

Configuration Manual

MSc Research Project MSc in Data Analytics

Ifeoma Oduntan Student ID: X18191274

School of Computing National College of Ireland

Supervisor: Jorge Basilio

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:	Ifeoma Oduntan		
Student ID:	X18191274		
Programme:	MSc in Data Analytics	Year:	2022
Module:	Research Project		
Lecturer:	Jorge Basilio		
Date:	15/08/2022		
Project Title:	Analysis of Blood Image in Sickle Cell Class Learning Algorithm	ification	Using Deep

Word Count: 1 Page Count: 48

I hereby certify that the information contained in this (my submission) is information pertaining to research I conducted for this project. All information other than my own contribution will be fully referenced and listed in the relevant bibliography section at the rear of the project.

<u>ALL</u> internet material must be referenced in the bibliography section. Students are required to use the Referencing Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature:

Date:

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple copies)	
Attach a Moodle submission receipt of the online project submission, to each project (including multiple copies).	
You must ensure that you retain a HARD COPY of the project, both for your own reference and in case a project is lost or mislaid. It is not sufficient to keep a copy on computer.	

Assignments that are submitted to the Programme Coordinator Office must be placed into the assignment box located outside the office.

Office Use Only	
Signature:	
Date:	
Penalty Applied (if applicable):	

Configuration Manual

Ifeoma Oduntan Student ID: X18191274

1 Introduction

The configuration manual provides information that supports the implementation of this research project. This includes comprehensive information on software tools used on step by step 'Classification of Sickle Cell Disease' using Generative Adversarial Networks (GAN) to synthesize additional images and implementation of seven deep learning models. From equipment and environment set up to downloading the dataset, mounting the drive, installing, and importing the required libraries to reading the data into Google Colaboratory (Google Colab). It shows the execution of the project to arrive at the produced results.

It is divided into sections as follows: Section one shows the setting up of the environment, while section two shows the loading of the required libraries. Section three is the overview of the dataset, while section four shows the loading of the data into Google Colab from Google drive where the data is stored and exploratory data analysis, augmentation and synthesizing of additional images using GAN (Generative Adversarial Network) Then section five shows the implementation of the different models.

2 Hardware Details

A Python 3.8 environment programming language in Google Colab, using Intel(R) Core (TM) i7-1065G7 CPU @ 1.30GHz 1.50 GHz windows laptop The hardware specifications used in this research are listed below.in subsection 2.1

2.1 Device Specification

- Device name LAPTOP-F6DVNM05
- Processor Intel(R) Core (TM) i7-1065G7 CPU @ 1.30GHz 1.50 GHz
- Installed RAM16.0 GB (15.8 GB usable)
- Device ID B4FC212C-5AB0-4E4C-BCF7-F22FC2E85CFD
- Product ID
- System type 64-bit operating system, x64-based processor
- Pen and touch Touch support with 10 touch points.

2.2 Windows Specifications

- EditionWindows 11 Home
- Version 21H2
- ✤ Installed on 19/05/2022
- ✤ OS build 22000.795
- Experience Windows Feature Experience Pack 1000.22000.795.0

2.3 Software Specification

- Google Colaboratory Pro Upgrading from the standard Colab to Colab Pro by purchasing a monthly subscription from Google Colab to increase the memory size if not the system continues to crash.
- Jupyter Notebook

2.4 Programming Requisites

- Python (Version 3.8)
- TensorFlow (Version 2 8 2)
- Google Colab has most of the requirements preinstalled, but some uninstalled required libraries can be installed using! pip install (required library name)

3 Required Libraries

The following required libraries used in the implementation of this research project are listed below:


```
34 from tensorflow.keras.models import Sequential, Model
35 from tensorflow.keras.layers import Input, Lambda
36 from tensorflow.keras.applications import DenseNet121
37 from tensorflow.keras.applications.inception_v3 import InceptionV3
38 from tensorflow.keras.applications.vgg16 import VGG16
39 from tensorflow.keras.applications.vgg19 import VGG19
40 from tensorflow.keras.applications.resnet50 import ResNet50
41 from tensorflow.keras.applications.mobilenet import MobileNet
42 from tensorflow.keras.applications.inception_v3 import preprocess_input
43 from tensorflow.keras.layers import BatchNormalization
44 from tensorflow.keras.applications.densenet import preprocess_input
45 from tensorflow.keras.preprocessing import image
46 from tensorflow.keras.preprocessing.image import ImageDataGenerator, img_to_array, load_img
47 from tensorflow.keras.models import Model
48 from tensorflow.keras.optimizers import Adam
49 from tensorflow.keras.callbacks import ModelCheckpoint, ReduceLROnPlateau, EarlyStopping, Callback
51 import warnings
52 warnings.filterwarnings("ignore")
```

4 Dataset

The dataset used in this research project is the erythrocytesIDB1. This dataset is a privately dataset and only released on request from the following website owned http://erythrocytesidb.uib.es/ by emailing a filled form and agreeing to the terms and conditions of the data owner. The dataset was first downloaded from the provided link by the owner through email from the cloud and saved to google drive. The dataset has a total 196 full size images and 626 individual images in 3 classes in jpg format. The notebook is compatible as files and folders can be uploaded to the Colab using the file drop down menu and select upload and then select the file or folder upload option which opens a browser to select where you want to upload the files from. If the data is saved in google drive, then the drive should be mounted in google Colab to load the data.

5 Loading The Data

The data was unzipped using zip extractor and saved in the google drive. The files and folders can be uploaded to the Colab using the file drop down menu and select upload and then select the file or folder upload option which opens a browser to select where you want to upload the files from. If the data is saved in google drive, then the drive should be mounted in google Colab to load the data as shown below. Also go to runtime on the ribbon bar and change runtime from None to GPU, and below it, change the Standard to High RAM.

The image folder was first read into Google Colab by first mounting the google drive on the Colab environment. The first time you use the Colab to mount the drive, you will be directed to a URL in a browser to get the authorization code which is copied and pasted in Colab before the drive is mounted.

Enter your authorization code: Mounted at /content/gdrive 1 from google.colab import drive 2 drive.mount('/content/gdrive') 3 Mounted at /content/gdrive

The version of the TensorFlow that was used for running the code is shown below.

6 Exploratory Data Analysis

The first thing is to load all the necessary libraries for exploring the dataset and visualizing some of the images in each class. The dataset is processed, and the models were used in classifying the images first.


```
1 # Checking how many samples are present in each category
2 print("Total number of images in the dataset: ", len(df))
3
4 label_count = df['Labels'].value_counts()
5 print(label_count)
Total number of images in the dataset: 626
other 213
elongated 211
circular 202
Name: Labels, dtype: int64
```


Bar plot of the classes

Sample image of each class.

7 Traditional Data Augmentation

The required libraries were loaded and the **erythrocytes** dataset folder which comprised of the original images were used for generating more images through traditional data augmentation. Each image was augmented 7 times using rotation, vertical and horizontal flips, zoom range, shear range, width, and height shift. The generated images were saved in a folder named **erythrocytes2** which already contains the original images. A copy of the original folder named **erythrocytes3** was made. The reason behind making a copy of this folder is because 2000 GAN generated images of each class are added to the **erythrocytes3** folder.

1 # Constructing an instance of the ImageDataGenerator class	
2 # Pass the augmentation parameters through the constructor.	
3	
4 datagen = ImageDataGenerator(
5 rotation_range=30, #Random rotation between 0 and 45	
6 width_shift_range=0.2, #% shift	
7 height_shift_range=0.2,	
8 shear_range=0.2,	
9 zoom_range=0.2,	
10 vertical_flip=True,	
11 horizontal_flip=True,	
12 fill_mode='constant', cval=125) #Also try nearest, constant, reflect,	wrap

```
1 # Generating and saving augmented samples
2 # using the above defined parameters with datagen.flow which generates batches of randomly circular augmented images
3
4 i = 0
5 for batch in datagen.flow(x, batch_size=202,
6 save_to_dir='/content/drive/MyDrive/erythrocytes2/circular/',
7 save_prefix='c',
8 save_format='jpg'):
9 i += 1
10 if i > 6:
11 break # otherwise the generator would loop indefinitely
13
```

Generating the elongated class

1 # Generating and saving augmented samples	
2 # using the above defined parameters with datagen . flow generates batches of randomly	y elongated augmented images
3	
4 i = 0	
5 for batch in datagen.flow(x, batch_size=211,	
6 save_to_dir='/content/drive/MyDrive/erythrocytes2/elongated	
7 save_prefix='e',	
<pre>8 save_format='jpg'):</pre>	
9 i += 1	
10 if i > 6:	
11 break # otherwise the generator would loop indefinitely	

The augmented other class

```
1 # Generating and saving augmented samples
2 # using the above defined parameters with datagen . flow generates batches of randomly other augmented images
3
4 i = 0
5 for batch in datagen.flow(x, batch_size=213,
6 save_to_dir='/content/drive/MyDrive/erythrocytes2/other/',
7 save_prefix='o',
8 save_format='jpg'):
9 i += 1
10 if i > 6:
11 break # otherwise the generator would loop indefinitely
```

8 Implementation of Generative Adversarial Network (GAN) for Image Synthesis.

The dataset used for reading the images is from the **erythrocytes2** folder (which consists of the original images and traditional augmented images). 2000 generated images of each class are saved in **erythrocytes3** folder.

Each class takes between 20 to 30 minutes to train and generate the images.

Importing the required libraries

```
2 # dcgan on erythrocytes dataset
 3 from numpy import expand dims
 4 from numpy import zeros
 5 from numpy import ones
6 from numpy import vstack
   import os
8 import cv2
9 from tqdm import tqdm
10 import random
11 import pickle
12 from numpy.random import randn
13 from numpy.random import randint
14 import matplotlib.pyplot as plt
15 from keras.layers import Input
16 from sklearn.model_selection import train_test_split
17 from tensorflow.keras.optimizers import Adam
18 from tensorflow.keras.models import Sequential
19 from tensorflow.keras.layers import Dense
20 from tensorflow.keras.layers import Reshape
21 from tensorflow.keras.layers import Flatten
22 from tensorflow.keras.layers import Conv2D
23 from tensorflow.keras.layers import Conv2DTranspose
24 from tensorflow.keras.layers import LeakyReLU
25 from tensorflow.keras.layers import Dropout
26 from matplotlib import pyplot
```

GENERATING THE CIRCULAR CLASS IMAGES

```
2 def define_discriminator(in_shape=(32,32,3)):
   model = Sequential()
   model.add(Conv2D(64, (3,3), padding='same', input_shape=in_shape))
model.add(LeakyReLU(alpha=0.2))
   model.add(Conv2D(128, (3,3), strides=(2,2), padding='same'))
   model.add(LeakyReLU(alpha=0.2))
    # d
   model.add(Conv2D(128, (3,3), strides=(2,2), padding='same'))
   model.add(LeakyReLU(alpha=0.2))
   model.add(Conv2D(256, (3,3), strides=(2,2), padding='same'))
14
    model.add(LeakyReLU(alpha=0.2))
    model.add(Flatten())
   model.add(Dropout(0.4))
    model.add(Dense(1, activation='sigmoid'))
   opt = Adam(learning_rate=0.0002, beta_1=0.5)
   model.compile(loss='binary_crossentropy', optimizer=opt, metrics=['accuracy'])
    return model
```



```
1 # evaluate the discriminator, plot generated images, save generator model
2 def summarize_performance(epoch, g_model, d_model, dataset, latent_dim, n_samples=1200):
3 # prepare real samples
4 X_real, y_real = generate_real_samples(dataset, n_samples)
5 # evaluate discriminator on real examples
6 _, acc_real = d_model.evaluate(X_real, y_real, verbose=0)
7 # prepare fake examples
8 x_fake, y_fake = generate_fake_samples(g_model, latent_dim, n_samples)
9 # evaluate discriminator on fake examples
10 _, acc_fake = d_model.evaluate(x_fake, y_fake, verbose=0)
11 # summarize discriminator performance
12 print('>Accuracy real: %.0f%%, fake: %.0f%%' % (acc_real*100, acc_fake*100))
13 # save plot
14 save_plot(x_fake, epoch)
15 # save the generator model tile file
16 filename = 'generator_model_%03d.h5' % (epoch+1)
17 g_model.save(filename)
```

	# train the generator and discriminator
	def train(g_model, d_model, gan_model, dataset, latent_dim, n_epochs=500, n_batch=128):
	<pre>bat_per_epo = int(dataset.shape[0] / n_batch)</pre>
	half_batch = int(n_batch / 2)
	# manually enumerate epochs
	for i in range(n_epochs):
	# enumerate batches over the training set
	for j in range(bat_per_epo):
	# get randomly selected 'real' samples
10	X_real, y_real = generate_real_samples(dataset, half_batch)
11	# update discriminator model weights
12	<pre>d_loss1, _ = d_model.train_on_batch(X_real, y_real)</pre>
13	# generate 'fake' examples
14	X_fake, y_fake = generate_fake_samples(g_model, latent_dim, half_batch)
15	# update discriminator model weights
16	<pre>d_loss2, _ = d_model.train_on_batch(X_fake, y_fake)</pre>
17	# prepare points in latent space as input for the generator
18	X_gan = generate_latent_points(latent_dim, n_batch)
19	# create inverted labels for the fake samples
20	y_gan = ones((n_batch, 1))
21	# update the generator via the discriminator's error
22	g_loss = gan_model.train_on_batch(X_gan, y_gan)
23	# summarize loss on this batch
24	print('>%d, %d/%d, d1=%.3f, d2=%.3f g=%.3f' %
25	(i+1, j+1, bat_per_epo, d_loss1, d_loss2, g_loss))
26	# evaluate the model performance, sometimes
27	if (i+1) % 10 == 0:
28	summarize_performance(i, g_model, d_model, dataset, latent_dim)

1 # size of the latent space 2 latent_dim = 100 3 # create the discriminator 4 d_model = define_discriminator() 5 # create the generator(latent_dim) 7 # create the generator(latent_dim) 7 # create the gan 8 gan_model = define_gan(g_model, d_model) 9 # load image data 10 dataset = load_real_samples() 11 # train model 12 train(g_model, d_model, gan_model, dataset, latent_dim) >1, 1/10, d1=0.694, d2=0.696 g=0.692 >1, 2/10, d1=0.631, d2=0.697 g=0.690 >1, 3/10, d1=0.572, d2=0.702 g=0.685 >1, 4/10, d1=0.492, d2=0.716 g=0.673 >1, 5/10, d1=0.264, d2=0.915 g=0.575 >1, 6/10, d1=0.117, d2=0.934 g=0.591 >1, 9/10, d1=0.117, d2=0.631 g=0.656 >1, 10/10, d1=0.076, d2=0.634 g=0.851 >2, 2/10, d1=0.076, d2=0.573 g=0.960 >2, 3/10, d1=0.035, d2=0.573 g=0.961

```
1 # example of loading the generator model and generating images
2 from keras.models import load_model
3 from numpy.random import randn
4 from matplotlib import pyplot
5
6 # generate points in latent space as input for the generator
7 def generate_latent_points(latent_dim, n_samples):
8 # generate points in the latent space
9 x_input = randn(latent_dim * n_samples)
10 # reshape into a batch of inputs for the network
11 x_input = x_input.reshape(n_samples, latent_dim)
12 return x_input
13
14 # plot the generated images
15 def create_plot(examples, n):
16 # plot images
17 for i in range(n * n):
18 # define subplot
19 pyplot.subplot(n, n, 1 + i)
20 # turn off axis
21 pyplot.akis('off')
22 # plot raw pixel data
33 pyplot.show()
25
26 # load model
27 model = load_model('generator_model_500.h5')
28 # generate images
31 X = model.predict(latent_points)
32 # scale from [-1,1] to [0,1]
33 X = (X + 1) / 2.0
4 # plot the result
35 create_plot(X, 10)
```

```
2 from keras.models import load_model
 3 from numpy.random import randn
4 from matplotlib import pyplot
7 def generate_latent_points(latent_dim, n_samples):
9 x_input = randn(latent_dim * n_samples)
11 x_input = x_input.reshape(n_samples, latent_dim)
    return x_input
15 def create_plot(examples, n, temp):
    for i in range(n * n):
    pyplot.subplot(n, n, 1 + i)
     pyplot.axis('off')
     pyplot.imshow(examples[temp, :, :,:])
      filename2 = '/content/drive/MyDrive/erythrocytes3/circular/c'+str(temp)+'.jpg'
     pyplot.savefig(filename2)
26 pyplot.show()
28 model = load_model('generator_model_500.h5')
```


2000 images were generated for the 'circular' class and saved in the 'circular' folder within the **erythrocytes3** and another 2000 images were saved in **GanImages1** folder for evaluation of the GAN generated images.

GENERATING THE ELONGATED CLASS IMAGES
<pre>[] 1 # define the standalone discriminator model 2 def define_discriminator(in_shape=(32,32,3)): 3 model = Sequential() 4 # normal 5 model.add(Conv2D(64, (3.3), padding='same', input shape=in shape))</pre>
6 model.add(LeakyReLU(alpha=0.2)) 7 # downsample 8 model.add(Conv2D(128, (3.3), strides=(2.2), padding='same'))
9 model.add(LeakyReLU(alpha=0.2)) 10 # downsample 11 model.add(Conv2D(128 (3.3) strides=(2.2) padding='same'))
<pre>11 model.add(LeakyReLU(alpha=0.2)) 13 # downsample 14 model.add(Conv2D(2E6 (2.2) strides=(2.2) padding='same'))</pre>
<pre>14 model.add(Conv2D(256, (5,5), Strides-(2,2), padding- Same)) 15 model.add(LeakyReLU(alpha=0.2)) 16 # classifier 17 model.add(Clatter())</pre>
<pre>17 model.add(Pratten()) 18 model.add(Dropout(0.4)) 19 model.add(Dense(1, activation='sigmoid')) 20 # acreate activation</pre>
<pre>20 # compile model 21 opt = Adam(learning_rate=0.0002, beta_1=0.5) 22 model.compile(loss='binary_crossentropy', optimizer=opt, metrics=['accuracy']) 23 protumn_model</pre>
<pre>1 #loading the generator model to generate some images and save in a folder 2 from keras.models import load_model 3 from numpy.random import randn 4 from matplotlib import pyplot 5</pre>
<pre>6 # generate points in latent space as input for the generator 7 def generate_latent_points(latent_dim, n_samples): 8 # generate points in the latent space 9 x input = randn(latent dim * n samples)</pre>
<pre>10 # reshape into a batch of inputs for the network 11 x_input = x_input.reshape(n_samples, latent_dim) 12 return x_input 13 return x_input 14 return x_input 15 return x_input 15 return x_input 15 return x_input 16 return x_input 17 return x_input 18 return x_input 19 return x_input 19 return x_input 19 return x_input 10 return x</pre>

```
# plot the generated imag
5 def create_plot(examples, n, temp):
   for i in range(n * n):
      pyplot.subplot(n, n, 1 + i)
# turn off axis
     pyplot.axis('off')
      # plot raw pixel data
pyplot.imshow(examples[temp, :, :,:])
filename2 = '/content/drive/MyDrive/erythrocytes3/circular/c'+str(temp)+'.jpg'
      pyplot.savefig(filename2)
26 pyplot.show()
27 # load model
26
28 model = load_model('generator_model_500.h5')
9 # generate images
0 latent_points = generate_latent_points(100, 2000)
2 X = model.predict(latent_points)
33 # scale from [-1,1] to [0,1]
34 X = (X + 1) / 2.0
85 # plot the result
6 for i in range(2000):
7 create_plot(X,1, i)
```

```
1 # size of the latent space
2 latent_dim = 100
3 # create the discriminator
4 d_model = define_discriminator()
5 # create the generator
6 g_model = define_generator(latent_dim)
7 # create the gan
8 gan_model = define_gan(g_model, d_model)
9 # load image data
10 dataset = load_real_samples()
11 # train model
12 train(g_model, d_model, gan_model, dataset, latent_dim)
>1, 1/10, d1=0.699, d2=0.696 g=0.691
>1, 2/10, d1=0.622, d2=0.698 g=0.689
>1, 3/10, d1=0.456, d2=0.724 g=0.665
>1, 5/10, d1=0.456, d2=0.724 g=0.665
>1, 5/10, d1=0.141, d2=0.763 g=0.612
>1, 7/10, d1=0.119, d2=0.888 g=0.612
>1, 8/10, d1=0.119, d2=0.888 g=0.688
>1, 9/10, d1=0.100, d2=0.858 g=0.685
>1, 10/10, d1=0.084, d2=0.822 g=0.757
>2, 1/10, d1=0.178, d2=0.693 g=0.965
```

```
2 from keras.models import load_model
 3 from numpy.random import randn
 4 from matplotlib import pyplot
 7 def generate_latent_points(latent_dim, n_samples):
    x_input = randn(latent_dim * n_samples)
   x_input = x_input.reshape(n_samples, latent_dim)
    return x_input
15 def create_plot(examples, n, temp):
    for i in range(n * n):
     pyplot.subplot(n, n, 1 + i)
     pyplot.axis('off')
      pyplot.imshow(examples[temp, :, :,:])
      filename2 = '/content/drive/MyDrive/erythrocytes3/elongated/e'+str(temp)+'.jpg
      pyplot.savefig(filename2)
    pyplot.show()
27 # load model
28 model = load_model('generator_model_500.h5')
30 latent_points = generate_latent_points(100, 2000)
32 X = model.predict(latent_points)
34 X = (X + 1) / 2.0
35 # plot the result
36 for i in range(2000):
37 create_plot(X,1, i)
```


GENERATING THE OTHER CLASS IMAGES

	<pre>define the standalone discriminator model ef define_discriminator(in_shape=(32,32,3)): model = Sequential() # normal</pre>
	<pre>model.add(Conv2D(64, (3,3), padding='same', input_shape=in_shape)) model.add(LeakyReLU(alpha=0.2)) # downsample</pre>
8 9	<pre>model.add(Conv2D(128, (3,3), strides=(2,2), padding='same')) model.add(LeakyReLU(alpha=0.2))</pre>
10 11 12	<pre># downsample model.add(Conv2D(128, (3,3), strides=(2,2), padding='same')) model.add(LeakyReLU(alpha=0.2))</pre>
13 14 15	<pre># downsample model.add(Conv2D(256, (3,3), strides=(2,2), padding='same')) model.add(LeakyReLU(alpha=0.2))</pre>
16 17 18	<pre># classifier model.add(Flatten()) model.add(Dropout(0.4))</pre>
19 20 21	<pre>model.add(Dense(1, activation='sigmoid')) # compile model opt = Adam(learning_rate=0.0002, beta_1=0.5)</pre>
22 23	<pre>model.compile(loss='binary_crossentropy', optimizer-opt, metrics-['accuracy']) return model</pre>

```
1 # size of the latent space
2 latent_dim = 100
3 # create the discriminator
4 d_model = define_discriminator()
5 # create the generator
6 g_model = define_generator(latent_dim)
7 # create the gan
8 gan_model = define_gan(g_model, d_model)
9 # load image data
10 dataset = load_real_samples()
11 # train model
12 train(g_model, d_model, gan_model, dataset, latent_dim)
-1, 1/10, d1=0.711, d2=0.696 g=0.692
-1, 2/10, d1=0.645, d2=0.698 g=0.689
-1, 3/10, d1=0.588, d2=0.703 g=0.684
-1, 4/10, d1=0.495, d2=0.718 g=0.671
-1, 5/10, d1=0.391, d2=0.753 g=0.642
-1, 6/10, d1=0.290, d2=0.829 g=0.599
```

```
2 from keras.models import load_model
3 from numpy.random import randn
4 from matplotlib import pyplot
 7 def generate_latent_points(latent_dim, n_samples):
    x_input = randn(latent_dim * n_samples)
11 x_input = x_input.reshape(n_samples, latent_dim)
12
    return x_input
15 def create_plot(examples, n):
   # plot images
    for i in range(n * n):
      pyplot.subplot(n, n, 1 + i)
      pyplot.axis('off')
      # plot raw pixel data
pyplot.imshow(examples[i, :, :,:])
    pyplot.show()
27 model = load_model('generator_model_500.h5')
29 latent_points = generate_latent_points(100, 100)
30 # generate images
31 X = model.predict(latent_points)
33 X = (X + 1) / 2.0
35 create_plot(X, 10)
```


8.1 Evaluating The GAN Generated Images and the Augmented Images

#2025 #except OSError as e: # print("OSErrroBad img most likely", e, os.path.join(path,img)) 22 create_training_data() 24 print(len(training_data)) | 1616/1616 [00:03<00:00, 427.59it/s] 100% 1688/1688 [00:03<00:00, 424.66it/s] 100% 100% | 1697/1697 [00:03<00:00, 472.15it/s]5001

2 def load_real_samples(): 3 # the datase 4 dataset = (trainX, _), (_, _) 6 X = trainX.astype('float32') 7 # scale from [0,255] to [-1,1] 8 X = (X - 127.5) / 127.5 3 dataset = (trainX, _), (_, _) 5 shuffle(trainX) [[50, 55, 157], [184, 174, 198], [226, 188, 199], ..., [27, 27, 27], [27, 27, 27], [27, 27, 27]]], [[[239, 223, 233], [220, 204, 215], [218, 199, 218], ..., [54, 54, 54], [54, 54, 54], [54, 54, 54], 1 # calculating the inception score for evaluating the Augmented images/Original Images used in generating GAN images
2 from mumpy import ones
4 from numpy import expand_dims
5 from numpy import log
6 from numpy import std
8 from numpy import std
8 from numpy.random import shuffle
10 from keras.applications.inception_v3 import preprocess_input
12 from skimage.transform import resize
13 from numpy import asarray
4 14
15 # scale an array of images to a new size
16 def scale_images(trainX, new_shape):
17 images_list = list()
18 for image in trainX:
19 # resize with nearest neighbor interpolation
20 new_image = resize(image, new_shape, 0)
21 # trained to the state of the s # store
images_list.append(new_image)
return asarray(images_list) 23 Freturn asaray(images_int)
24
25 # assumes images have any shape and pixels in [0,255]
26 def calculate_inception_score(images, n_split=10, eps=1E-16):
27 # load inception v3 model
28 model = InceptionV3()
29 # enumerate splits of images/predictions
30 scores = list()
31 n_part = floor(images.shape[0] / n_split)
32 for i in range(n_split):
33 # retrieve images
34 ix_start, ix_end = i * n_part, (i+1) * n_part
35 subset = images[ix_start:ix_end]

```
# convert from uint8 to float32
subset = subset.astype('float32')
      # scale images to the
      subset = scale_images(subset, (299,299,3))
      subset = preprocess input(subset)
 43
44
      p_yx = model.predict(subset)
      kl_d = p_yx * (log(p_yx + eps) - log(p_y + eps))
      sum_kl_d = kl_d.sum(axis=1)
      avg_kl_d = mean(sum_kl_d)
            the lo
      is_score = exp(avg_kl_d)
      scores.append(is_score)
 50 # average across images
57 is_avg, is_std = mean(scores), std(scores)
 58 return is_avg, is_std
 60 dataset = (trainX, _), (_, _)
 61 # shuffle the im
 62 shuffle(trainX)
 63 print('loaded', trainX.shape)
 65 is_avg, is_std = calculate_inception_score(trainX)
1 # loading the GAN generated Images for calculating the Inception Score (IS)
2 import numpy as np
     3 import matplotlib.pyplot as plt
     6 from tqdm import tqdm
     8 DATADIR = "/content/drive/MyDrive/GanImages1/"
    10 CATEGORIES = [ "circular", "elongated", "other" ]
    12 for category in CATEGORIES: # elongated, circular and other
           path = os.path.join(DATADIR,category) # create path to circular, elongated pr other
            for img in os.listdir(path): # iterate over each image for circular, elongated or other
                img_array = cv2.imread(os.path.join(path,img))
               img_array = cv2.cvtColor(img_array, cv2.COLOR_BGR2RGB) # convert bgr to rgb
img_array = cv2.resize(img_array, (32,32))
               plt.imshow(img_array) # graph it
                plt.show() # display!
            break #...and one more!
      0
      5
     10
     15
     20
     25
     30
```



```
# convert from uint8 to float32
        subset = subset.astype('float32')
       subset = scale_images(subset, (299,299,3))
        subset = preprocess_input(subset)
       p_yx = model.predict(subset)
44
        p_y = expand_dims(p_yx.mean(axis=0), 0)
       # calculate KL divergence using log probabilities
kl_d = p_yx * (log(p_yx + eps)) - log(p_y + eps))
        # sum over classes
sum_kl_d = kl_d.sum(axis=1)
        avg_kl_d = mean(sum_kl_d)
# undo the log
       is_score = exp(avg_kl_d)
        scores.append(is_score)
     # average across images
is_avg, is_std = mean(scores), std(scores)
     return is_avg, is_std
60 dataset = (trainX, _,), (,, _,)
62 shuffle(trainX)
63 print('loaded', trainX.shape)
65 is_avg, is_std = calculate_inception_score(trainX)
66 print('score', is_avg, is_std)
loaded (4800, 32, 32, 3)
score 1.8279059 0.03621714
```

9 Implementing The Classification Models

The six deep learning models were used in the modelling of each of the three image datasets (**erythrocytes, erythrocytes2 and erythrocytes3**). The images were processed by resizing to the input shape of each model and then converted to numpy array and normalized to between 0 and 1 for all the models. Each model was fine-tuned based on the specification design, and was implemented using Keras API function, TensorFlow and Python

1 from google.colab import drive 2 drive.mount(' <u>/content/gdrive</u> ') 3	
Mounted at /content/gdrive	
<pre>1 ## Import the required libraries 2 from numpy.random import seed 3 seed(42) 4 import tensorflow 5 tensorflow.random.set_seed(42) 6 seed = 42 7 import numpy as np 8 import pandas as pd 9 import matplotlib.pyplot as plt 10 import cv2 11 from tqdm import tqdm 12 from PIL import Image 13 from sklearn.utils import shuffle</pre>	
<pre>14 import os 15 import glob 16 import keras 17 import random 18 import math 19 import seaborn as sns 20 import sys 21 import datetime 22 import datetime 23 import matplotlib.cm as cm 24 from sklearn import metrics 25 from sklearn.preprocessing import LabelBinarizer 26 from sklearn.model_selection import train_test_split</pre>	

```
25 from sklearn.preprocessing import LabelBinarizer
26 from sklearn.model_selection import train_test_split
27 from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
28 import tensorflow as tf
29 from tensorflow.keras import layers
30 from tensorflow.keras import applications
31 from tensorflow.keras.metrics import categorical_crossentropy
32 from tensorflow.keras.layers import BatchNormalization
33 from tensorflow.keras.layers import Conv2D, Dense, MaxPooling2D, Dropout, Flatten,GlobalAveragePooling2D
34 from tensorflow.keras.models import Sequential, Model
35 from tensorflow.keras.layers import Input, Lambda
36 from tensorflow.keras.applications import DenseNet121
37 from tensorflow.keras.applications.inception_v3 import InceptionV3
38 from tensorflow.keras.applications.vgg16 import VGG16
39 from tensorflow.keras.applications.vgg19 import VGG19
40 from tensorflow.keras.applications.resnet50 import ResNet50
41 from tensorflow.keras.applications.mobilenet import MobileNet
42 from tensorflow.keras.applications.inception_v3 import preprocess_input
43 from tensorflow.keras.layers import BatchNormalization
44 from tensorflow.keras.applications.densenet import preprocess_input
45 from tensorflow.keras.preprocessing import image
46 from tensorflow.keras.preprocessing.image import ImageDataGenerator,img_to_array, load_img
47 from tensorflow.keras.models import Model
48 from tensorflow.keras.optimizers import Adam
49 from tensorflow.keras.callbacks import ModelCheckpoint, ReduceLROnPlateau, EarlyStopping, Callback
51 import warnings
52 warnings.filterwarnings("ignore")
 1 import tensorflow as tf
 2 print(tf.__version__)
2.8.2
```

9.1 Modelling The Original Images

Each model takes between 2 to 4 minutes to run

```
DENSENET121 MODEL
 1 model d=DenseNet121(weights='imagenet',include top=False, input shape=(224, 224, 3))
       3 x=model_d.output
       5 x= GlobalAveragePooling2D()(x)
       6 x= BatchNormalization()(x)
       7 x= Dropout(0.5)(x)
       8 x= Dense(1024,activation='relu')(x)
      9 x= Dense(512,activation='relu')(x)
      10 x= BatchNormalization()(x)
      11 x= Dropout(0.5)(x)
      13 preds=Dense(3,activation='softmax')(x) #FC-layer
     Downloading data from <a href="https://storage.googleapis.com/tensorflow/keras-applications/densenet/densenet121">https://storage.googleapis.com/tensorflow/keras-applications/densenet/densenet121</a>
     29089792/29084464 [------] - 0s 0us/step
29097984/29084464 [------] - 0s 0us/step
[ ] 1 model=Model(inputs=model_d.input,outputs=preds)
       2 model.summarv()
       conv5_block15_1_bn (BatchNorma (None, 7, 7, 128)
                                                                              ['conv5_block15_1_conv[0][0]']
       lization)
       conv5_block15_1_relu (Activati (None, 7, 7, 128) 0
                                                                              ['conv5_block15_1_bn[0][0]']
```

```
1 for layer in model.layers[:-8]:
       layer.trainable=False
 4 for layer in model.layers[-8:]:
        layer.trainable=True
 1 data=[]
 2 labels=[]
 3 random.seed(42)
 4 imagePaths = sorted(list(os.listdir("/content/drive/MyDrive/erythrocytes/")))
 5 random.shuffle(imagePaths)
 6 print(imagePaths)
 8 for img in imagePaths:
       path=sorted(list(os.listdir("/content/drive/MyDrive/erythrocytes/"+img)))
        for i in path:
           image = cv2.imread("/content/drive/MyDrive/erythrocytes/"+img+'/'+i)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
           image = cv2.resize(image, (224,224))
image = img_to_array(image)
           data.append(image)
            l = label = img
            labels.append(1)
['elongated', 'circular', 'other']
```

```
1 optimizer = Adam(learning_rate=0.0002)
 3 es = EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=5, restore_best_weights=True)
 5 #reducing learning rate on plateau
 2 model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy'])
 1 anne = ReduceLROnPlateau(monitor='val_accuracy', factor=0.5, patience=5, verbose=1, min_lr=1e-3)
 2 checkpoint = ModelCheckpoint('model.h5', verbose=1, save_best_only=True)
 4 datagen = ImageDataGenerator(zoom_range = 0.2, rotation_range=30, horizontal_flip=True, vertical_flip=True, shear_range=0.2,
 9 datagen.fit(xtrain)
11 history = model.fit_generator(datagen.flow(xtrain, ytrain, batch_size=128),
                   steps_per_epoch=xtrain.shape[0] //128,
                   epochs=20,
                   verbose=2,
                  callbacks=[anne, checkpoint],
                  validation_data=(xval, yval))
3/3 - 4s - loss: 0.7071 - accuracy: 0.7460 - val_loss: 0.6264 - val_accuracy: 0.8772 - lr: 2.0000e-04 - 4s/epoch - 1s/step
Epoch 6/20
Epoch 6: val_loss improved from 0.62642 to 0.57655, saving model to model.h5
3/3 - 4s - loss: 0.5350 - accuracy: 0.7989 - val_loss: 0.5765 - val_accuracy: 0.8947 - lr: 2.0000e-04 - 4s/epoch - 1s/step
```

```
Epoch 7/20
```

<pre>1 ypred = model.predict(xtest) 2 3 total = 0 4 accurate = 0 5 accurateindex = [] 6 wrongindex = [] 7 8 for i in range(len(ypred)): 9 if np.argmax(ypred[i]) == np.argmax(ytest[i]): 10 accurate += 1 11 accurateindex.append(i) 12 else: 13 wrongindex.append(i) 14 15 total += 1 16 17 print('Total-test-data;', total, '\taccurately-predicted-data:', accurate, '\t wrongly-predicted-data: ', total - accurate) 18 print('Accuracy:', round(accurate/total*100, 3), '%')</pre>
Total-test-data; 63 accurately-predicted-data: 54 wrongly-predicted-data: 9 Accuracy: 85.714 %
<pre>[] 1 InceptionV3_model = tf.keras.applications.InceptionV3(weights='imagenet', include_top=False, input_shape=(224, 224, 3))</pre>
Downloading data from <u>https://storage.googleapis.com/tensorflow/keras-applications/inception_v3/inception_v3_weights_tf_dim_ordering_tf_kernels_notop.h5</u> 87916544/87910968 [
<pre>[] 1 from tensorflow.keras.layers import Model 2 from tensorflow.keras.layers import Conv2D, Dense, MaxPooling2D, Dropout, Flatten,GlobalAveragePooling2D 3 from tensorflow.keras.models 4 5 # The last 15 layers fine tune 6 for layer.trainable = False 8 9 num_class = 3 10 # Base model without Fully connected Layers 11 base_model = InceptionV3(include_top=False, weights='imagenet', input_shape=(224,224,3)) 12 x=base_model.output 13 # Add some new Fully connected layers to 14 x=GlobalAveragePooling2D(x) 15 x=Dense(1024,activation='relu')(x) 16 x = Dropout(0.25)(x) 19 preds=Dense(num_class, activation='softmax')(x) #final layer with softmax activation 20 21 model=input,outputs=preds) 22 model.summary() Normalization</pre>
batch_normalization_187 (Batch (None, 5, 5, 384) 1152 ['conv2d_185[0][0]']
<pre>1 optimizer - Adam(learning_rate=0.0002) 2 #early stopping to monitor the validation loss and avoid overfitting 3 es - EarlyStopping(monitor-'val_loss', mode-'min', verbose=1, patience=10, restore_best_weights=True) 4 5 #reducing learning rate on plateau 6 #rlrop - ReduceLROnPlateau(monitor-'val_loss', mode-'min', patience= 5, factor= 0.5, min_lr= 1e-6, verbose=1)</pre>
1 #model compiling 2 model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy'])
<pre>i anne - Reducel&ROnPlateau(monitor='val_accuracy', factor=0.5, patience=5, verbose=1, min_lr=1e=3) 2 checkpoint - ModelCheckpoint('model.h5', verbose=1, save_best_only=True) 3 4 datagen = ImageDataGenerator(zoom_range = 0.2, rotation_range=30, horizontal_flip=True, vertical_flip=True, shear_range=0.2, height_shift_range=0.2, width_shift_range=0.2 5 #datagen = ImageDataGenerator(zoom_range = 0.0, rotation_range=0.0, horizontal_flip=True, vertical_flip=True, shear_range=0.2, height_shift_range=0.2, width_shift_range=0.2 6 7 8 datagen.fit(xtrain) 9 # Fits-the-model 10 history = model.fit_generator(datagen.flow(xtrain, ytrain, batch_size=128), 11 steps_per_epoch=xtrain.shape[0] //128, 12 epochs=20, 13 verbose=20, 14 callbacks=[anne, checkpoint], 15 validation_data(xval, yval)) 2/3 - 5s - loss: 0.1863 - accuracy: 0.259 - val loss; 0.4536 - val accuracy: 0.8947 - lr: 2.99990e.94 - 5s/emoch - 2s/stem</pre>
Epoch 6/20 Epoch 6: val_loss did not improve from 0.45360 3/3 - 4s - loss: 0.1087 - accuracy: 0.9656 - val_loss: 0.5921 - val_accuracy: 0.8772 - lr: 2.0000e-04 - 4s/epoch - 1s/step Epoch 7/20
Epoch 7: val_loss did not improve from 0.45360 3/3 - 4s - loss: 0.1674 - accuracy: 0.9312 - val_loss: 0.6400 - val_accuracy: 0.8947 - 1r: 2.00000e-04 - 4s/epoch - 1s/step

MOBILENET MODEL

1 mobile = tf.keras.applications.mobilenet.MobileNet() 2 mobile.summary() conv_dw_11_relu (ReLU) (None, 14, 14, 512) conv_pw_11 (Conv2D) (None, 14, 14, 512) 262144 conv_pw_11_bn (BatchNormali (None, 14, 14, 512) 2048 zation) conv_pw_11_relu (ReLU) (None, 14, 14, 512) 0 conv_pad_12 (ZeroPadding2D) (None, 15, 15, 512) 0 conv_dw_12 (DepthwiseConv2D (None, 7, 7, 512) 4608 2048 conv_dw_12_bn (BatchNormali (None, 7, 7, 512)

<pre>1 model.compile(optimizer-Adam(learning_rate=0.0002), loss='categorical_crossentropy</pre>	', metrics=['accuracy'])
<pre>1 anne = ReduceLROnPlateau(monitor='val_accuracy', factor=0.5, patience=5, verbose=1 2 checkpoint = ModelCheckpoint('model.h5', verbose=1, save_best_only=True) 3</pre>	, min_lr=1e-3)
4 datagen = ImageDataGenerator(zoom_range = 0.2, rotation_range=30, horizontal_flip= 5 #datagen = ImageDataGenerator(zoom_range = 0.0, rotation_range=0.0, horizontal_fli 6	True, vertical_flip=True, shear_range=0.2,height_shift_range=0.2,width_shift_range=0.2 p=False, shear_range=0.0)
7 8 datagen.fit(xtrain) 9 # Fits-the-model	
<pre>10 history = model.fit(datagen.flow(xtrain, ytrain, batch_size=128), 11 steps_per_epoch=xtrain.shape[0] //128, 12 epochs=20,</pre>	
13 verbose-2, 14 callbacks-[anne, checkpoint], 15 validation_data-(xval, yval))	
Epoch 6: val_loss did not improve from 0.74408 3/3 - 3s - loss: 0.5435 - accuracy: 0.7963 - val_loss: 0.7604 - val_accuracy: 0.6667 Epoch 7/20	- 1r: 2.0000e-04 - 3s/epoch - 1s/step
Epoch 7: val_loss did not improve from 0.74408 3/3 - 4s - loss: 0.5038 - accuracy: 0.8280 - val_loss: 0.7785 - val_accuracy: 0.6491 Epoch 8/20	- 1r: 2.0000e-04 - 4s/epoch - 1s/step
<pre>1 ##ine test data is used to predict the performance of the model on unseen data a 2 3 ypred = model.predict(xtest)</pre>	id the correct prediction and wrong prediction are collected in a list with test accur
4 5 total = 0 6 accurate = 0	
7 accurateindex = [] 8 wrongindex = [] 9	
<pre>10 for i in range(len(ypred)): 11</pre>	
13 accurateindex.append(i) 14 else: 15 wrongindex.append(i)	
16 17 total += 1 18	
<pre>19 print('Total-test-data;', total, '\taccurately-predicted-data:', accurate, '\t w 20 print('Accurate(acc</pre>	rongly-predicted-data: ', total - accurate)

VG	G16 MODEL								
[]	1 from tensorflow.keras.app	olications import VGG16 #	For Transfer						
•	<pre>1 ##Building Model 2 IMAGE_SIZE = [224, 224] 3 vgg = VGG16(input_shape=IMAGE_SIZE + [3], weights='imagenet', include_top=False) 4 #here [3] denotes for RGB images(3 channels) 5 6 #don't train existing weights 7 for layer in vgg.layers: 8 layer.trainable = False 9 10 x = Flatten()(vgg.output) 11 prediction = Dense(3, activation='softmax')(x) 12 model = Model(inputs=vgg.input, outputs=prediction) 13 14 model_summary()</pre>							↑ ↓	
	Downloading data from <u>https:</u> 58892288/58889256 [58900480/58889256 [Model: "model_3"	://storage.googleapis.com] -] -	<u>/tensorflow/k</u> 1s Ous/step 1s Ous/step	eras-applications,	<u>/vgg16/vgg16_w</u>	<u>eights_tf_dim_</u>	ordering_tf_ker	<u>rnels_notop.h5</u>	
	Layer (type)	Output Shape	Param #						
	input_6 (InputLayer)	[(None, 224, 224, 3)]	0						
	block1_conv1 (Conv2D)	(None, 224, 224, 64)	1792						
	block1_conv2 (Conv2D)	(None, 224, 224, 64)	36928						
	block1_pool (MaxPooling2D)	(None, 112, 112, 64)							

Total-test-data; 63 accurately-predicted-data: 39 wrongly-predicted-data: 24 Accuracy: 61.905 %

1 anne = ReduceLROnPlateau(monitor='val_accuracy', factor=0.5, patience=5, verbose=1, min_lr=1e-3) 2 checkpoint = ModelCheckpoint('model.h5', verbose=1, save_best_only=True) 3	
<pre>4 datagen = ImageDataGenerator(zoom_range = 0.2, rotation_range=30, horizontal_flip=True, vertical_flip=True, shear_range=0.2, height_shift_range=0.2, width_shift_range=0.2, widt</pre>	nge=0.2
Epoch 6: val_loss improved from 1.05558 to 1.05403, saving model to model.h5 3/3 - 4s - loss: 1.0734 - accuracy: 0.4021 - val_loss: 1.0540 - val_accuracy: 0.3684 - lr: 2.0000e-04 - 4s/epoch - 1s/step Epoch 7/20	Î
Epoch 7: val_loss did not improve from 1.05403 3/3 - 4s - loss: 1.0617 - accuracy: 0.4312 - val_loss: 1.0579 - val_accuracy: 0.3684 - lr: 2.0000e-04 - 4s/epoch - 1s/step Epoch 8/20	
Epoch 8: val_loss improved from 1.05403 to 1.03464, saving model to model.h5 3/3 - 4s - loss: 1.0535 - accuracy: 0.3836 - val_loss: 1.0346 - val_accuracy: 0.4386 - lr: 2.0000e-04 - 4s/epoch - 1s/step Epoch 9/20	
Epoch 9: val_loss improved from 1.03464 to 1.01180, saving model to model.h5 3/3 - 4s - loss: 1.0229 - accuracy: 0.4815 - val_loss: 1.0118 - val_accuracy: 0.6140 - lr: 2.0000e-04 - 4s/epoch - 1s/step	
<pre>i ##The test data is used to predict the performance of the model on unseen data and the correct prediction and wrong prediction are collected in a list with test are 3 ypred = model.predict(xtest) 4 5 total = 0 6 accurate = 0 7 accurateindex = [] 9 10 for i in range(len(ypred)): 11 if np.argmax(ypred[i]) == np.argmax(ytest[i]): 12 accurate = 1 13 accurateindex.append(i) 14 else: 15 wrongindex.append(i) 16 17 total += 1 18 19 print('Total-test-data;', total, '\taccurately-predicted-data:', accurate, '\t wrongly-predicted-data: ', total - accurate) 20 print('Accuracy:', round(accurate/total*100, 3), '%') 21 accurate in the originate data is ', accurate data is ', accurate in the originate data is ', total - accurate) 23 print('Accuracy:', round(accurate/total*100, 3), '%') 24 print('Accuracy:', round(accurate/total*100, 3), '%') 25 print('Accuracy:', round(accurate/total*100, 3), '%') 25 print('Accuracy:', round(accurate/total*100, 3), '%') 26 print('Accuracy:', round(accurate/total*100, 3), '%') 27 print('Accuracy:', round(accurate/total*100, 3), '%') 28 print('Accuracy:', round(accurate/total*100, 3), '%') 29 print('Accuracy:', round(accurate/total*100, 3), '%') 20 print('Accuracy:', round(accurate/total*100, 3), '%') 20 print('Accuracy:', round(accurate/total*100, 3), '%') 21 print('Accuracy:', round(accurate/total*100, 3), '%') 22 print('Accuracy:', round(accurate/total*100, 3), '%') 23 print('Accuracy:', round(accurate/total*100, 3), '%') 24 print('Accuracy:', round(accurate/total*100, 3), '%') 25 print('Accuracy:', round(accurate/total*100, 3), '%') 25 print('Accuracy:', round(accurate/total*100, 3), '%') 25 print('Accuracy:', round(accurate/total*100, 3), '%') 26 print('Accuracy:', round(accurate/total*100, 3), '%') 27 print('Accuracy:', round(accurate/total*100, 3), '%') 27 print('Accuracy:', round(accurate/total*100, 3), '%') 28 print('Accuracy:', round(accurate/total*100, 3), '%') 29 print('Accuracy:', round(accurate/total*100, 3), '%') 29 print('Accuracy:', round(accurate/total*100, 3), '%') 29 p</pre>	curac
Total-test-data; 63 accurately-predicted-data: 31 wrongly-predicted-data: 32 Accuracy: 49.268	

VGG19 MODEL
<pre>[] 1 # Base model without Fully connected Layers 2 VG6_model = VGG19(include_top=False, weights='imagenet', input_shape=(224,224,3))</pre>
Downloading data from <u>https://storage.googleapis.com/tensorflow/keras-applications/vgg19/vgg19_weights_tf_dim_ordering_tf_kernels_notop.h5</u> 80142336/80134624 [====================================
<pre>[] 1 VG6_model = VG619(weights='imagenet', include_top=False, input_shape=(224, 224, B))</pre>
<pre>[] 1 # dataset has 3 classes 2 num_class = 3 3 x=VG6_model.output 4 # Add some new Fully connected layers to 5 x=GlobalAveragePooling2D()(x) 6 x=Dense(1024,activation='relu')(x) 7 x = Dropout(0.25)(x) 8 x=Dense(512,activation='relu')(x) 9 x = Dropout(0.25)(x) 10 preds=Dense(num_class, activation='softmax')(x) #final layer with softmax activation 11 12 model=Model(inputs=VG6_model.input,outputs=preds)</pre>
<pre>[] 1 for layer in VGG_model.layers: 2 layer.trainable = False 3 4 VGG_model.summary() #Trainable parameters will be θ</pre>
Model: "vgg19"
Layer (type) Output Shape Param #

] 1 anne = ReduceLROnPlateau(monitor='val_accuracy', factor=0.5, patience=5, verbose=1, min_lr=1e=3) 2 checkpoint = ModelCheckpoint('model.h5', verbose=1, save_best_only=True) 3
4 #datagen = ImageDataGenerator(zoom_range = 0.0, rotation_range=0.0, horizontal_flip=False, shear_range=0.0) 5 datagen = ImageDataGenerator(zoom_range = 0.2, rotation_range=30, horizontal_flip=True, vertical_flip=True, shear_range=0.2,height_shift_range=0.2,width_shift_range=0.2
7 7 datagen.fit(xtrain) 8 # Fits-the-model 9 bitcher = fit/datagen flow(stepin_step
<pre>9 history = muder.fit(datagen.fibm(ktrain, ytrain, batch_size=120), 10 steps_per_epoch=xtrain.shape[0] //128, 11 epochs=20, </pre>
12 veroose-z, 13 callbacks-[anne, checkpoint], 14 validation_data=(xval, yval))
Epoch 6: val_loss improved from 1.04612 to 1.01765, saving model to model.h5 3/3 - 5s - loss: 1.0548 - accuracy: 0.4471 - val_loss: 1.0177 - val_accuracy: 0.5614 - lr: 2.0000e-04 - 5s/epoch - 2s/step Epoch 7/20
Epoch 7: val_loss improved from 1.01765 to 0.98702, saving model to model.h5 3/3 - 5s - loss: 1.0206 - accuracy: 0.4815 - val_loss: 0.9870 - val_accuracy: 0.5789 - 1r: 2.0000e-04 - 5s/epoch - 2s/step Epoch 8/20
Epoch 8: val_loss improved from 0.98702 to 0.96826, saving model to model.h5 3/3 - 5s - loss: 1.0035 - accuracy: 0.4444 - val_loss: 0.9683 - val_accuracy: 0.4386 - lr: 2.0000e-04 - 5s/epoch - 2s/step Epoch 9/20
1 ##The test data is used to predict the performance of the model on unseen data and the correct prediction and wrong prediction are collected in a list with test accur
3 ypred = model.predict(xtest) 4 5 total = 0
6 accurate = 0 7 accurateindex = [] 8 wrongindex = []
9 10 for i in range(len(ypred)): 11 if np.argmax(ypred[i]) == np.argmax(ytest[i]):
12 accurate ** 1 13 accurate index.append(i) 14 else:
15 wrongindex.append(i) 16 17 17 total += 1
18 19 print('Total-test-data;', total, '\taccurately-predicted-data:', accurate, '\t wrongly-predicted-data: ', total - accurate) 20 print('Accuracy:', round(accurate/total*100, 3), '%')
Total-test-data; 63 accurately-predicted-data: 35 wrongly-predicted-data: 28 Accuracy: 55.556 %
RESNET50 MODEL
<pre>[] 1 base_model = applications.resnet50.ResNet50(weights= None, include_top=False, input_shape= (224,224,3))</pre>
[] 1 x=base_model.output
<pre>2 x= GlobalAveragePooling2D()(x) 4 x= BatchNormalization()(x)</pre>
5 x = Dropout(0.5)(x) $6 x = Dense(1024, activation='relu')(x)$
7 x= Dense(1024,activation='relu')(x) 8 x= Dense(512,activation='relu')(x)
9 x= BatchNormalization()(x) 10 x= Dropout(0.5)(x)
<pre>11 12 preds=Dense(3,activation='softmax')(x)</pre>
[] 1 model=Model(inputs=base_model.input,outputs=preds) 2 model.summary()
conv5_block2_add (Add) (None, 7, 7, 2048) 0 ['conv5_block1_out[0][0]', 'conv5_block2_3_bn[0][0]']
conv5_block2_out (Activation) (None, 7, 7, 2048) 0 ['conv5_block2_add[0][0]']
conv5 block3 1 conv (Conv2D) (None, 7, 7, 512) 1049088 ['conv5 block2 out[0][0]']

1 for layer in model.layers[:-8]: 2 layer.trainable=False
J 4 for layer in model.layers[-8:]: 5 layer.trainable=True
<pre>1 model.compile(optimizer=Adam(learning_rate=0.0002),loss='categorical_crossentropy',metrics=['accuracy'])</pre>
1 batch_size = 128 2 epochs = 20
1 anne = ReduceLROnPlateau(monitor='val_accuracy', factor=0.5, patience=5, verbose=1, min_lr=1e-3) 2 checkpoint = ModelCheckpoint('model.h5', verbose=1, save_best_only=True) 3
4 datagen = ImageDataGenerator(zoom_range = 0.2, rotation_range=30, horizontal_flip=True, vertical_flip=True, shear_range=0.2, height_shift_range=0.2, width_shift_range=0.2 5 #datagen = ImageDataGenerator(zoom_range = 0.0, rotation_range=0.0, horizontal_flip=False, shear_range=0.0) 6
7 8 datagen.fit(xtrain) 9 # Fite.the.model
10 history = model.fit(datagen.flow(xtrain, ytrain, batch_size), 11 steps_per_epoch-xtrain.shape[0] //batch_size, 12 epochs=epochs, 13 verbnose-2.
14 callbacks=[anne, checkpoint], 15 validation_data=(xval, yval))
Epoch 6: val_loss did not improve from 1.09823 3/3 - 4s - loss: 1.4010 - accuracy: 0.3651 - val_loss: 1.0990 - val_accuracy: 0.3158 - 1r: 2.0000e-04 - 4s/epoch - 1s/step Epoch 7/20
Epoch 7: val_loss did not improve from 1.09823 3/3 - 4s - loss: 1.4320 - accuracy: 0.3386 - val_loss: 1.0984 - val_accuracy: 0.3158 - lr: 2.0000e-04 - 4s/epoch - 1s/step Epoch 8/20
1 ypred = model.predict(xtest) 2
3 total = 0
4 accurate = 0 5 accurateindex = []
6 wrongindex = []
7 8 for i in range(len(vnred)):
9 if np.argmax(ypred[i]) == np.argmax(ytest[i]):
10 accurate += 1
11 accuratemoex.appeno(1) 12 else:
13 wrongindex.append(i)
15 (O(a) += 1 16
<pre>17 print('Total-test-data;', total, '\taccurately-predicted-data:', accurate, '\t wrongly-predicted-data: ', total - accurate) 18 print('Accuracy:', round(accurate/total*100, 3), '%')</pre>
Total-test-data; 63 accurately-predicted-data: 24 wrongly-predicted-data: 39 Accuracy: 38.095 %

9.1.1 Modelling Traditional Augmented Images

Each model takes between 2 to 6 minutes to run

DENSENET121 MODEL

0	<pre>1 model_d=DenseNet121(weights='imagenet',include_to 2 3 x=model_d.output 4 5 x= GlobalAveragePooling2D()(x) 6 x= BatchNormalization()(x) 7 x= Dropout(0.5)(x) 8 x= Dense(1024,activation='relu')(x) 9 x= Dense(512,activation='relu')(x) 10 x= BatchNormalization()(x) 11 x= Dropout(0.5)(x) 12 13 preds=Dense(3,activation='softmax')(x) #FC-layer</pre>	p=False, inp	out_shape=(224, 224, 3))
	<pre>1 model=Model(inputs=model_d.input,outputs=preds) 2 model.summary()</pre>		
	conv5_block15_1_bn (BatchNorma (None, 7, 7, 128) lization)	512	['conv5_block15_1_conv[0][0]']
	conv5_block15_1_relu (Activati (None, 7, 7, 128) on)	0	['conv5_block15_1_bn[0][0]']
	conv5_block15_2_conv (Conv2D) (None, 7, 7, 32)	36864	['conv5_block15_1_relu[0][0]']
	conv5_block15_concat (Concaten (None, 7, 7, 992)	0	['conv5_block14_concat[0][0]',

1 optimizer = Adma(Learning_rate=0.0002) 2 #early stopping to monitor the validation loss and avoid overfitting 3 es = EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=5, restore_best_weights=True) 4 5 #reducelROnPlateau(monitor='val_loss', mode='min', patience=5, factor= 0.5, min_lr=1e-6, verbose=1) 1 #model compiling 2 model.compile(optimizer-optimizer, loss-'categorical_crossentropy', metrics=['accuracy']) 1 anne = ReduceLROnPlateau(monitor='val_accuracy', factor=0.5, patience=5, verbose=1, min_lr=1e-3) 2 checkpoint = ModelCheckpoint('model.h5', verbose=1, save_best_only=True) 3 datagen = ImageDataGenerator(zoom_range = 0.0, rotation_range=0.0, horizontal_flip=False, shear_range=0.0) 5 6 6 7 datagen.fit(xtrain) 8 # Fits=the=model 9 history = model.fit_generator(datagen.flow(xtrain, ytrain, batch_size=128), 10 steps_pe_epoch=xtrain.shape[0] //128, 11 epochs=20, 12 verbose=2, 13 ccllbacks=[es_anne, checkpoint], 14 validation_data=(xval, yval)) Epoch 6: val_loss improved from 0.24179 to 0.23312, saving model to model.h5 31/31 - 7s - loss: 0.2828 - accuracy: 0.8993 - val_loss: 0.2252 - val_accuracy: 0.9136 - 1r: 2.0000e=04 - 7s/epoch - 239ms/step Epoch 7: val_loss improved from 0.23312 to 0.22519, saving model to model.h5 31/31 - 7s - loss: 0.2415 - accuracy: 0.9057 - val_loss: 0.2252 - val_accuracy: 0.9133 - 1r: 2.0000e=04 - 7s/epoch - 239ms/step Epoch 7: val_loss improved from 0.23312 to 0.22519, saving model to model.h5 31/31 - 7s - loss: 0.2415 - accuracy: 0.9057 - val_loss: 0.2252 - val_accuracy: 0.9133 - 1r: 2.0000e=04 - 7s/epoch - 239ms/step Epoch 7/20

1 ypred = model.predict(xtest)	
3 total = 0	
4 accurate = 0	
5 accurateindex = []	
6 wrongindex = []	
8 for i in range(len(ypred)):	
<pre>9 if np.argmax(ypred[i]) == np.argmax(ytest[i]):</pre>	
10 accurate += 1	
11 accurateindex.append(i)	
12 else:	
13 wrongindex.append(i)	
14	
15 total += 1	
16	
17 print('Total-test-data;', total, '\taccurately-predicted-data:', accurate, '\t wron	ngly-predicted-data: ', total - accurate)
<pre>18 print('Accuracy:', round(accurate/total*100, 3), '%')</pre>	
Total-test-data; 501 accurately-predicted-data: 492 wrongly-predicted-data: 9 Accuracy: 98.204 %	

MOBILENET MODEL [] 1 mobile = tf.keras.applications.mobilenet.MobileNet() 2 mobile.summary() conv_dw_11_relu (ReLU) (None, 14, 14, 512) 0 (None, 14, 14, 512) conv_pw_11 (Conv2D) 262144 conv_pw_11_bn (BatchNormali (None, 14, 14, 512) 2048 (None, 14, 14, 512) conv_pw_11_relu (ReLU) conv_pad_12 (ZeroPadding2D) (None, 15, 15, 512) 0 conv_dw_12 (DepthwiseConv2D (None, 7, 7, 512) 4608 3 x= GlobalAveragePooling2D()(x) 4 x= BatchNormalization()(x) conv_pad_12 (ZeroPadding2D) (None, 15, 15, 512) 4608 conv_dw_12_bn (BatchNormali (None, 7, 7, 512) zation)

<pre>1 optimizer = Adam(learning_rate=0.0002) 2 #early stopping to monitor the validation loss and avoid overfitting 3 #es = EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=10, restore_best_weights=True) 4 5 #reducing learning rate on plateau 6 #rlrop = ReduceLROnPlateau(monitor='val_loss', mode='min', patience= 5, factor= 0.5, min_lr= 1e-6, verbose=1)</pre>
1 #model compiling 2 model.compile(optimizer-optimizer, loss='categorical_crossentropy', metrics=['accuracy'])
<pre>1 anne = ReduceLROnPlateau(monitor='val_accuracy', factor=0.5, patience=5, verbose=1, min_lr=1e-3) 2 checkpoint = ModelCheckpoint('model.h5', verbose=1, save_best_only=True) 3 4 datagen = ImageDataGenerator(zoom_range = 0.0, rotation_range=0.0, horizontal_flip=False, shear_range=0.0) 5 #datagen = ImageDataGenerator(zoom_range = 0.2, rotation_range=2, horizontal_flip=True, shear_range=0.2) 6 7 datagen.fit(xtrain) 8 # Fits-the-model 9 history = model.fit_generator(datagen.flow(xtrain, ytrain, batch_size=128), 10 steps_per_epoch=xtrain.shape[0] //128, 11 epochs=20, 12 verbose=2, 13 callbacks=[anne, checkpoint], 14 validation_data=(xval, yval))</pre>
Epoch 6: val_loss did not improve from 0.06902 31/31 - 15s - loss: 0.0064 - accuracy: 0.9980 - val_loss: 0.0702 - val_accuracy: 0.9889 - lr: 2.0000e-04 - 15s/epoch - 484ms/step Epoch 7/20 Epoch 7: val_loss did not improve from 0.06902 31/31 - 15s - loss: 0.0093 - accuracy: 0.9969 - val_loss: 0.1054 - val_accuracy: 0.9800 - lr: 2.0000e-04 - 15s/epoch - 482ms/step Epoch 8/20
<pre>1 ##The test data is used to predict the performance of the model on unseen data and the correct prediction and wrong prediction are collected in a list with test accuracy score 2 3 ypred = model.predict(xtest) 4 5 total = 0 6 accurate = 0 7 accurate = 0 9 9 10 for in range(len(ypred)): 11 if np.argeax(ypred[i]) == np.argmax(ytest[i]): 12 accurate += 1 13 accurate index.append(i) 14 else: 15 wrongindex.append(i) 16 17 total += 1 18 19 print('Total-test-data;', total, '\taccurately-predicted-data:', accurate, '\t wrongly-predicted-data: ', total - accurate) 20 print('Accurate/total-100, 3), '%') Total-test-data; 501 accurate/total-100, 3), '%') </pre>
Iotal-test-data; 501 accurately-predicted-data: 489 wrongly-predicted-data: 12 Accuracy: 97.605 %

VGG16 MODEL

1 from tensorflow.keras.app	plications import VGG16 #F					
1 ##Building Model 2 IMAGE_SIZE = [224, 224] 3 vgg = VGG16(input_shape=] 4 #here [3] denotes for RGE 5 6 #don't train existing wei 7 for layer in vgg.layers: 8 layer.trainable = False 9 10 x = Flatten()(vgg.output) 11 prediction = Dense(3, act 12 model = Model(inputs=vgg. 13 14 model.summary()	IMAGE_SIZE + [3], weights= B images(3 channels) ights) tivation='softmax')(x) .input, outputs=prediction	'imagenet', :)	include_top=False)			
Downloading data from <u>https:</u> 58892288/58889256 [======== 58900480/58889256 [======= Model: "model_5" 	://storage.googleapis.com/] -] - Output Shape [(None, 224, 224, 3)] (None, 224, 224, 64)	tensorflow/kg 0s 0us/step 0s 0us/step Param # 0 1792	<u>ras-applications/</u>	<u>′vgg16∕vgg16_weig</u> t	nts_tf_dim_orderin	ng_tf_kernels_notop.h5

35

VGG19	ODEL						
[] 1	/GG_model = VGG19(weights	='imagenet', include_top=	False, input_s	shape=(224, 224, 3))			
Dowr 8014 8015	nloading data from <u>https:</u> 12336/80134624 [50528/80134624 [//storage.googleapis.com/] - (] - (<u>tensorflow/ker</u> 0s Ous/step 0s Ous/step	ras-applications/vgg1	9/vgg19_weights_tf_dim	<u>_ordering_tf_kernels</u>	<u>_notop.h5</u>
	<pre>For layer in VGG_model.la layer.trainable = False /GG_model.summary() #Tra</pre>	ayers: : ainable parameters will be					
Mode	el: "vgg19"						
Lay	ver (type)	Output Shape	Param #				
==== inp	out_10 (InputLayer)	[(None, 224, 224, 3)]					
blo	ock1_conv1 (Conv2D)	(None, 224, 224, 64)	1792				
blo	ock1_conv2 (Conv2D)	(None, 224, 224, 64)	36928				
blo	ock1_pool (MaxPooling2D)	(None, 112, 112, 64)					
blo	ock2_conv1 (Conv2D)	(None, 112, 112, 128)	73856				
1 anne = 2 checkp	ReduceLROnPlateau(mor oint = ModelCheckpoint	nitor='val_accuracy', f t('model.h5', verbose=1	actor=0.5, p , save_best_	patience=5, verbose _only=True)	=1, min_lr=1e-3)		
4 datage 5 6	n = ImageDataGenerator	r(zoom_range = 0.0, rot	ation_range=	=0.0, horizontal_f]	ip=False, shear_ran	ge=0.0)	
7 datage 8 # Fits	n.fit(xtrain) -the-model						
9 histor	y = model.fit(datagen.	.flow(xtrain, ytrain, b	atch_size=12	28),			
10 11	steps_per_epo epochs=20,	och=xtrain.shape[0] //1	.28,				
12 13	verbose=2,	sanne checknointl					
15	validation_da	ata=(xval, yval))					
Epoch 7/2	0						
Epoch 7: 31/31 - 1 Epoch 8/2	val_loss did not impro 2s - loss: 0.1828 - ac 0	ove from 0.22278 ccuracy: 0.9276 - val_1	oss: 0.2243	- val_accuracy: 0.	8889 - lr: 1.0000e-	04 - 12s/epoch - 3	992ms/step
Epoch 8: 31/31 - 1 Epoch 9/2	val_loss improved from 2s - loss: 0.1568 - ac 0	n 0.22278 to 0.17943, s ccuracy: 0.9360 - val_1	aving model oss: 0.1794	to model.h5 - val_accuracy: 0.	9289 - lr: 1.0000e-	04 - 12s/epoch - 4	102ms/step
Epoch 9:	val loss did not impro	ove from 0.17943					
1 ##The te 2 3 ypred = 1	<pre>st data is used to predict the model.predict(xtest)</pre>						
4 5 total = 1 6 accurate 7 accurate 8 unongind	0 - 0 index - [] ov - []						
9 10 for i in	range(len(ypred)):						
11 if n 12	p.argmax(ypred[i]) == np.argma accurate += 1	ax(ytest[i]):					
13 14 else	accurateindex.append(i) :						
15 16	wrongindex.append(i)						
17 tota 18	l += 1	countally professional	unata 114	The producted data	tol occurrent		
19 print('To 20 print('A	ccuracy:', round(accurate/tota	al*100, 3), '%')	urate, \t wrong	gry-predicted-data: , to	car - accurate)		
Total-test- Accuracy: 92	data; 501 accurately-predic 2.216 %	cted-data: 462 wrongly-predic	ted-data: 39				

RE	SNET50 MODEL		
[]	<pre>1 base_model = applications.resnet50.ResNet50(weights=</pre>	s= None, include_top=False, input_shape= (224,224,3))	
[]	<pre>1 x=base_model.output 2 3 x= GlobalAveragePooling2D()(x) 4 x= BatchNormalization()(x) 5 x= Dropout(0.5)(x) 6 x= Dense(1024,activation='relu')(x) 7 x= Dense(1024,activation='relu')(x) 8 x= Dense(512,activation='relu')(x) 9 x= BatchNormalization()(x) 10 x= Dropout(0.5)(x) 11 12 preds=Dense(3,activation='softmax')(x)</pre>		
[]	<pre>1 model=Model(inputs=base_model.input,outputs=preds) 2 model.summary()</pre>		
	conv5_block2_add (Add) (None, 7, 7, 2048) 0	0 ['conv5_block1_out[0][0]', 'conv5_block2_3_bn[0][0]']	
	conv5_block2_out (Activation) (None, 7, 7, 2048) 0	0 ['conv5_block2_add[0][0]']	
	conv5_block3_1_conv (Conv2D) (None, 7, 7, 512) 10	1049088 ['conv5_block2_out[0][0]']	
	conv5 block3 1 bn (BatchNormal (None, 7, 7, 512) 20	2048 ['conv5 block3 1 conv[0][0]']	
Total Train Non-t	al params: 27,272,067 Inable params: 27,213,827 trainable params: 58,240		
] 1 fo 2 3 4 fo 5	<pre>for layer in model.layers[:-8]: layer.trainable=False for layer in model.layers[-8:]: layer.trainable=True</pre>		
] 1 mc	nodel.compile(optimizer=Adam(learning_rate=0.0001),loss='categorica	cal_crossentropy', metrics= ['accuracy'])	
] 1 ba 2 ep	patch_size = 128 spochs = 20		
] 1 ar 2 cr 3 4 da 5 6 7 da 8 # 9 hi 10 11	<pre>anne = ReduceLROnPlateau(monitor='val_accuracy', factor=0.5, patien theckpoint = ModelCheckpoint('model.h5', verbose=1, save_best_only= datagen = ImageDataGenerator(zoom_range = 0.0, rotation_range=0.0, datagen.fit(xtrain) f Fits-the-model history = model.fit(datagen.flow(xtrain, ytrain, batch_size-batch_s</pre>	ence=5, verbose=1, min_lr=1e-3) y=True) , horizontal_flip=False, shear_range=0.0) _size),	
12 13 14	verbose=2, callbacks=[anne, checkpoint], validation_data=(xval, yval))		
Epoch 31/31	h 6: val_loss improved from 1.09037 to 1.08739, saving model to mo h - 8s - loss: 0.9796 - accuracy: 0.5686 - val_loss: 1.0874 - val_	model.h5 1_accuracy: 0.4222 - 1r: 1.0000e-04 - 8s/epoch - 250ms/step	

1 ypred = model.predict(xtest)
3 total = 0
4 accurate = 0
5 accurateindex = []
6 wrongindex = []
8 for i in range(len(ypred)):
9 if np.argmax(ypred[i]) == np.argmax(ytest[i]):
10 accurate += 1
11 accurateindex.append(i)
12 else:
13 wrongindex.append(i)
14
15 total += 1
16
17 print('Total-test-data;', total, '\taccurately-predicted-data:', accurate, '\t wrongly-predicted-data: ', total - accurate)
18 print('Accuracy:', round(accurate/total*100, 3), '%')
Total-test-data; 501 accurately-predicted-data: 344 wrongly-predicted-data: 157 Accuracy: 68.663 %

9.1.2 GAN Generated Images/Original Images

Each model took between 4mins to 6mins to run.

1	## Import the required libraries
2	from numpy.random import seed
3	seed(42)
4	import tensorflow
5	tensorflow.random.set_seed(42)
6	seed = 42
7	import numpy as np
8	import pandas as pd
9	import matplotlib.pyplot as plt
10	import cv2
11	from tqdm import tqdm
12	from PIL import Image
13	from sklearn.utils import shuffle
14	import os
15	import glob
16	import keras
17	import random
18	import math
19	import seaborn as sns
20	import sys
21	import datetime
22	import glob as glob
23	import matplotlib.cm as cm
24	from sklearn import metrics
25	from sklearn.preprocessing import LabelBinarizer
26	from sklearn.model_selection import train_test_split
27	from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
28	import tensorflow as tf
29	from tensorflow.keras import layers
30	from tensorflow.keras import applications
31	from tensorflow.keras.metrics import categorical_crossentropy
32	from tensorflow.keras.layers import BatchNormalization
33	from tensorflow.keras.layers import Conv2D, Dense, MaxPooling2D, Dropout, Flatten, GlobalAveragePooling2D
34	from tensorflow.keras.models import Sequential, Model
35	from tensorflow keras lavers import Input Lambda

36 from tensorflow.keras.applications import DenseNet121	
37 from tensorflow.keras.applications.inception_v3 import InceptionV3	
38 from tensorflow.keras.applications.vgg16 import VGG16	
39 from tensorflow.keras.applications.vgg19 import VGG19	
40 from tensorflow.keras.applications.resnet50 import ResNet50	
41 from tensorflow.keras.applications import EfficientNetB5	
42 from tensorflow.keras.applications.mobilenet import MobileNet	
43 from tensorflow.keras.applications.inception_v3 import preprocess_input	
44 from tensorflow.keras.layers import BatchNormalization	
45 from tensorflow.keras.applications.densenet import preprocess_input	
46 from tensorflow.keras.preprocessing import image	
47 from tensorflow.keras.preprocessing.image import ImageDataGenerator,img_to_array, lo	bad_img
48 from tensorflow.keras.models import Model	
49 from tensorflow.keras.optimizers import Adam	
50 from tensorflow.keras.callbacks import ModelCheckpoint, ReduceLROnPlateau, EarlyStop	oping, Callback
51	
52 import warnings	
53 warnings.filterwarnings("ignore")	
1 import tensor+low as t+	
2 print(tfversion)	

DENSENET121 MODEL D 1 model_d=DenseNet121(weights='imagenet',include_top=False, input_shape=(224, 224, 3)) 3 x=model_d.output 5 x= GlobalAveragePooling2D()(x) 6 x= BatchNormalization()(x) 7 x = Dropout(0.5)(x)8 x= Dense(1024,activation='relu')(x) 9 x= Dense(512,activation='relu')(x) 10 x= BatchNormalization()(x) 11 x= Dropout(0.5)(x) 13 preds=Dense(3,activation='softmax')(x) #FC-layer [] 1 model=Model(inputs=model_d.input,outputs=preds) 2 model.summary() Model: "model_7" Layer (type) Output Shape Param # Connected to input_12 (InputLayer) [(None, 224, 224, 3 0 ['input_12[0][0]'] zero_padding2d_2 (ZeroPadding2 (None, 230, 230, 3) 0

<pre>1 optimizer = Adam(learning_rate=0.0002) 2 #early stopping to monitor the validation loss and avoid overfitting 3 #es = EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=5, restore_best_weights=True) 4 5 #reducing learning rate on plateau 6 #rlrop = ReduceLROnPlateau(monitor='val_loss', mode='min', patience= 5, factor= 0.5, min_lr= 1e-6, verbose=1)</pre>
<pre>1 #model compiling 2 model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy'])</pre>
<pre>1 anne = ReduceLROnPlateau(monitor='val_accuracy', factor=0.5, patience=5, verbose=1, min_lr=1e-3) 2 checkpoint = ModelCheckpoint('model.h5', verbose=1, save_best_only=True) 3 4 datagen = ImageDataGenerator(zoom_range = 0.0, rotation_range=0.0, horizontal_flip=False, shear_range=0.0) 5 6 7 datagen.fit(xtrain) 8 # Fits-the-model 9 history = model.fit_generator(datagen.flow(xtrain, ytrain, batch_size=128), 10 steps_per_epoch=xtrain.shape[0] //128, 11 epochs=20, 12 verbose=2, 13 callbacks=[anne, checkpoint], 14 validation_data=(xval, yval))</pre>
Epoch 1/20 Epoch 1: val_loss improved from inf to 0.38326, saving model to model.h5 41/41 - 18s - loss: 0.4138 - accuracy: 0.8506 - val_loss: 0.3833 - val_accuracy: 0.9330 - lr: 2.0000e-04 - 18s/epoch - 427ms/step Epoch 2/20

RES	SNET50 MODEL				
[]]					
[]]	1 base_model = applications.r	esnet50.ResNet50(weig	nts= None, in	nclude_top=False, input_shape= (224,2	24,3))
[]	<pre>1 x=base_model.output 2 3 x= GlobalAveragePooling2D() 4 x= BatchNormalization()(x) 5 x= Dropout(0.5)(x) 6 x= Dense(1024,activation='r 7 x= Dense(1024,activation='re 9 x= BatchNormalization()(x) 10 x= Dropout(0.5)(x) 11 12 preds=Dense(3,activation='s)</pre>	(x) elu')(x) elu')(x) lu')(x) oftmax')(x)			
[]]	1 model=Model(inputs=base_mod 2 model.summary()	el.input,outputs=pred	;)		
	Model: "model_5"				
	Layer (type)	Output Shape	Param #	Connected to	
	input_9 (InputLayer)	[(None, 224, 224, 3)]	0	[]	
	conv1_pad (ZeroPadding2D)	(None, 230, 230, 3)		['input_9[0][0]']	

1 for layer in model.layers[:-8]: 2 layer.trainable=False 3 4 for layer in model.layers[-8:]:
5 layer.trainable=True
<pre>1 model.compile(optimizer=Adam(learning_rate=0.0002),loss='categorical_crossentropy',metrics=['accuracy'])</pre>
1 batch_size = 128 2 epochs = 20
<pre>1 anne = ReduceLROnPlateau(monitor='val_accuracy', factor=0.5, patience=5, verbose=1, min_lr=1e-3) 2 checkpoint = ModelCheckpoint('model.h5', verbose=1, save_best_only=True) 3 4 #datagen = ImageDataGenerator(zoom_range = 0.2, rotation_range=2, horizontal_flip=True, shear_range=0.2) 5 datagen = ImageDataGenerator(zoom_range = 0.0, rotation_range=0.0, horizontal_flip=False, shear_range=0.0) 6 7 to a function = f</pre>
<pre>/ datagen.fl(xtrain) 8 # Fits-the-model 9 history = model.fit_generator(datagen.flow(xtrain, ytrain, batch_size=128), 10 steps_per_epoch=xtrain.shape[0] //128, 11 epochs=20, 12 verbose=2, 13 callbacks=[anne, checkpoint], 14 validation_data=(xval, yval))</pre>
Epoch 1/20 Epoch 1: val_loss improved from inf to 1.09659, saving model to model.h5 41/41 - 16s - loss: 1.2696 - accuracy: 0.4845 - val_loss: 1.0966 - val_accuracy: 0.3333 - lr: 2.0000e-04 - 16s/epoch - 383ms/step Epoch 2/20
Fnorh 2. val loss immenued from 1 09659 to 1 09069 saving model to model h5
INCEPTION V3 MODEL
<pre>[] 1 InceptionV3_model = tf.keras.applications.InceptionV3(weights='imagenet', include_top=False, input_shape=(224, 224, 3))</pre>
[] 1 from tensorflow.keras import Model 2 from tensorflow.keras.layers import Conv2D, Dense, MaxPooling2D, Dropout, Flatten,GlobalAveragePooling2D 3 from tensorflow.keras.models import Sequential 4
<pre>5 # The last 15 layers fine tune 6 for layer in InceptionV3_model.layers[:-15]: 7 layer.trainable = False 8</pre>
<pre>9 num_class = 3 10 # Base model without Fully connected Layers 11 base_model = InceptionV3(include_top=False, weights='imagenet', input_shape=(224,224,3)) 12 x=base model.outout</pre>
13 # Add some new Fully connected layers to 14 x=GlobalAveragePooling2D()(x) 15 x=Dense(1024,activation='relu')(x) 16 x - Dense(10,25)(x)
17 x=Dense(512,activation='relu')(x) 18 x = Dropout(0.25)(x) 19 preds=Dense(num_class, activation='softmax')(x) #final layer with softmax activation
20 21 model=Model(inputs=base_model.input,outputs=preds) 22 model.summary()
Model: "model_6"
Layer (type) Output Shape Param # Connected to

<pre>1 anne = ReduceLROnPlateau(monitor='val_accuracy', factor=0.5, patience=5, verbose=1, min_lr=1e-3) 2 checkpoint = ModelCheckpoint('model.h5', verbose=1, save_best_only=True) 3</pre>
4 #datagen = ImageDataGenerator(zoom_range = 0.2, rotation_range=2, horizontal_flip=True, shear_range=0.2)
5 datagen = ImageDataGenerator(zoom_range = 0.0, rotation_range=0.0, horizontal_flip=False, shear_range=0.0)
7 datagen.fit(xtrain)
8 # Fits-the-model
9 history = model.fit_generator(datagen.flow(xtrain, ytrain, batch_size=128),
10 steps_per_epoch=xtrain.shape[0] //128,
11 epochs=20,
12 verbose=2,
13 callbacks=[anne, checkpoint],
14 validation data=(xval, vval))
Epoch 1/20
Epoch 1: val_loss improved from inf to 1.69041, saving model to model.h5
41/41 - 29s - loss: 0.1846 - accuracy: 0.9219 - val_loss: 1.6904 - val_accuracy: 0.7504 - lr: 2.0000e-04 - 29s/epoch - 710ms/step
Epoch 2/20

			n	
NUB	IFN	лсэ	LЛ	
		 	-	

[]	1 mobile = tf.keras.applica 2 mobile.summary()	tions.mobilenet.MobileNet(0	
	Downloading data from <u>https:</u> 17227776/17225924 [17235968/17225924 [Model: "mobilenet_1.00_224"	//storage.googleapis.com/t] - @] - @	<u>censorflow/k</u>)s Ous/step)s Ous/step	eras-applications/mobilenet/mobilenet_1_0_224_tf.h5
	Layer (type)	Output Shape	Param #	
	input_4 (InputLayer)	[(None, 224, 224, 3)]	0	
	conv1 (Conv2D)	(None, 112, 112, 32)	864	
	conv1_bn (BatchNormalizatio	(None, 112, 112, 32)	128	

<pre>1 model.compile(optimizer=Adam(learning_rate=0.0002), loss='categorical_crossentropy', metrics=['accuracy'])</pre>
1 anne = ReduceLROnPlateau(monitor='val_accuracy', factor=0.5, patience=5, verbose=1, min_lr=1e-3)
<pre>2 checkpoint = ModelCheckpoint('model.h5', verbose=1, save_best_only=True)</pre>
3
4 #datagen = ImageDataGenerator(zoom_range = 0.2, rotation_range=2, horizontal_flip=True, shear_range=0.2)
5 datagen = ImageDataGenerator(zoom_range = 0.0, rotation_range=0.0, horizontal_flip=False, shear_range=0.0)
6
7 datagen.fit(xtrain)
8 # Fits-the-model
9 history = model.fit_generator(datagen.flow(xtrain, ytrain, batch_size=128),
10 steps_per_epoch=xtrain.shape[0] //128,
11 epochs=20,
12 verbose=2,
<pre>13 callbacks=[anne, checkpoint],</pre>
14 validation_data=(xval, yval))
Epoch 1/20
Froch 1. val loss improved from inf to 0.41577 saving model to model b5

Lpoch 1: val_1055 improved from inf to 0.415//, saving model to model.h5 41/41 - 14s - loss: 0.3328 - accuracy: 0.8877 - val_loss: 0.4158 - val_accuracy: 0.8559 - lr: 2.0000e-04 - 14s/epoch - 331ms/step Epoch 2/20

Epoch 2: val_loss improved from 0.41577 to 0.20842, saving model to model.h5 41/41 - 9s - loss: 0.0566 - accuracy: 0.9800 - val_loss: 0.2084 - val_accuracy: 0.9481 - lr: 2.0000e-04 - 9s/epoch - 220ms/step

VGG	G16 MODEL						
[]	1 from tensorflow.keras.app	plications import VGG16 #Fo					
[]	1 ##Building Model 2 IMAGE_SIZE = [224, 224] 3 vgg = VGG19(input_shape=1 4 #here [3] denotes for RGE 5 6 #don't train existing wei 7 for layer in vgg.layers: 8 layer.trainable = False 9 10 x = Flatten()(vgg.output) 11 prediction = Dense(3, act 12 model = Model(inputs=vgg. 13 14 model.summary()	<pre>(MAGE_SIZE + [3], weights=' 3 images(3 channels) ights) ivation='softmax')(x) input, outputs-prediction)</pre>	'imagenet', ind	clude_top=False)			
 	Downloading data from <u>https:</u> 80142336/80134624 [80150528/80134624 [Model: "model_3"	//storage.googleapis.com/t] - 1] - 1] - 1	ensorflow/kera s Ous/step s Ous/step	<u>as-applications/</u>	vgg <u>19/vgg19_weights_</u>	<u>tf_dim_ordering_</u>	tf_kernels_notop.h5
	Layer (type)	Output Shape	Param #				
	input_6 (InputLayer)	[(None, 224, 224, 3)]					
	block1_conv1 (Conv2D)	(None, 224, 224, 64)	1792				

	Total params: 20,099,651 Trainable params: 75,267 Non-trainable params: 20,024,384
	1 anne = ReduceLROnPlateau(monitor='val_accuracy', factor=0.5, patience=5, verbose=1, min_lr=1e-3) 2 checkpoint = ModelCheckpoint('model.h5', verbose=1, save_best_only=True)
	3 4 #datagen = ImageDataGenerator(zoom_range = 0.2, rotation_range=2, horizontal_flip=True, shear_range=0.2) 5 datagen = ImageDataGenerator(zoom_range = 0.0, rotation_range=0.0, horizontal_flip=False, shear_range=0.0) 6
	7 datagen.fit(xtrain) 8 # Fits-the-model
	<pre>9 history = model.fit_generator(datagen.flow(xtrain, ytrain, batch_size=128), 10 steps_per_epoch=xtrain.shape[0] //128, 11 epochs=20, 12 wondpage=2</pre>
	12 verouse-2, 13 callbacks=[anne, checkpoint], 14 validation_data=(xval, yval))
	Epoch 1/20
	Epoch 1: val_loss improved from inf to 0.84060, saving model to model.h5 41/41 - 25s - loss: 0.9900 - accuracy: 0.5571 - val_loss: 0.8406 - val_accuracy: 0.8141 - lr: 2.0000e-04 - 25s/epoch - 601ms/step Epoch 2/20
	Epoch 2: val_loss improved from 0.84060 to 0.66969, saving model to model.h5 41/41 - 16s - loss: 0.7691 - accuracy: 0.7919 - val_loss: 0.6697 - val_accuracy: 0.8576 - lr: 2.0000e-04 - 16s/epoch - 379ms/step Epoch 3/20
	Epoch 3: val_loss improved from 0.66969 to 0.57597, saving model to model.h5 41/41 - 16s - loss: 0.6343 - accuracy: 0.8454 - val_loss: 0.5760 - val_accuracy: 0.8610 - lr: 2.0000e-04 - 16s/epoch - 379ms/step Epoch 4/20
	Epoch A: wal loss improved from 0 57507 to 0 40300 caving model to model to
1	##The test data is used to predict the performance of the model on unseen data and the correct prediction and wrong prediction are collected in a lis
2 3 4 5 6 7	<pre>ypred = model.predict(xtest) total = 0 accurate = 0 accurate index = []</pre>
8	wrongindex = []
10 11 12 13	<pre>for i in range(len(ypred)): if np.argmax(yrest[i]): accurate += 1 accurateidex_annend(i)</pre>
14 15	else: wrongindex.append(i)
16 17	total += 1
18 19 20	print('Total-test-data;', total, '\taccurately-predicted-data:', accurate, '\t wrongly-predicted-data: ', total - accurate) print('Accuracy:', round(accurate/total*100, 3), '%')
To Ac	al-test-data; 663 accurately-predicted-data: 638 wrongly-predicted-data: 25 uracy: 96.229 %
	GG19 MODEL
] 1 VGG_model = VGG19(weights='imagenet', include_top=False, input_shape=(224, 224, 3))
] 1 for layer in VGG_model.layers: 2 layer.trainable = False 3
	4 VGG_model.summary() #Trainable parameters will be 0
	Model: "vgg19"
	Layer (type) Output Shape Param #
	block1_conv1 (Conv2D) (None, 224, 224, 64) 1792
	block1 conv2 (Conv2D) (None 224 224 64) 36928

References

Bailo, O., Ham, D. and Shin, Y.M. (2019) 'Red Blood Cell Image Generation for Data Augmentation Using Conditional Generative Adversarial Networks', in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1039–1048. Available at: https://doi.org/10.1109/CVPRW.2019.00136.

Bang, D. and Shim, H. (2018) 'Improved Training of Generative Adversarial Networks Using Representative Features'. arXiv. Available at: <u>http://arxiv.org/abs/1801.09195</u> (Accessed: 15 May 2022).

Bowles, C. *et al.* (2018) 'GAN Augmentation: Augmenting Training Data using Generative Adversarial Networks'. Available at: <u>https://doi.org/10.48550/ARXIV.1810.10863</u>.

Bressem, K.K. *et al.* (2020) 'Comparing different deep learning architectures for classification of chest radiographs', *Scientific Reports*, 10(1), p. 13590. Available at: <u>https://doi.org/10.1038/s41598-020-70479-z</u>.

Ding, J. *et al.* (2019) 'A Case Study of the Augmentation and Evaluation of Training Data for Deep Learning', *Journal of Data and Information Quality (JDIQ)*, 11(4), pp. 1–22. Available at: <u>https://doi.org/10.1145/3317573</u>.

Salimans, T. *et al.* (2016) 'Improved Techniques for Training GANs'. arXiv. Available at: <u>http://arxiv.org/abs/1606.03498</u> (Accessed: 13 August 2022).

Wieczorek, G. *et al.* (2021) 'Multiclass Image Classification Using GANs and CNN Based on Holes Drilled in Laminated Chipboard', *Sensors*, 21(23), p. 8077. Available at: <u>https://doi.org/10.3390/s21238077</u>.

Erythrocytes Dataset: http://erythrocytesidb.uib.es/

https://www.tensorflow.org/api_docs/python/tf

TensorFlow API Versions | TensorFlow Core v2.9.1

 $\underline{https://github.com/bnsreenu/python_for_microscopists/tree/master/248_keras_implementation_n_of_GAN$

https://machinelearningmastery.com/reproducible-results-neural-networks-keras/

https://machinelearningmastery.com/how-to-implement-the-inception-score-from-scratch-for-evaluating-generated-images/

https://machinelearningmastery.com/how-to-develop-a-generative-adversarial-network-for-a-cifar-10-small-object-photographs-from-scratch/