~

-"‘f’“
\ National
College

Ireland

Customer Behaviour Prediction Using
Recommender Systems

MSc Research Project
Data Analytics

[feoma Delphine Onyeka
Student ID: x20189231

School of Computing
National College of Ireland

Supervisor: Vikas Sahni

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Ifeoma Delphine Onyeka
Student ID: x20189231
Programme: Data Analytics
Year: 2022
Module: MSc Research Project
Supervisor: Vikas Sahni
Submission Due Date: 15/08/2022
Project Title: Customer Behaviour Prediction Using Recommender Systems
Word Count: XXX
Page Count: Ol

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Ifeoma Delphine O

Date: 13th August 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Customer Behaviour Prediction Using Recommender
Systems

Ifeoma Delphine Onyeka
x20189231

1 Introduction

Our configuration handbook acts as a roadmap for this research. It provides a summary
of the hardware and software requirements needed to run the programs from the step of
preparing the data to the step of implementation. It is essential that you have jupyter
installed, a Windows system with 8 GB of RAM, and an i5 processor with GPU in order
to implement this project. Considering that this project was developed in Python 3.6, a
version that is compatible with it is required.

Research Study: Prediction of customer behaviour using recommender systems on a
historical data. This study’s major objective is to evaluate how well various machine
learning models are being used.

2 System Configuration
2.1 Hardware

The settings utilized for this research are displayed below.:

e Model : HP
e OS : Windows 10 Operating System
e Processor : 11th Gen Intel(R) Core(TM) i5-1135G7 @ 2.40GHz 2.42 GHz

Memory : 8.00 GB

Number of Core : 4

2.2 Software

In this case, Python was used as the programming language.We use Google Chrome as
our web browser. In addition, the report documentation was done with Overleaf software.
After openning the jupyter, all required libraries are needed to be imported that will be
used for the implementation. which are:

e Numpy

e datetime

e pandas
e matplotlib
e seaborn

Imported libraries are shown below:
Importing the the Libraries

import datetime

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt
import seaborn as sns

import the models

from sklearn.model selection import train test split
from sklearn.linear model import LogisticRegression
from sklearn import metrics

Figure 1: Importing the libraries

#import classification report
from sklearn.metrics import classification report

Figure 2: Importing the libraries

#import KNeighborsClassifier
from sklearn.neighbors import KNeighborsClassifier

Figure 3: Importing the libraries

3 Data Preparation

An overview of the process of uploading the dataset to a JUPYTER notebook is provided
in this section. Immediately after reading in the data, we begin the data preprocessing,
which includes cleaning and transforming the data. There were three datasets used
for this study and they were obtained from Kaggle ; the behaviour data(events) , also
property dataset and finally category dataset. The dataset provides information about
recommending products to customers. The data here did not contain any missing values
at this point. After mounting the dataset on my hard drive, the python code was used
to read the dataset into the environment. Furthermore, the figure shows that there were
no missing values in the data when it was inspected for missing values, so the data didn’t
require much cleaning.

Taking a Look at the head and the tail first five and last five rows in euent| dataframe
events_df.head()

timestamp visitorid event itemid transactionid

0 1433221332117 257597 view 355908 NaN
1 1433224214164 992329 view 248676 NaN
2 1433221999827 111016 view 318965 MNah
3 1433221955914 483717 view 253185 NaN
4 1433221337106 951259 view 367447 NaN

events_df.tail()

timestamp visitorid event itemid transactionid

2756096 1438398785939 591435 view 261427 Nal
2756097 1438399813142 762376 view 115946 NaN
2756098 1438397820527 1251746 view 73144 NaN
2756099 1438398530703 1184451 view 283392 MNah
2756100 1438400163914 199536 view 152913 NaN

Figure 4: Events Dataset

Taking a Look at the head and the tail first five in category dataframe
category_tree_df.head()

categoryid parentid

0 1016 213.0
1 809 169.0
2 570 9.0
3 1691 885.0
4 536 1691.0

Taking a look at the head and the last five rows in category dataframe

category_tree df.tail()

categoryid parentid

1664 49 1125.0
1665 1112 630.0
1666 1336 745.0
1667 689 207.0
1668 761 385.0

Figure 5: Category Datatset

Taking a Look at the head first five rows in property dataframe

item properties 1 df.head()

timestamp itemid property value
0 1435460400000 460429 categoryid 1338
1 1441508400000 206733 583 1116712 960601 n277.200
2 1439089200000 395014 400 n552.000 639502 n720.000 424565
3 1431226800000 59481 790 n15360.000
4 1431831600000 156781 917 828513

item properties 2 df.head()

timestamp itemid property value
0 1433041200000 133478 561 769062
1 1439654000000 132256 976 n26.400 1135780
2 1435460400000 420307 921 1149317 1257525
3 1431831600000 403324 97 1204143
4 1435460400000 230701 521 769062

Figure 6: Items_Property

As part of the data preprocessing, we have to convert the epoch time to a readable
format as shown in figure [7]

Converting the UNIX/ Epoch time to a readabale format

unix time = int("1433228881")
= datetime.datetime.fromtimestamp{unix time)
readable time.strftime("¥y-%m-%d BH:EM:%5")

readable time

'2@15-86-82 85:53:21°

Figure 7: Converting the Unix

3.1 Exploaratory Data Analysis

After retrieving the data from the source, exploratory data analysis is done to identify
the relationships between the variables. Figure 8 below displays a pie chart of the target
variable in the dataset. There are three classes, View, Add to Cart and Transaction.
From the figure, 96 percent of the customers viewed the product, 2.5 percent added the
product to cart and finally, 0.8 percent purchased the product.

Figure 9 shows a bar chart of the most viewed items. .

view

transaction
‘ addtocart

Figure 8: Target Variable

<AxesSubplot:»

3500

3000 4

2500 1

2000 1

1500 A

1000 A

500 1

187946 461666 5411 370653 219512

Figure 9: Top 5 Most VIEWED items

<AxesSubplot:»>

300 4

250 4

T T T T T
461686 312728 409804 320130 29196

Figure 10: Top 5 items that were added to cart

(AxesSubplot:>

0- T T T
461686 119736 213834 7943 312728

Figure 11: Top 5 Items with most TRANSACTION

4 Implementation

4.1 Model Building

A description of the models that were used in the research can be found in this section
of the report. The codes for the models are shown here, along with evaluations of the
results of each model. The models used in this research include

e Random Forest

e K-Nearest Neighbour

e Logistic Regression

e Support Vector Machine

In order to improve the performance of the K-Nearest Neighbour, hyperparameter tuning
was done after evaluating the models. The dataset was split into 70 for training and 30
for test. The plot below clearly indicates that the higher the view count and the higher
the chances of a visitor buying something.

items_viewed
=] =]
=1 =
s =

5]
2
53

i
e
55

=

8
2

purchased
e 0
e 1

wiew_count
~
=]
e
5]
%
'ti,:
oy,

o

items_viewed
=] <]
=1 1
s =

=
g

1:.:)

=

0 2000 4000 0 2000 4000 600 O 200 400
items_viewed view_count purchase_count

Figure 12: Plot showing the view count and the chances of purchase

4.2 Logistic Regression
SKLearn.linear.model LogisticRegression was used to train the logistic model.

X = combine_df.drop([purchased’, ‘visitorid’', ‘purchase_count'], axis = "columns®)

y = combine_df.purchased
X train, X test, y train, y test = train test split(X, y, random_state = 42, train_size = @.7)
logreg = LogisticRegression()

logreg.fit(X train, y train)

LogisticRegression()

Let's now use the model to predict the test features
y_pred_class = logreg.predict(X_test)

print("accuracy = {:7.4f}'.format(metrics.accuracy score(y_test, y pred_class)))

accuracy = ©.8@11

Figure 13: Logistic Regression Model

Plot the ROC curve

plt.figure()

lw = 2

plt.plot(fpr, tpr, color="darkorange', lw = 1w, label = 'ROC curve (area = %8.2f)" ¥ roc_auc)
plt.plot([e, 1], [®, 1], color = "navy’, 1w = lw, linestyle = '--')

plt.xlim([©.0, 1.8])
plt.ylim([6.08, 1.85])
plt.xlabel(’'False Positive Rate')
plt.ylabel(True Positive Rate')
plt.title('Receiver operating characteristic’)
plt.legend(loc = "lower right™)
plt.show()
Receiver operating characteristic
10 A —
— ,“’

0.8 o 5a”
5 - -
} 7
u 064 -
= ' ’l’
&£ P
w041/ ’/’
= v

I”
02 -
| ’,f
-~ - ROC curve {area = 0.80)
-
0.0 T T T T
00 02 04 06 08 10

False Positive Rate

Figure 14: ROC Curve for Logistic Regression

4.3 K-nearest Neigbour

The number of neighbours is tuned for this experiment with the highest number of neigh-
bours yielding the best accuracy.

We can observe above that we get maximum testing accuracy for k=6.
#50 Lets create a KNeighborsClassifier with number of neighbors as 6.

knn.fit(X_train,y_train)
KNeighborsClassifier(algorithm="auto’, leaf_size-38, metric="minkowski',
metric_params=None, n_jobs=1, n_neighbors=6, p=2,
weights="uniform")
KNeighborsClassifier(n_jobs=1, n_neighbors=6)
#Get accuracy. Note: In case of classification algorithms score method represents accuracy.
knn.score(X_test,y_test)

0.8128a4726895768

Figure 15: KNN Result

4.4 Support Vector Machine

The first experiment is done with default parameters and the second is done tuning the
C parameter to 0.1 and the kernel being linear. This was applied to see if a different
result will be given.

Running SVIM with default hyperparameter

from sklearn.svm import SVC

from sklearn import metrics

sve=SVC() #Default hyperparameters

svc.fit(X train,y train)
y_pred=svc.predict(X test)

print{ "Accuracy Score:')
print{metrics.accuracy_score(y_test,y prad))

Accuracy Score:
8.38197268588773386

Figure 16: default hyperparameter

default Linear Kernel

|: sve=5VC(kernel="linear")
svc.fit(X _train,y_train)
y_pred=svc.predict(X test)
print("Accuracy Score:')
print{metrics.accuracy_score(y test,y pred))

Accuracy Score:
8.8072837632776935

Figure 17: Default Kernel

SVM by taking hyperparameter C=0.1 and kernel as linear

from sklearn.svm import SVC

svc= SVC(kernel="linesar',C=0.1)

svc. fit(X_train,y_train)

y_predict=svc.predict(X_test)

accuracy_score= metrics.accuracy_score(y_test,y predict)
print(accuracy_score)

8.8185715738985412

Figure 18: Tuning the C parameter to 0.1

With K-fold cross validation(where K=10)

from sklearn.model selection import cross_wval score
svc=SVC(kernel="linear',C=0.1)

scores = cross_wval_score(svc, X, y, cv=18, scoring="accuracy')
print{scores)

[©.88576631 @.80854831 B.88374385 8.88273141 ©.79554997 B.79869651
2.8113383 @.20146687 ©.88576631 B.80925879]

Figure 19: K Fold

4.5 Random Forest

Random forest classifer was imported with its criterion assigned as entropy, random state
to zero.To check accuracy of the random forest model,confusion matrix is used and ob-
tained an accuracy of 82%

from sklearn.ensemble import RandomForestClassifier

classifier = RandomForestClassifier(n estimators = 18, criterion = 'entropy’, random state = @)
classifier.fit(X train, y train)

#predicting the Test set results

y pred = classifier.predict(X test)

from sklearn.metrics import confusion matrix, accuracy score
cm = confusion matrix(y test, y pred)

print(cm)
accuracy score(y test, y pred)

[[7868 574]
[1535 1893]]

6.8222853616590794

Figure 20: Random Model

	Introduction
	System Configuration
	Hardware
	Software

	Data Preparation
	Exploaratory Data Analysis

	Implementation
	Model Building
	Logistic Regression
	K-nearest Neigbour
	Support Vector Machine
	Random Forest

