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Analysis of Microscopic Blood Images in Sickle Cell 

Classification Using Deep Learning Algorithm 
 

Ifeoma Oduntan  

X18191274  
 

 

Abstract 

Abstract. Sickle cell disease is the most common form of hereditary blood disorder that 

is associated with hemoglobin abnormality due to mutation in β-globin genes known as 

hemoglobin S. It is estimated that 20 million people around the world live with the disease and 

a total of 176,000 deaths were recorded in 2013. The traditional method of diagnosing it is 

through conventional analysis of peripheral blood smears under the microscope by a 

pathologist which is laborious, time consuming and can lead to delays and misdiagnosis. 

Currently, the conventional machine learning technique still depends on the expertise 

knowledge of medical practitioners to select the features, and this can affect the classifier’s 

accuracy due to the subjective nature of the process. Developing an automatic way of 

diagnosing this disease through classification of the red blood cells as early as possible is a 

challenge due to lack of data in the medical field. This research aims to apply a deep learning 

technique that implements a novel Deep Convolutional Generative Adversarial Networks 

(DCGANs) for image synthesis to overcome small dataset issue for efficient classification and 

diagnosis of sickle cell disease. The augmented erythrocytesIDB1 dataset is used as an input 

to DCGANs to generate more images which can be used to train six deep transfer learning 

image classification models namely DenseNet121, ResNet50, InceptionV3, VGG16, VGG19, 

and MobileNet based on three types of red blood cells namely circular (normal), elongated 

(sickle cells), and other abnormality. The performance of the models is compared on the 

original images, GAN generated images/original images, and the traditional augmented 

images/original images to see the effect of each dataset on each model and find out if GAN 

generated images are realistic and can be an alternative source for augmenting data for 

classification in situation where the data size is very small, especially in the medical field and 

also identify the optimal classification model. The results are presented based on weighted 

metrics of accuracy, precision, recall, and F1-score and it showed that model performance on 

GAN generated images improved between 4.5% to 136% in all the models and MobileNet 

model achieved the highest accuracy and recall of 99.70%. 

 
Keywords - Microscopic blood images, Generative Adversarial Networks, Data Augmentation, Red blood cells, 

Sickle Cell Disease, Transfer learning, Deep learning. 
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1 Introduction 
 

Sickle cell disease (SCD) is a hereditary blood disorder that affects hemoglobin molecules in 

red blood cells (RBCs). This abnormality occurs because of mutation in β-globin genes known 

as hemoglobin S (Li et al., 2022). This molecule delivers oxygen to the cells throughout the 

body and its mutation can cause polymerization of the hemoglobin molecules in RBCs. Its 

occurrence affects the shape and elasticity of the cells and causes fragility of RBCs. It is 

difficult for these cells to move through small blood vessels, and this can lead to multiple organ 

failures, pain crisis and even death if undiagnosed 

The most available study of 20131 reported that about 3.2 million people live with SCD, 

and this number has grown to 20 million people around the world (ibid.). However, reports 

have shown that a total of 43 million people have sickle cell trait, and a total of 176,000 deaths 

were recorded in 2013 with most of the patients from African continent. Considering the 

seriousness of this condition with more than 300,000 babies born every year with SCD.  Half 

of these births occurred in three countries (Nigeria, India, and Democratic Republic of Congo). 

It should be noted that many of the countries with high poverty levels have not benefited from 

the advances made in sickle cell treatment2 . Due to lack of cure, early diagnosis is very crucial 

in the treatment and management of the disease. 

 

1.1 Research Motivation and Background 
 

SCD patients are faced with risk of life-threatening complications in the form of organ 

damage and stroke over time and this can lead to reduced life expectancy. Reason being that 

sickled red blood cells which are stiff, and rigid can get stuck in small blood vessels. Figures 

1a and 1b below show the images of normal red blood cells and sickled red blood cells, and 

an abnormally shaped cells in sickle cell disease.  

 

              
Figure 1a        Figure1b 

  

Figures 1a and 1b: Images of normal and sickled red blood cells and an abnormally shaped cells in 

Sickle Cell Disease 

 

Figure 1b is the image of normal red blood cells which can easily pass through the blood 

vessels, but the sickled RBCs get stuck in the blood vessel, and this deprives the organs and 

tissues of oxygen rich blood. Signs and symptoms of SCD starts in early childhood and is 

characterised by low counts of RBCs and even though the symptoms can be very severe, there 

 
 
1 https://linkinghub.elsevier.com/retrieve/pii/S0140673614616822 
2 How Common Is Sickle Cell Disease? (sickle-cell.com)  
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are limited options for treatment like bone marrow transplant and is only possible if a suitable 

donor can be found which can reduce the complications if diagnosed early (Li et al., 2022).  

Approaches to SCD diagnosis have evolved from manual classification of peripheral 

blood smears by a pathologist to the conventional machine learning technique. The manual 

process is laborious and time consuming. Moreover, the lack of an expertise medical 

practitioner can lead to delays and inaccurate results. This is because of the heterogenous 

nature of the red blood cells which can make manual diagnosis very complicated. Also, the 

conventional machine learning technique still depends on the expertise knowledge of medical 

practitioners to select the features, which can affect the classifier’s accuracy due to the 

subjective nature of the process. However, classification of SCD is not without challenges 

(Alzubaidi et al., 2020). These challenges are encountered in the area of data acquisition, lack 

of nuclei, blurry boundary, overlapped cells, and complex nature of RBCs shapes present in 

SCD. Moreover, there is still no known efficient technique that can analyse, detect, and classify 

sickle cell disease in RBCs. There is need to take advantage of breakthroughs in deep learning 

algorithms to find an automated method of detecting, and classifying this condition as early as 

possible, so as to reduce the time consuming and labour-intensive tasks performed by these 

medical practitioners, reduce cost to patients and prevent early death. But lack of large dataset 

is a big problem. 
 

1.2 Research Question 

 

How well can deep learning techniques be employed in image generation for data 

augmentation to overcome small size dataset challenges in the classification of sickle cell 

disease for early detection and diagnosis to give SCD patients good quality of life, prevent 

early death, and save the medical practitioners time to concentrate on treating their patients?  
 

1.3 Research Objectives and Contribution 

 

For the research question to be addressed, this research project will need to critically analyse 

the literature review to give insight into the current state of the art and help identify research 

gaps. 

Table 1: Research Objectives 

 
 

Table 1 is the research objectives that will help in addressing the research question. 
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This research project is aimed at using Deep Convolutional Generative Adversarial Networks 

(DCGANs) to generate new images for data augmentation and apply six deep transfer learning 

techniques to classify sickle cell disease based on original images, augmented and GAN 

generated images. The major contribution of this research is the application of a novel 

Generative Adversarial Networks (GANs) model for synthesizing new data to augment the 

dataset so as to overcome small data size problem and compare the results to find out if GAN 

generated images are realistic and can be an alternative source of augmenting data for 

classification in situation where the data size is very small, especially in the medical field. This 

will build on the work done by (Alzubaidi et al., 2020) in which they used transfer learning 

techniques that were trained on data that is related to their dataset, instead of the state-of-the-

art models that were trained on ImageNet dataset to address the issue of lack of training data. 

Six deep learning classification algorithms will be used to model the images from the 

erythrocytesIDB1 dataset and the GAN generated images for comparison. A minor 

contribution is the detailed review of the state-of-the-art techniques for detection and 

classification of sickle cell disease.  

This research project also discusses different techniques used in traditional augmentation 

and GAN image synthesis, and classification of biomedical and microscopic images (2012 - 

2022) in section 2. Section 3 describes the research methodology used in this project. Section 

4 discusses the design components for the analysis of microscopic blood images in sickle cell 

classification. Section 5 discusses the implementation of this research. Section 6 presents and 

discusses the research results and evaluations. Section 7 concludes the research and discussions 

on future work.  

 

2 Related Work on Classification Analysis of Sickle Cell   

Disease (2012 – 2022) 

2.1 Introduction 

 

So much research have been carried out on classification analysis of sickle cell disease and 

different techniques have been proposed based on machine learning and recently on deep 

learning of microscopic images because of breakthrough in the field of computer vision. These 

methods have mainly centered on deep learning algorithms used in data augmentation, 

(Szegedy et al., 2015), classification problems (Huang et al., 2017) and data segmentation 

problems (Ronneberger, Fischer, and Brox, 2015). However, the literature review will 

concentrate on data augmentation and classification which is the task of this project. The 

literature review is divided into different subsections of challenges in classification analysis of 

biomedical images, data augmentation techniques like traditional augmentation and GAN 

techniques, critical review of deep learning techniques used in the classification analysis of 

biomedical images, and conclusion and identified gaps.  

 

2.2 Challenges in Classification Analysis of Sickle Cell Disease 
 

Classification analysis of SCD is not without challenges and some of these are in data 

acquisition which led to the proposal of GANs by (Goodfellow et al., 2014) in image generation 

so as to aid data augmentation. Other challenges are in blurry boundary due to the influence of 

imaging procedure, overlapping of cells, complex nature of the RBCs shapes present in SCD, 

low intensity contrast between RBCs region and the background, lack of nucleus in RBCs 

meaning that nuclei location marker technique cannot be used, presence of artefacts as a result 
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of dirt on the imaging light path and shading (Alzubaidi et al., 2020). Some of these challenges 

will be reviewed in this literature. 

 

2.3 Literature Review on Data Augmentation Techniques in Sickle Cell 

Classification and Biomedical Images 
 

Lack of data in the medical and health sector is a big challenge because of the release of 

patient’s information without their consent which can cause ethical issues and the issue of lack 

of enough data annotators, which requires experienced and skilled medical professionals to 

label these data correctly. Also, the subjective nature of these annotators can lead to different 

interpretations by different medical professionals. Because of these challenges it is difficult to 

obtain large datasets in the medical field unlike other sectors (Calimeri et al., 2017).  

 

2.3.1 Traditional Data Augmentation Techniques  

Traditional data augmentation is a technique of applying some alterations to existing data in 

order to increase its diversity and enlarge dataset without collecting new data (Zhong et al., 

2020). It helps in preventing deep neural networks from learning irrelevant features that 

prevents it from generalizing, and this results in better model performance. To effectively train 

the classifier to address the issues of insufficient data problem (Ding et al., 2019) implemented 

several methods of augmentation to generate additional training samples from existing data. 

Their report showed that AlexNet accurately classified the three diffraction images. While 

(Naruenatthanaset et al., 2020) applied random flips and rotation to augment their imbalance 

datasets as a result of the classes’ sensitivity to size and color. Their report showed that 

EfficientNet model with augmentation has the best accuracy as to classification without 

augmentation. 

 

2.3.2 Generative Adversarial Networks (GANS) 

Paper by (Ronneberger, Fischer, and Brox, 2015) opined that there is need for large amount of 

annotated training samples in order to achieve successful training of deep networks. Generative 

adversarial networks (GANs) by (Goodfellow et al., 2014) is a deep learning model that consist 

of Generator (G) and Discriminator (D) which plays a minimax two player game in which the 

generator G generates fake images from latent vector which is similar to original images and 

the discriminator (D) tries to distinguish between the fake and real images. A lot of research 

have been carried out in GANs leading to many different versions and more research have been 

carried out on how to improve their training stability in order to solve the gradient vanishing 

problem and mode collapse. This has been resolved by (Goodfellow et al., 2014) in which the 

objective function was modified. However, (Metz et al., 2017) proposed unrolled GANs which 

successfully resolved the issue of model collapse, while (Salimans et al., 2016) developed 

Inception score for evaluating GAN generated images so as to remove human annotators. Paper 

by (Radford & Metz, 2016) used DCGANs on three datasets. They only applied scaling of the 

data to the range of the tanh activation function without any other pre-processing technique. 

They used mini-batch size of 128 with leakyRelu of slope 0.2 and adam optimizer. However, 

they used a learning rate of 0.0002 as they found the 0.001 rate was very high. They also noted 

that momentum of 0.9 value led to oscillation and instability, and they reduced it to 0.5 which 

helped in stabilizing the training. They concluded that DCGAN performed very well when 

compared to others with a test error of 2.98% and 1.48% respectively at 50,000 samples and 

10 million samples. However, (Bailo, Ham, and Min Shin, 2019) applied conditional generative 
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adversarial networks (cGANs) in the synthesis of microscopic new images for the 

augmentation of the size of their small dataset. They implemented this using image-to-image 

translation technique, and this resulted in a marginal improvement of their result.  

Paper by (Bowles et al., 2018) investigated the application of GAN in modelling the 

underlying distribution of training data for augmentation purposes. Their work compared the 

results of GANs with the rotation augmentation using Progressive Growing of GANS 

(PGGAN), because of its training stability on large image sizes and robustness to 

hyperparameter selection. They explained that populating training data with realistic 

synthesized data can reduce overfitting significantly and also improve the generalization ability 

of the algorithm thereby boosting the overall classification accuracy. They opined that there is 

clear evidence that improvement in synthesized data depends on the amount of available data 

which is likely due to little data to train the GAN properly. They concluded that even though 

GANs does not have the ability to extrapolate unlike the traditional augmentation, it can still 

provide an effective way of filling in the gaps in discrete training data distribution thereby 

augmenting the sources of variance that are not able to augment in other ways. However, they 

pointed out that GANs will not be able to extend data distribution beyond the extremes of the 

training data and noted that improvements achieved by using both GAN and traditional 

augmentation techniques were consistently more compared to the sum of the improvements 

achieved by using both methods separately. Paper by (Wieczorek et al., 2021) used DCGAN 

to generate images in the classification of holed drilled in laminated chipboard. They increased 

their data size by traditional data augmentation before implementing GAN to generate images 

for each class and they opined that the generated images were good quality to be used in 

training the model.  

In (Bang and Shim), they proposed Representative feature based GANs to resolve the 

training instability by extracting representative features from a pre-trained autoencoder. This 

is transferred to the discriminator thereby implicitly enforcing the discriminator to be updated 

by effectively considering both reverse and forward KL divergence.  

2.4 Critical Review of Deep learning Techniques Used in the Classification 

Analysis of Biomedical Images 
 

Deep convolutional neural networks have been widely applied in medicine for diagnosis of 

disease, abnormality detection, organ segmentation and classification in many fields including 

biomedical images (Zhou et al., 2022). Work by (Xu et al., 2017) used deep Convolutional 

Neural Networks (dCNN) in the classification of SCD. Their study was based on a very small 

dataset, and this shows that the model is not robust. Whereas (Tengshe et al., 2021) 

implemented CNN in sickle cell detection and their work achieved an accuracy of 95%. Work 

by (Elsalamony, 2016) implemented neural network in classifying healthy and unhealthy red 

blood cells. Work by (Gual-Arnau, Herold-García, and Simó, 2015) achieved an accuracy of 

96.10% on erythrocytesIDB1 dataset and paper by (Rodrigues, Naldi, and Mari, 2016) 

achieved an accuracy of 94.59% on the same dataset, but (de Faria, Rodrigues, and Mari, 2018) 

achieved an accuracy of 93.67% on the same dataset.  However, paper by (Alzubaidi et al., 

2020) addressed the issue of small data size issue by applying transfer learning technique using 

data from the same domain area. Their work also applied different augmentation techniques so 

as to minimize overfitting. They claimed that their lightweight deep learning models 

outperformed the latest methods with an accuracy of 99.98% on the erythrocytesIDB1 dataset. 

Paper by (Cheuque et al., 2022) implemented a two stage multi-level scheme by 

applying Faster R-CNN to identifying the region of interest in the white blood cells to separate 

mononuclear cells from polymorphonuclear ones. They then implemented two parallel 

Convolutional Neural Networks (CNNs) which is based on MobileNet architecture for 
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classification task. MobileNet architecture is a class of lightweight deep convolutional neural 

networks that are notably smaller in size and at the same time faster in performance than many 

other state-of-the-arts models. Due to their small low latency and low power, they can be used 

in classification and detection tasks (Howard et al., 2017). They achieved an accuracy of 98% 

using Monte Carlo cross validation method. Paper by (Sandler et al., 2019) proposed 

MobileNet V2 which is the second version of the MobileNet architecture and has a significantly 

lower number of parameters compared to MobileNetV1 and this makes it more lightweight. It 

is best suited for mobile devices as they are faster due to a reduction in size and complexity. 

However, (Huang et al., 2017) introduced DenseNet and this outperformed other state 

of the art algorithms due to its ability in strengthening feature propagation, solve the vanishing 

gradient problem and reducing the number of parameters. Work by (Sen et al., 2021) 

implemented five state of the arts pre-trained models and different types of data augmentation 

techniques. They used small data size, and this could have affected the performance of their 

models.  They reported that Inception V3 model achieved the highest accuracy. They could 

have evaluated their work using at least F1-score, recall and precision considering that 

misclassification can lead to early death in SCD. Work by (Yee and Raymond, 2020) 

implemented Inception V3 in extracting features from the chest X-ray images and then used 

different machine learning algorithms to classify the pneumonia. They reported that Neural 

Network outperformed the other machine learning algorithms. Study by (Bressem et al., 2020) 

compared different deep learning architectures in chest radiographs classification. Their study 

showed that deeper neural networks do not necessarily achieve better results than shallow 

networks like AlexNet or VGG-16 and they opined that CNN with fewer layers have low 

computational requirement and shorter training time. Paper by (Sharma et al., 2022) 

implemented DenseNet121 to classify different types of white blood cells (WBC). They 

applied normalization and augmentation techniques with different batch sizes and claimed their 

model achieved an accuracy of 99% with batch size of 8. Their work concentrated on white 

blood cells. But (Norouzifard et al., 2018) implemented Inception ResNet-V2 and VGG19 in 

the classification of glaucoma on optic nerve head (ONH) images to overcome overfitting 

because of the small size of data. Their report showed that the VGG19 model had an overfitting 

problem leading to very poor performance. They concluded that VGG19 model was unable to 

generalize but the Inception ResNet-V2 model achieved a very high performance at epoch 30. 
 

Table 2: Summary of the state-of-the-art models for classification of erythrocytesIDB1 dataset 

 
Authors Achieved results (Accuracy- %) 

Gual-Arnau et al. 2015 96.10 

Rodrigues et al., 2016 93.18 

Rodrigues et al., 2016 93.07 

Rodrigues et al., 2016 94.59 

de Faria et al., 2018 92.52 

de Faria et al., 2018 93.67 

Alzubaidi et al., 2020 (Scenario 4, Model 2) 99.54 

Alzubaidi et al., 2020 (Scenario 4, Model 2 

+ SVM) 

99.98 

 
 

 
Table 2 is the summary of the state-of-the-art models for classification of erythrocytesIDB1 

dataset, and it shows that most of the deep learning algorithms achieved very good accuracy 

with (Alzubaidi et al., 2020) achieving the highest result on the same dataset. 
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2.5 Conclusion and Identified Gaps 
 

The interest and seriousness of SCD can be seen from the amount of literature in this research 

area. Although some of the methods in the literature achieved good results based on small sized 

datasets, the advancement in technology has given way to application of new techniques of 

deep learning which can employ transfer learning and Generative Adversarial Network (GAN) 

to overcome small size dataset issues for efficient diagnosis of SCD. This is a significant gap, 

and this research project is aimed at addressing this gap by using the GAN model to synthesize 

data in conjunction with different augmentation techniques like rotation and flipping applied 

in (Alzubaidi et al., 2020). In conclusion, literature review in the classification of biomedical 

images as a whole and microscopic blood cell images for SCD classification will be beneficial 

in image synthesis using GAN and other traditional data augmentation techniques. This will 

help to overcome the challenges posed by lack of dataset in the medical field.  
 

3 Research Methodology 

3.1 Introduction 

 

The ability to detect and classify the red blood cells in Sickle Cell diagnosis can be complicated 

by the heterogenous nature of the red blood cells. This is due to the different shapes, sizes, 

location, and edge. Finding an automatic way to classify and diagnose the disease is very 

crucial in the treatment, management, and prevention of early death in SCD patients. The 

methods and specifications are discussed in detail below. 
 

3.2 Modified CRISP-DM Methodology Design 
 

Of all the different methods that can be applied in research in the field of Computer Science 

(CRISP_DM, KDD and SEMA), adapted Cross Industry Standard Process for Data Mining 

(CRISP-DM)3 methodology was chosen as shown in figure 2 below. This is because of its 

flexibility which allows for modification of the approach due to the nature of the project. 

 
 
3 https://www.ibm.com/docs/en/spss-modeler/saas?topic=understanding-determining-business-objectives 
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Figure 2: Adapted CRISP-DM methodology process for sickle cell classification 

 

The methodology process entails the following steps: 

3.2.1 Data Understanding and Exploratory Data Analysis 

There are diverse types of available data around blood images, but the data that will be 

appropriate for this research is the one that is more tailored to the aim of the research in sickle 

cell classification. The dataset used is the erythrocytesIDB1 dataset (Gonzalez-Hidalgo et al., 

2015) which are images of peripheral blood smear samples from sickle cell patients in the 

Special Hematology Department of the Santiago de Cuba General Hospital4. This is a private 

 
 
4 http://erythrocytesidb.uib.es/ 
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dataset which was requested through email from their website and downloaded from the link 

provided by the data owner from their cloud storage and was then stored in google drive.  

Exploratory data analysis shows that the dataset has 196 full-field images and 626 

individual cell images of size 80 x 80 pixels in three classes as circular (202), elongated (211), 

and other (213). The dataset is in Joint Photographic Experts Group (JPEG) format and initial 

analysis shows that it is a balanced dataset with almost equal classes and there are no damaged 

images. 

 

    
Figure 3a     Figure 3b 

Figures 3a and 3b: Bar plot of the classes and sample image from each class 
 

Figure 3a is the bar plot of each class and figure 3b is the sample image from each class, which 

are circular (normal), elongated (sickle cell) and other types.  

3.3 Data Pre-processing 
 

The aim of image pre-processing is to improve the quality of the images by standardizing it 

before being fed into a model to increase its accuracy and at the same time reduce model 

complexity. In the implementation of sickle cell disease classification, the first process was to 

mount the drive in Google Colab and install all the necessary packages in Google Colab using 

Python, TensorFlow and Keras API. The data was read for the initial exploratory data analysis. 

Some of the images in different classes were visualized. The images were then resized to 244 

x 244, and 32 x 32 and 299 x 299 to match the size of the input layer of each of the algorithms, 

using the open CV library. The images are then transformed into an image array. 

Normalization, which is also known as rescaling is the process of projecting pixels 

(intensity) of an image data to a predefined range. The images were normalized to between 0 

and 1 by dividing by 255, as the range of pixels in an image is from 0(black) to 255(white) and 

between -1 and 1 for GAN training. The aim is to make all the images to equally contribute to 

the total loss, rather than some images with high pixels contributing more than low pixel 

images. This will provide a standard learning rate because images with high pixels require a 

low learning rate and vice versa. The three image classes were encoded using the sklearn 

preprocessing Label binarizer into one hot encoding for the labels. Two types of augmentations 

were performed.  

The traditional data augmentation method is implemented due to the small size of the 

dataset. The erythrocytes dataset was augmented, and this was achieved by using the 

traditional augmentation method of rotation at an angle range of 30°. Vertical and horizontal 

flipping were used as they will not distort the context of the images. Slight width and height 

shifting was applied in the range of 0.2 respectively, zoom range of 0.2, and shear range of 0.2, 

were implemented. Each image in each class was augmented 7 times with a total augmented 

images of 4382 plus the original images bringing the final total to 5001 images and was saved 

in a folder named erythrocytes2  
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The GAN image augmentation technique: The erythrocytes2 dataset was used as an 

input in training GAN model as implemented in (Bowles et al., 2018, Wieczorek et al., 2021) 

in which they opined that there is clear evidence that improvement in synthesized data depends 

on the amount of available data, which is why traditional augmentation is applied first before 

feeding the data into GAN with the original images. The images were processed by resizing to 

32 x 32 using the open CV library and were transformed into an image array.  

Normalization: The images were normalized by converting to a float and then converted 

to between -1 and 1 by subtracting 127.5 and divided by 127.5. The resized images were first 

downsampled in the discriminator as it was trained first. Then the generator was fed with a 

noise vector which was upsampled to size 32 x 32 and the generated images were then passed 

to the discriminator to determine whether they are fake or real images. This was monitored at 

different epochs and the images achieved 100% accuracy at epoch 500 for each of the classes. 

The images generated by GAN were saved in a folder named erythrocytes3 which has 2000 

images per each class totaling 6626 images inclusive of the original images. This was done so 

that comparison can be made on the effect of different datasets on the models. The final data 

for fitting the models was then split into training, validation and test sets using a ratio of 

80:10:10. This partitioning of the data will help in modelling to make sure that the model has 

not seen the test and validation data. However, the data used for GAN was split into 80 :20 

ratio. The weights of the models for transfer learning were used to extract features which are 

the shape, size and edges from the dataset, and the top layers of each model was set to false 

because they are the classification layers for the pre-trained models which is different from the 

sickle cell classification task. The top layers were fine-tuned to the task of this project which 

is 3 classes rather than 1000 classes they were trained on. Table 3 below is the final total 

number of images in each dataset. 

 

Table 3: Final Total of Images in each Dataset 

Datasets Total Number 

Erythrocytes (Original Dataset) 626 

Erythrocytes2(Augmented/Original Images) 5001 

Erythrocytes3(GAN generated images/Original images) 6626 

GanImages (GAN generated Images for Evaluating the 

quality of the images) 

6000 

 

3.4 Model Application 
 

The model application stage of the methodology is particularly important because making the 

right decision on algorithm selection that is in line with the dataset and the task is very crucial 

in achieving a better outcome. The following diverse deep learning algorithms which are 

DenseNet121, ResNet50, InceptionV3, VGG16, VGG19, and MobileNet will be used to fit the 

three datasets. 

3.5 Performance Evaluation 

 

Given that this project is in the medical field, the ideal metrics to evaluate the performance of 

each model is weighted metrics for accuracy, precision, recall and F1-score.  
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4 Design Specification 
 

The 2-tier design specification process for the classification of sickle cell disease is shown in 

figure 4 below and it shows how the data will flow from the client tier as stored data in the 

cloud into the business tier where it will be pre-processed, then both the augmented images and 

original images are transformed through normalization before they are fed into GAN to 

generate new images. The generated images flow back to preprocessing and normalization 

stages before it is fed into the transfer learning models for classification. Both original images, 

traditional augmented images and GAN generated images are then preprocessed again before 

they are fed into the six pretrained models using the TensorFlow and Keras API on Python 

language in the Google Colab platform. The results will flow back to the client tier where they 

are visualized, evaluated, and interpreted.  
 

 
Figure 4: Design process for Sickle Cell Anemia Classification 

 

4.1 Model Specifications 

4.1.1 Generative Adversarial Networks (GANS) 

 

The discriminator consists of convolution2D of 64, 128, 128 and 256 with LeakyRelu of alpha 

0.2 and adam optimizer with learning rate of 0.0002, dropout rate of 0.4, sigmoid activation 
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and was compiled with binary cross entropy activation. The generator model used 

convolution2D transpose of 256, 128, 128, 128 with LeakyRelu of alpha 0.2, tanh activation 

and adam optimizer with learning rate 0.0002 and beta_1 of 0.5.) the generator has a 4x4 x256 

input nodes which is upsampled to 32x32 with Conv2DTranspose and stride of 2 by 2, kernel 

size of 4 x 4, tanh activation and LeakyRelu of 0.2. 

4.1.2 DenseNet121 

 

This model has 120 convolutional layers and 4 average pooling layers. In this study, 

DenseNet121 model with growth rate of k = 32 is used due to limited sample, since more 

complex networks requires more samples to be trained. 

4.1.3 Inception V3 

 

The Inception V3 model which has a 48 layer deep convolutional neural network is also used 

in image classification and recognition tasks. It uses several techniques of label smoothing, 

auxiliary classifier to propagate label information lower down the network. It uses factorized 

7x7 convolutions and batch normalization for optimizing the network and this network is 

deeper than model V1 and V2.  

4.1.4 MobileNet 

 

The model has 30 layers made up of 27 convolutional layers with 1 average pool layer and 1 

fully connected layer and SoftMax. The MobileNet architecture has a significantly lower 

number of parameters compared to other models. It is best suited for mobile devices as they 

are faster due to a reduction in size and complexity.  

4.1.5 VGG16 

 

Visual Geometry Group (VGG16) has 16 layers made up of 13 convolutional layers with stride 

size of 1, and 2 x 2 pooling layers with stride of 2 and 3 fully connected layers. 

4.1.6 VGG19 

 

This model is another variant of VGG models and is made up of 19 layers of which 16 are 

convolutional layers and 3 are fully connected layers with 5 Max pooling layers and one 

SoftMax.  

4.1.7 ResNet50 

 

The ResNet50 has a total of 50 layers that is made up of 5 blocks of 3 convolutional blocks 

with 3 layers and 3 convolutional layers in each identity block. It has over 23 million trainable 

parameters and uses skip connections thereby making the network learn identity function that 

enables it to pass the input through the block without passing through the other weight layers 

and this solves the gradient vanishing problem. 
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5 Implementation of Sickle Cell Disease Classification 

5.1 Introduction 

 

Modelling is the major step in methodology.  Six different classification models (DenseNet121, 

ResNet50, InceptionV3, VGG16, VGG19, MobileNet) were implemented to see the effect of 

each model when fitted on the three different datasets which are (1) erythrocytes - the original 

images with augmentation of training dataset only, (2) erythrocytes2 - the traditional 

augmented images, and (3) erythrocytes3 - the GAN generated images and the original 

images. However, different techniques were used in training the models to identify the best 

hyperparameters. The results were visualised using plot of training and validation 

accuracy/loss, accurately predicted classes, and confusion matrix. 

5.1.1 GAN 

Two models were constructed (Discriminator and Generator). The generator takes a latent 

dimension vector of size 4 x 4 x 256 to upsampled to size 32 by 32 using Conv2DTranspose, 

while the discriminator takes an image size of 32 by 32 to downsampled to 256x4 x 4 through  

Conv2D. Only the discriminator was compiled, while the generator was not compiled because 

it is trained in the combined model (GAN). Sample size of 1200, 1300 and 1300 for each class 

was used with a batch size of 128, Adam optimizer (0.0002 and beta 0.2) and 500 epochs for 

each of the classes. Inception Score was implemented in evaluating the quality and diversity of 

the generated images. The results were plotted, and the images saved in a folder named 

erythrocytes3 and GANImages. 

5.1.2 DenseNet121 

 

The DenseNet121 was implemented using the three datasets with an input size of 224 x 224, 

two dense layers of 1024 and 512 neurones with Relu activation, Batch Normalization, two 

dropout rates of 0.5, 20 epochs with batch size of 128 and SoftMax activation function at the 

final classification layer. The model was fine-tuned by training the last 8 layers for better 

classification accuracy and was compiled using Adam optimizer at a learning rate of 

0.0001/0.0002 and categorical cross entropy as the loss function. However, call-backs were 

implemented, and validation accuracy was monitored with a patience of 5.  

5.1.3 Inception V3 

 

This model was implemented using input shape of 224 x 224, 1024 and 512 dense connections 

with two dropout rates of 0.25 and global average pooling on the three datasets. The last 15 

layers of the model were trained to fine-tune the model as this will help the model learn some 

of the features. It was compiled using the adam optimizer with a learning rate of 0.0001/0.0002, 

SoftMax activation and early stopping were used with a patience of 5. Categorical cross entropy 

was used as the loss function. Model checkpoint was implemented to save the best model. 

Epoch of 20 was used with a batch size of 128.  

5.1.4 MobileNet  

 

This model was implemented using the Keras functional API on the three datasets with an input 

shape of 224 by 224, two dense connections of 1024, and one 512 neurones with Relu 

activation, Batch Normalization, two dropout rates of 0.5. The model was fine-tuned by using 
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the 6th to the last layer of the original model to build a new model with SoftMax activation 

function. So, the last 23 layers were trained, and the new fine-tuned model was compiled using 

an adam optimizer and learning rate of 0.0001/0.0002, and 20 epochs with a batch size of 128.  

5.1.5 VGG16 

 

This model was implemented using a sequential model on the three datasets with an input shape 

of 224 x 224, 1024 and 512 dense layers, global average pooling and two dropout rates of 0.25.  

The last 8 layers were fine-tuned by flattening them to reflect the task of this project which has 

3 classes, as opposed to 1000 classes it was trained on. The model was compiled using Adam 

as the optimizer with a learning rate of 0.0001/0.0002, SoftMax activation with categorical 

cross-entropy as the loss function because of the 3 classes (multiclass classification). Reduce 

Learning rate on plateau was applied to monitor validation accuracy with a factor of 0.5. Batch 

size of 128 and 20 epochs were used.  

5.1.6 VGG19 

 

This model was implemented using a sequential model on the three datasets with an input shape 

of 224 x 224, 1024 and 512 dense layers, global average pooling and two dropout rates of 0.25.  

The last 8 layers were fine-tuned by flattening them to reflect the task of this project which has 

3 classes. The model was compiled using Adam as the optimizer with a learning rate of 

0.0001/0.0002, SoftMax function, with categorical cross-entropy as the loss function because 

of the multiclass classification. Batch size of 128 and 20 epochs were used.  

5.1.7 ResNet50 

 

This model was implemented using sequential model on the three datasets with input size of 

224 x 224, two dense layers of 1024 and one 512 with two dropout rates of 0.5 and global 

average pooling with BatchNormalization, SoftMax activation and Relu. The model was 

compiled using Adam optimizer with a learning rate of 0.0001/0.0002, categorical cross 

entropy as loss function, and the metric used is accuracy. The last 8 layers of the model were 

trained to fine tune the model to the task of sickle cell classification. The epoch used was 20 

with batch size of 128. Call backs were implemented while monitoring validation accuracy.  

5.2 Conclusion 

 

Modelling these deep learning algorithms were time consuming and computationally 

challenging due to the constraints on usage in Google Colab, as it is timed and can be 

disconnected at any time especially in the middle of fitting the models. As the data was 

augmented, this led to crashing of the model fitting due to memory size. Purchasing a monthly 

subscription from Google Colab was the only way to increase the memory size. Different 

hyperparameters were used to identify the best performing model. Also, the lack of data 

availability was challenging in terms of model performance but was rectified by synthesizing 

images using GAN.  

 

6 Evaluation 
 

Weighted metrics were used to evaluate the performance of the models. This is because there 

is no true positive and true negative in multiclass classification task unlike binary classification. 



16 
 

 

The weighted metrics takes into account the total number of samples in each class. This will 

help in determining which model is the most suitable for this classification task. 

6.1 Experiment 1: GAN 

 

Three different GANs were implemented for the three classes using the erythrocytes2 

dataset and figure 5 below are the progress of image generation at different epochs until the 

final epochs of 500. The generated images were evaluated and an Inception Score (IS) of 1.82 

was reported out of the three classes. 

 

    
Epoch 10     Epoch 100 

 

    
Epoch 200     Epoch 500 

 
Figure 5: Example of GAN generated images at different epochs for the Circular cells 

 

6.2 Experiment 2: DenseNet121 

 

The DenseNet121 performed very well on the three datasets, though the model was overfitting 

on the original dataset. Figures 6a, 6b and 6c below are the plot comparisons of training and 

validation accuracy/loss, correctly predicted images and confusion matrix. 
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Figure 6a: Results of Modelling the Original dataset (erythrocytes) 

 

      
 

Figure 6b: Result of Modelling GAN Generated Images/Original Images Dataset 

 

   
 

Figure 6c: Result of Modelling Augmented Data Images/Original Images 

 
Figures 6a, 6b and 6c: DenseNet121 Comparison plot of training and validation accuracy and 

loss, correctly predicted images, and confusion matrix for the three datasets 

 

From figure 6b, it clearly shows that the model performed better with GAN generated images 

achieving accuracy of 98.90%, with only 2 misclassifications out of 600 images. The model 

did not misclassify any of the sickle cells while in 6c it achieved an accuracy of 93.80% with 

31 misclassifications out of 501 images and 6a achieved an accuracy of 85.70%  

Experiment 3: ResNet50 
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From figure 7b below, it clearly shows that the model performed better with GAN generated 

images achieving accuracy of 90%, with 3 misclassifications out of 600 images, while in 7c, it 

achieved an accuracy of 68.70% with 157 misclassifications out of 501 images and 7a achieved 

an accuracy of 38.10% with 39 misclassifications out of 63 images.  
 

    
 

Figure 7a: Result of Modelling the Original dataset (erythrocytes) 
 

    
 

Figure 7b: Result of Modelling GAN Generated Images/Original Images Dataset 
 

           
 

Figure 7c: Result of Modelling Augmented Data Images 
 

Figures 7a, 7b and 7c: Plot of training and validation accuracy and loss, visualised correctly predicted 

images and plot of the confusion matrix for ResNet50 

6.3 Experiment 4: Inception V3 

 

From figure 8b below, it shows that the model performed better with GAN generated images 

achieving accuracy of 99.50% with no misclassifications out of 600 images, while in 8c, it 

achieved an accuracy of 97.60% with only 9 misclassifications out of 501 images and 8a 

achieved an accuracy of 95.20% with 3 misclassifications out of 63 images 
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Figure 8a: Result of Modelling the Original dataset (erythrocytes) 

 

  
 

Figure 8b: Result of Modelling GAN Generated Images/Original Images Dataset 

 

    
 

Figure 8c: Result of Modelling Augmented Data Images 

 

Figures 8a, 8b and 8c: plot of training and validation accuracy and loss, correctly predicted 

images, and confusion matrix for Inception V3 

6.4 Experiment 5: VGG16 

 

Figure 9b below shows that the model performed better with GAN generated images achieving 

accuracy of 96.20%, with 14 misclassifications out of 600 images, while in 9c it achieved an 

accuracy of 84.44% with 78 misclassifications out of 501 images and 9a achieved an accuracy 

of 49.20% with 32 misclassifications out of 63 images 
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Figure 9a: Result of Modelling the Original dataset (erythrocytes) 

 

     
 

Figure 9b: Result of Modelling GAN Generated Images/Original Images Dataset 

 

     
 

Figure 9c: Result of Modelling Augmented Data Images 

  
Figures 9a, 9b and 9c: Plot of training and validation accuracy and loss, correctly predicted 

images, and confusion matrix for VGG16 

6.5 Experiment 6: VGG19 
 

Figure 10b below clearly shows that the model performed better with GAN generated images 

achieving accuracy of 97.30%, with only 1 misclassifications out of 600 images, while in 10c 

it achieved an accuracy of 92.20% with 39 misclassifications out of 501 images and 10a 

achieved an accuracy of 55.60% with 28 misclassifications out of 63 images. 
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Figure 10a: Result of Modelling the Original dataset (erythrocytes) 

 

   
 

Figure 10b:Result of Modelling GAN Generated Images/Original Images Dataset 

 

    
 

Figure 10c: Result of Modelling Augmented Data Images 

 

Figures 10a, 10b and 10c: Plot of training and validation accuracy and loss, correctly 

predicted images, and confusion matrix for VGG19 

6.6 Experiment 7: MobileNet 
 

Figure 11b below clearly shows that the model performed better with Gan generated images 

achieving accuracy of 99.70%, with no misclassifications out of 600 images, while in 11c, it 

achieved an accuracy of  97.60% with 12 misclassifications out of 501 images and 11a achieved 

an accuracy of 61.90% with 24 misclassifications out of 63 images. 
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Figure 11a: Result of Modelling the Original dataset (erythrocytes) 

  

   
 

Figure11b: Result of Modelling GAN Generated Images/Original Images Dataset 

 

     
   

Figure 11c: Result of Modelling Augmented Data Images 

 

Figures 11a, 11b and 11c: Plot of training and validation accuracy and loss, correctly 

predicted images, and confusion matrix for MobileNet 

6.7 Evaluation of the Results 

Table 3 below shows that two models performed considerably well in the modelling of the 

original dataset with Inception V3 outperforming all the models. However, all the models 

performed extremely well when modelled with GAN generated images and this boosted their 

performances between 4.5% to 136%. The biggest effect was on ResNet50 at 136%. On the 

traditional augmented/Original images dataset, it had almost the same impact with incremental 

range of between 3.2% and 80%.  
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Table 4: Comparison of the Performance Metrics on the Three Datasets 

 

 
 

 
 

Figure 12: Bar Chart Comparison of the Performance Metrics on the three datasets 

 

Figure 12 is the bar chart comparison of the performance metrics and it clearly showed that modelling 

with GAN generated images really boosted the performances of all the models with a large margin in 

all the performance metrics. 

6.8 Discussion 
 

Looking at the presented results from figures 6 to 12, and table 3, they clearly showed that 

Inception V3 and DenseNet121 models have shown very strong performance in all the 

performance metrics across the three datasets. The result on the original dataset produced low 

modelling performance for most of the models except for Inception V3 and DenseNet121. 

However, the improvement in the performance metric in all the models when modelled with 

GAN generated images/original images was phenomenal in the range of between 4.5% to 136% 

increase in accuracy. The biggest improvement was in ResNet50 model at 136%, followed by 

VGG16 at 95%, VGG19 at 75% and MobileNet at 61%. However, improvement in accuracy 

was also observed when modelled using augmented images/ original images in the range of 

3.2% to 80%. This has shown that using GAN to generate images is a much better alternative 

than augmenting the images only. It shows that even though GANs does not have the ability to 

extrapolate unlike the traditional augmentation, it can still provide an effective way of filling 

in the gaps in discrete training data distribution thereby augmenting the sources of variance 
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that are not able to augment in other ways (Bowles et al., 2018). However, Inception V3 

achieved very high-performance metrics in the three datasets showing that it is very good at 

detecting sickle cell disease no matter what the sample size is. Choosing the best model will 

depend on the business objective of the task which is to detect SCD at an early stage to prevent 

early death and plan management of the disease to give patients good quality of life. Although 

the MobileNet dropped in accuracy on the original dataset, it still achieved best performance 

across all metrics in GAN generated images and second-best in traditional augmented images. 

However, the Inception V3 and MobileNet models achieved the highest accuracy of over 99%. 

But looking at the accuracies alone will not help to determine the best performing model 

considering that this is a medical data, and any misdiagnosis can be detrimental, especially in 

this project where the business objective is to detect the disease very early to prevent early 

death and to plan management of the disease to help give patients decent quality of life. So, the 

emphasis is on correct classification of elongated (sickle cell) red blood cells which can be very 

detrimental to a sickle cell patient if misclassified and undiagnosed and the model that does 

not misclassify the disease will be a better model. MobileNet achieved the highest recall score 

of 99.70% followed by Inception V3 at 99.50% which is the sensitivity or the positive rate. 

Also, consideration is given to lightweight models that has high accuracy like the 

MobileNet considering that there is great accessibility to mobile phone especially in less 

developed countries. Any model that can be deployed on a mobile device is a welcome addition 

and this is considered in choosing the best model. MobileNet still achieved a very high 

classification accuracy and recall at 99.70% and it correctly predicted sickle cell without any 

misclassification, and it is a lightweight model. Finally, the experiment showed that models 

achieved highest accuracy on GAN generated Images with great percentage margins and shows 

that GAN can generate good quality images and the generated images achieved an  Inception 

Score of 1.823 out of 3 for this dataset though this can be improved on by cropping the images 

to contain only one type of images for the class and also increase the range of some of the 

traditional augmentation techniques like increasing the width and height shift and the shear 

range can help the models. It also demonstrates that the issue of small data size can be overcome 

through image synthesis using GAN which boosted the classification accuracy of all the 

models. MobileNet correctly classified all the sickle cell without any misclassification. This 

means that it can efficiently detect all the disease without any misclassification as recall and 

precision are 99.70%, although recall was used for evaluation as correct prediction of sickle 

cell is very crucial. 
 

7 Conclusion and Future Work 
 

The aim of this research project is to use the novel Deep Convolutional Generative Adversarial 

Network (DCGAN) to synthesize more images to augment the dataset for the efficient 

classification of sickle cell disease in early detection of the disease to overcome the challenges 

of small size datasets, prevent early date, give patients good quality of life and compare the 

results to find out if GAN generated images are realistic and can be used as an alternative 

source of data augmentation for classification in situation where the data size is very small, 

especially in the medical field. GAN and six predictive models were implemented and 

evaluated. This objective was achieved by using GAN to generate plausible images that looked 

like they were from the original dataset, and it boosted the modelling performance of all the 

predictive models (Bowles et al., 2018, Ding et al., 2019) from between 4.5%  to 136% when 

compared to the performance on the original images and GAN generated images. All the 

models also achieved performance increase between 3.2% to 80% when compared on the 

original images and traditional augmented images. This has addressed the research question 

and objectives 2, 3, and 4 that it is advantageous to generate images using GAN to overcome 
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the problem of small size datasets and overfitting of the models. The achieved results showed 

that this will help solve the problem of lack of big size datasets especially in the medical field, 

as the models performed better on GAN generated images than the original dataset and the 

traditional augmented dataset. This project achieved best and highest accuracy and recall of  

99.70% with MobileNet model, while paper by (Alzubaidi et al., 2020) reported highest 

accuracy of 99.98%. The achieved result showed that MobileNet can effectively and efficiently 

predict and diagnose sickle cell in microscopic blood images without any misclassification as 

no misclassification of the sickle cell was obtained . This achieved result sits second behind 

(Alzubaidi et al., 2020) in the state-of-the-art comparison table. This has addressed research 

objective 5. 

On the future work, the segmentation of the cells using U-Net and transfer learning 

models as an encoder back bones like Inception V3 will be an interesting aspect of this work 

as this will give a complete automatic classification thereby solving the challenges posed by 

overlapped cells. 
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