval ()

11

] .dataset)

Listing 9 Functions for performing the training of the both model

running less = 0.0

running corrects = 0

for data in Bar{dataloaders|[phase]):
if len{data) > Z:

inputs, , labels = data

inputs = add_noise(inputs)

inputs = inputs.to{device)
glse:

inputs, labels = data
inputs = inputs.to{device)
labels = labels.tol{device)

optimizer.zero_grad{)

with torch.set_grad_enabled{phase == 'train'):

if is inception and phase == 'train':
gutputs, aux outputs = in model {inoputs)
lozssl = critaricn {outputs, labkals)
loss2 = criterion({aux_outputs, labels)
loss = lossl + 0.4%loss2

else:
gutputs = in model {inputs)
loss = critericon{outputs, labels)

_+ breds = torch.max{outputs, 1)

1f phase == 'train':
loss.backward()
optimizer.step()

running loss += loss.item{) * inputs.size{l)
inputs.to{"cpu™)

torch.cuda.empty cache ()

running corrects += torch.sum{preds == labels.data)

epoch_loss = running_lcss / len{dataloaders|[phase].dataset)

gpoch acc = running corrects.double() / len{datalcaders|[phase

print{'{} Loss: {[:.4f] Acc: {:.4f}'.format{phase, epoch loss,

epoch_acc))

1f phase == 'wal' and epoch acc *» best aco:
best acc = epoch acc
best model wts = copy.deepcopy({in model.state dict{))
if 15 sawve checkpoint:

12

valid set = ImageFolder {root= "new train/val,/"+s cname, transform= da

ta transforms|['wval'])

train set = Dataloader{train set, batch size= batch size, shuffle= Tc
ue,
num workers= &, pin memory=True)
valid set = Dataloader {wvalid set, batch size= batch size, shuffle= Fa
lse,
num workers= 2, pin memory= True)

train model (model d,train set,walid set, 10}
torch.cuda.empty cache ()

torch.save (model d.state dict(), "/content/drive/MyDrive/Project/"+s
cname+" wggléa™)

Listing 10 Training loop for the Sub class models

5.8 Prediction

Prediction are carried out by using the test folder, and using the stored models, Follwowing
scripts shows the loading models from the stored weights.

"
models = [}
for m in super calss:

models [m] = torch.hub.locad{'pytorch/vision:+0.10.0",

'resnetil"', pret
rained=True}
dropout = 0.3
o Clrs = models (m] fe.in feslures
Add n layer to make it to classify for 8 super class
models [m = nn.Segquential |
nn.Dropout {dropout) ,
nn.Linear {num ftrs, len{os.listdir{"/content/new train/
test/"+m) 1))
superModelDict = torch.load (" /content/drive/MyDrive/PFroject/submodels
S +m)

models [m] . load state dict {superModelDict)
models [m] .eval ()

Listing 13 ResnetS0 loading wights stored on the drive

actual super class = []
predicted super class = []
actual subclass = []

predicted subclass = []
images =[]

r sc 1n reverse classmap:

test images = image data gen[reverse classmap[sc]]
¥y pred_1 = []
v act 1 = []
i =1
for test data in iter{test images):
input img, target img = test data

13

input img = add noise{input img)
ac =;is:{target_img_numpy{?)
v act l.extend{ac)

i1nput img.to{"cuda™)

pred = model {input_img.cuda())

torch.cuda.empty cache ()

input img.cpuli)

predicted classss= list{np.argmax{pred.cpul) .detach{) .numpy{),axis=
13}

v prad 1 _extend{predicted classss)

process to generate the sub classification
unigue predicted =np.unigue {predicted classss)
for u in unigue predicted:

image index = np.array({predicted classss) == u $# Find the index

]
H

the given claas i1n the predicted
actual class ofthose = len{list{np.array{ac) [image indesx])) *[sc]
add the actual categories of the super class out of 8 class

predicted class ofthose = list{np.arrayi{predicted classss) [image
index]) # This is the predicted class of the super class

c_images = input_img[image_index] # Images of the u super class

act_labels = list({target_img[image_index] .numpy(}) # it is the ac

tual sub class of images

actual super class.extend{actual class ofthose) # adding the act
unal super class labels

prEdictEd_super_class_Extend{prEdictEd_class_cfthcsE) # Adding th
e predicted super class labels

actual subclass.extend{act labels) # Adding the actual sub class

predy = models[reverse classmap[u]] {(c images.cuda{)) # Predictin
g the sub class ot the i1mages by selecting the model and storing image
on the GFUO to speedup the process

c_imagEE_cpu{J # Move i1mages to the CPU{) to release the GFU emeo

H

predicted sub classss= list {np.argmax{predy.cpul) .detach{) .oumpy{
V.axis=11) # get the predicted subclass

predicted subclass.extend{predicted sub classss) # Add the predic
ted sub class to larger array

imagEE.appEﬂd{c_imagEEb

torch.cuda.cmpty cacho{)

Listing 11 Loop for performing the prediction of the test data.

Following script are used to show the confusion matrix as well as the classification report for
the super class as well as the sub class.

14

total count = {}

for ¢ in os.listdir("/content,/new train/test"™):

total countc] = lenf{os.listdir{"/content/new train/test,/"+c))

as o = [reverse classmap[c] in actual super class])

c
pE o = [reverse classmap[c] c in predicted super class]

len{as_c),len{ps_c)

from sklearn.metrics import classification report

rint (classification reporti{as c,ps c))

reverse category = {1}
for ¢ in image data cetegory:

tmp = [}
for cc in imaqe_data_ceteqcry[c]:
tmp [image data cetegory([c][cc]] = cc
reverse category[c] = tmp
actual ¥y = []

predicted v = []
for i in range{len{as c)):

actual sname = as c[i]

predicied] spmmme = pa oc[4i]

actual_ sub class = aEtUEl_EUbElEEE[i]

predicted sub class = predicted subclass[i]
actual_y.append(reverse_category[actual_ sname] [actual_sub_class])
predicted_y.append{reverﬁe_cateqcry[predicted_ﬁname][predicted_ﬁub_cl

ass])

from sklearn.metrics import classification report

print {classification report{actual y,prodicted ¥))

torch.cuda.empty cache()

Listing 12 Script for creating the classification report

t = glassification report{actual v,predicted vy,ocutput dict=True)

import pandas as pd

pd.DataFrame ({t) .T.to csv{" S content/drive/MyDrive/Project/classification
Fesult 50.cswv")

Listing 13 Script to store the Classification report to drive

1mport seaborn as sns

from sklearn.metrics import confusion matrix
import matpleotlib.pyplot as plt

cm = confusion_matrix{as_c,ps_c)

plt.figure{figsize={5,5))

sns.heatmap {pd.DataFrame {cm, columns=np.unigque {as c),index=np.unigque {as

Listing 14 Script for the confusion matrix
Now following scripts were used to get the image visualization,

15

MEAN = torch.tensor([0.485, 0.456, 0.40&])
8TD = torch.tensor{[0.22%9, 0.224, 0.2235])
& Pe

- M

form inverse Hormalization for the wisuwalization
new image list for wis = []
for set img in images:

new_image list_for_wis.extend({[imag * STD[:, Mone, Mone] + MEAN[:, Mo
ne, None] for imag in set img])
new_image list_for_wis = [im.T for im in new_image_ list_for_wis]
sub_class_ccrrect_idx = np.array{actual_y) == np.array{predicted_y)
sub_class_inccrrect_idx = np.array{actual_y) != np_arraylpredicted_y)
super class correct idx = np.arrayi{as c) == np.arrayi{ps c)
super inclass correct idx = np.arrayi{as c) != np.arrayi{ps c)
ccrrect_sublcass_idx = np.array({range {len{actual_yl)) [sub_class_correct
_idx]
inccrrect_sublcass_idx = np.arrayl:s:;e1;eniactual_y333[sub_class_inccr

rect idx]

ccrrect_suplcass_idx = np.array({range {len{actual_yl)) [super_class_corre
ot idx]

incorrect suplcass idx = np.arrayi{range{len{actual y))) [super inclass c
ocrrect idx]

a,b,c,d = correct sublcass idx[(0],incorrect sublcass idx[(0],correct sup
leass_idx[1],incorrect_suplcass_idx[1]
figure, axis = plt.subplots{Z, 2}

figure.set_ figwidth{l3)
figure.set figheight{l3)
plt.figure{figsize={12,12}}

axis[0,0] .imshow{new image list for wis[a])
axis[0,0] .set_title{"Actual Super Class [}, Predicted Super Class: [}
nAictual Sub Class: {}, PFredicted Sub Class: {}".format{as_c[a],ps_cl[a].

actual_y[a],prEdictEd_y[a]bb

axis[0,1] .imshow{new image list for wis[b])
axis[0,1] .set title{"Actual Super Class: [}, Predicted Super Class: [}
nAhctual Sub Class: [}, Predicted Sub Class: {[}".format{as cl[bl,ps cl[bk].,

actual y[b],predicted y[k]}))

axis[1l,0].imshow{new_image_ list_for_wis[c])
axis[l,0].set title("Actual Super Class: [}, Predicted Super Class: [}4
ndctual Sub Class: [}, Predicted Sub Class: []}".£for t{as c[c],ps clc].,

actual y[c],predicted y[c]))

Listing 15 Script to depict the result

6 Other Software’s

Apart from those mentioned, A local jupyter notebook from the anaconda was used to modify
the notebooks sometime. And MS Word was used for making the documentation.

16

