
Configuration Manual

MSc Research Project

Data Analytics

Aditya Raju Pal
Student ID: x20195281

School of Computing

National College of Ireland

Supervisor: Prof. Hicham Rifai

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Aditya Raju Pal

Student ID: x20195281

Programme: Data Analytics

Year: 2022

Module: MSc Research Project

Supervisor: Prof. Hicham Rifai

Submission Due Date: 15/08/2022

Project Title: Configuration Manual

Word Count: 1254

Page Count: 9

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 18th September 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Configuration Manual

Aditya Raju Pal
x20195281

1 Introduction

This configuration manual gives detailed information about the hardware and software
requirements along with all other details about the programming codes written for model
implementation and evaluation of the research project: “Can Deep Neural Network with
MobileNet V2 + LSTM based hybrid model perform classification of pest-infested citrus
leaf images and be used in light weight mobile applications?”.

2 System Configuration

2.1 Hardware Configuration

Table 1 represents the system’s hardware specifications on which the research was carried
out for this project.

2.2 Software Configuration

Jupiter Notebook from Anaconda Distribution:
The open-source desktop GUI called Anaconda Navigator is a part of the Anaconda

distribution. The distribution provides support to Jupiter Notebooks and it was ex-
tremely beneficial when putting machine learning models into practice and running them
on the Kaggle research data. This research was carried out using Jupiter notebook ver-
sion 6.4.12, which included all processes, including data augmentation, feature extraction
and developing hybrid machine learning models.

Google Colab
Google colab with GPU has been used for the training and evaluation of some of the

parts of this study.

1



3 Project Development

The Python programming language was used extensively throughout this research pro-
ject. The Python language was used for the majority of the processes, including data
augmentation, feature extraction, model design and assessment. Libraries such as Mat-
plotlib, numpy, pandas, seaborn, and other tools, the main libraries utilized were Keras,
TensorFlow, PyTorch, Scikit-Learn and LabelImg. The project has been divided into two
main parts:

1. Usage of MobileNet V2 and MobileNet V2 + LSTM Hybrid model to classify a
diseased plant leaf.

2. Usage of YOLO V5 to detect the diseased area of the plant leaf.

4 MobileNet Model

Usage of MobileNet V2 and MobileNet V2 + LSTM Hybrid model to classify a diseased
plant leaf.

4.1 Data Preparation

Jupiter notebook was given access to the datasets that was obtained from Kaggle.com.
The datasets contained 2 classes. The train dataset contained 9169 images while the test
dataset contained 1206 images Figure 1 is how the directory structure for the train and
the test datasets looked like.

Figure 1: Dataset Folders

4.2 Data Augmentation

Augmentation was performed using Tensorflow package in python. The images were
augmented on the go for both the training and the testing after some changes in the
datasets. The data generator yielded images in batches and performed the aforementioned
transformation. Additionally, we kept the validation split = 0.2 to ensure k fold cross
validation. The target size of the image was 120 x 120.

2



4.3 Performance Evaluation

Since the task is a classification task, we used the following metrics to evaluate the
performance of the model.

• Precision

• Accuracy

• F1 Score

• Recall

• Cohen Kappa Score

• ROC curve

• Confusion matrix

4.4 MobileNet V2

Here, we used the base model of MobileNet with the pre-trained weights of ImageNet
dataset to extract the features (low level) out of the images. The input shape from
the generator was (120, 120, 3). Then we added a custom top for the classification.
The custom top had 2 dense layers. The first layer had 1056 neurons. The last layer
had 2 neurons (as there were 2 classes). In the first layer the activation function used
was ‘relu’ to have some non linearity’s. Since it was a binary classification problem,
‘sigmoid’ activation function was there at the final layer. The ‘crossentropy’ was used
as loss function as this is a classification problem. ‘adamax’ optimizer was used since it
is among one of the best optimizer for image classification. Additionally, we used two
callbacks. One was to save the best weights. The other was monitoring the validation
loss. The performance results came have been shown in Figure 2.

Figure 2: Performance Results for MobileNet V2

3



4.5 MobileNet V2 + LSTM Hybrid Model

Here, we used the base model of MobileNet with the pre-trained weights of ImageNet
dataset to extract the features (low level) out of the images. The input shape from the
generator was (120, 120, 3). Then we added a custom top for the classification. The
custom top had 2 LSTM layers and a dense layer. The first LSTM layer had 30 neurons.
The second LSTM layer had 5 neurons. The last dense layer had 2 neurons (as there
are 2 classes - healthy leaf or unhealthy leaf). The activation function for the first two
layers was ‘relu’ as it introduces some non linearity. Since it is a binary classification
problem, the final layer’s activation function was ‘sigmoid’. ‘cross-entropy’ was used as
loss function as this is a classification problem. ‘RMSProp’ optimizer was used since it
is among one of the best optimizer for image classification. Additionally, we used two
callbacks. One was to save the best weights. The other was for monitoring the validation
loss. The results of performance are represented in Figure 3.

Figure 3: Performance Results for MobileNet V2 + LSTM

5 YOLO V5 Model

Usage of YOLO V5 to detect the diseased area of the plant leaf.

5.1 Data Preparation

The data was collected from Kaggle.com and then annotated in YOLO format using
labelImg. The application was cloned using the following command from the code

⊤

Then the application was run using the following commands from the command line

cd labelImg

python labelImg.py

4



The interface of the application looks like in figure part (a) and with clicking on the
Open Dir we can select the folder where the training images reside as shown in figure
part (b) of Figure 5.

Figure 4: View of LabelImg tool

The part (c) in Figure 5 shows how to click on the change ’Save Dir’ to select the
directory where the annotations are to be saved. Prior to saving the annotations, change
the annotations format to ”YOLO”. Part (d) of the Figure 5 shows how to hit ‘w’ and
select the region and name it as disease and then hit save. In the last part, (c) it shows
how to click on ‘Next Image’ and reiterate until all the images are labelled. A total of 53
images were annotated for the training process.

Figure 5: Steps for Annotation

5.2 Model Preparation

Google Colab is used to train and test the model.
Installing dependencies
The dependencies were cloned and installed form ultralytics (PyTorch) using the below

code.

5



⊤

5.3 Assembling the dataset

The train and the test datasets were placed in the following directory
yolov5/data/images/

And for the labels, a separate directory with the name of labels was created in yolov5/data
and the labels were uploaded in the folder.

yolov5/data/labels/

Additionally, a separate file dataset.yaml was created. In the dataset.yaml file, we are first
setting the path to the train and then the test directories. And then defining the number
of classes. nc: 16 was used as there were already 15 built-in classes in the LabelImg
output file.

⊤

The dataset.yaml file was kept in the directory
yolov5/

6



5.4 Train the model

Run the following command to start training the model on 150 epochs with the YOLO
V5 original weights.

⊤

5.5 Predictions on the test data

To start predictions on the test data, following command was run

⊤

Then to check the results of the prediction with bounding boxes, the following com-
mand was run. This will basically plot each of the predicted images with bounding box.

⊤

The output is shown in Figure 6

7



Figure 6: YOLO Prediction

5.6 Performance Evaluation

To evaluate the performance of the model tensorboard was used. The following commands
are used to evaluate the performance.

⊤

The results of the model is represented in Figure 7

8



Figure 7: YOLO Prediction

9


	Introduction
	System Configuration
	Hardware Configuration
	Software Configuration

	Project Development
	MobileNet Model
	Data Preparation
	Data Augmentation
	Performance Evaluation
	MobileNet V2
	MobileNet V2 + LSTM Hybrid Model

	YOLO V5 Model
	Data Preparation
	Model Preparation
	Assembling the dataset
	Train the model
	Predictions on the test data
	Performance Evaluation


