Configuration Manual

MSc Research Project
Data Analytics

AKINWALE S. OBAFEMI
Student ID: x20200854

School of Computing
National College of Ireland

Supervisor: Jorge Basilio

\ " National

Collegef
Ireland

~

\

National College of Ireland
Project Submission Sheet
School of Computing

National
Collegeof
[reland

Student Name:

AKINWALE S. OBAFEMI

Student ID: X20200854
Programme: Data Analytics

Year: 2022

Module: MSc Research Project
Supervisor: Jorge Basilio

Submission Due Date:

15/08/2022

Project Title: Configuration Manual
Word Count: 1310
Page Count: 12

[hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

Date: 15th August 2021

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies).

Attach a Moodle submission receipt of the online project submission, to each
project (including multiple copies).

computer.

You must ensure that you retain a HARD COPY of the project, both for your own
reference and in case a project is lost or mislaid. It is not sufficient to keep a copy on

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

A Predictive Model for Predicting Blood Pressure
Levels Using Machine Learning Techniques

Akinwale Sunday Obafemi
x20200854
1 Introduction

Configuration Manual is a document which gives a walkthrough on the software and hardware
requirements needed to perform the modelling and run the codes right from the preparation of
data stage up to the Implementation phase. The manual would serve as a guide to help in
replicating this research work titled A Predictive Model for Predicting Blood Pressure Levels
Using Machine Learning Techniques.

2 System Configuration
2.1 Hardware Environment

The machine specifications of the device used for the research work would be discussed in this
section. For this work, a laptop which runs a 64-bit Microsoft Windows 10 Operating System,
with 1.80 Ghz processor and 16GB RAM was used. Full description is shown in Figure 1
below.

About

Your PC is being monitored and
protected.

See details in Windows Security

Device specifications

HP ENWVY x360 Convertible 15-euOxxx
Device name AKIMNWALE-PC

Processor A 7 ET00U with Radecon Graphics

Installed RAM
Device 1D F2¢ 4 1-FEF88297542
Froduct ID
Systermn type G- based processor

Pen and touch Pen and touch support with 10 touch points
Copy
Rename this PC
Windows specifications
Edition Windows 10 Home
Installed on

oS build 190421826

Experience Windows Feature Experience Pack 120.2212.4180.0

Copy

Fig. 1: Hardware Configuration.
2.2 Software Configuration

This part describes the software specifications that were used in implementing this project. The
programming language used was Python, while the IDE used is Google Colab (which is a cloud

based Jupyter Notebook). The web browser used is Google Chrome. Also, the software used
for the documentation of the report is Overleaf. After signing in onto the Google Colab, your
google drive has to be mounted to be able to access your data, then all necessary libraries would
be imported thereafter.

The libraries needed to be imported include:

Pandas.
NumPy
Seaborn
Matplotlib
SciPy.Stats
Math

7. Sklearn

ocoukrwnE

All the libraries imported are shown in Figure 2 below.

import pandas as pd

import numpy as np

import matplotlib.pyplot as plot

import seaborn as sns

import warnings

import scipy.stats as scistat

import math

from xgboost import XGBRegressor

from catboost import CatBoostRegressor

from lightgbm import LGBMRegressor

from sklearn.model selection import train_test_split, GridSearchcV
from sklearn.metrics import mean_squared_error, mean_absolute_error
from pandas.plotting import scatter_matrix

from sklearn.linear_model import LinearRegression

from sklearn.tree import DecisionTresRegressor

from sklearn.ensemble import RandomForestRegressor, ExtraTreesRegressor, AdaBoostRegressor
warnings.filterwarnings("ignore"”, category=DeprecationlWarning)
warnings.simplefilter("ignore™)
pd.set_option(’'display.max_columns', None)
pd.set_option('display.max_rows', 58)

#matplotlib inline

Fig. 2: All libraries used.

3 Data Preparation

In this section, the whole process of how our dataset was uploaded and read into the work
environment was described. After that, how the data was investigated (or inspected) and
cleaned were shown. The dataset was used for the research work was gotten from Kaggle and
we discovered from this stage that there were no missing values here.

3.1 Reading the Dataset

The dataset used was first mounted on my drive, then it was read into the environment using
the python code as shown below in Figure 3. It can also be seen in the figure that inspection of
the data for missing values showed no missing values in the data so there was not much
cleaning to do in the data.

df = pd.read_csv('/content/drive/MyDrive/Blood Pressure Project/heart.csv')

df.info() ##This method shows the range index(the number of entries in the data),
##the column names, the number of non missing values and the variable type.
#The heart data has mostly integer variables. Old peak is the only variable represented as a float

<class ‘pandas.core.frame.DataFrame’>
RangeIndex: 1825 entries, 8 to 1824
Data columns (total 14 columns):

Column MNon-Null Count Dtype

8 age 1825 non-null inted
1 sex 1825 non-null inte4
2 cp 1825 non-null inted
3 trestbps 1825 non-null inté4d
4 chol 1825 non-null inte4
5 fbs 1825 non-null inte4
6 restecg 1825 non-null inté4
7 thalach 1825 non-null inté4
8 exang 1825 non-null inte4
5 oldpeak 1825 non-null floated
18 slope 1825 non-null inté4
11 «ca 1825 non-null inte4
12 thal 1825 non-null inte4

13 target 1825 non-null inte4
dtypes: floated(l}, inte4(13)
memory usage: 112.2 KB

Fig. 3: Reading data from drive and showing its properties.

As part of the preprocessing stage also, the Heart_disease column was renamed appropriately
to avoid confusion as it is not our “Target” variable for this experiment. This was done as seen
in Figure 4.

##rename the independent variable named target to heart _disease as it represents whether an individual
df.rename(columns = {"target': ‘heart_disease'}, inplace = True)

df.columns
Index(["age", 'sex', 'cp', "trestbps', 'chol', 'fbs', 'restecg', 'thalach’,

‘exang', 'oldpeak’, 'slope’, 'ca’, 'thal’, "heart_disease’],
dtype="object')

Fig. 4: Renaming the heart_disease column.
3.2 Exploratory Data Analysis

This stage is necessary for exploring one’s data. Exploration is key in data analysis because it
aims to assist in understanding the general landscape of the data and detect patterns using visual
graphics. Here, the relationships between variables are shown in the Figures 5 to 7.

barchart of sex vs. mean trestbps

compute mean trestbps per sex = (@8,1)

ax = df.groupby(' sex').mean().trestbps.plot(kind = "bar"}
ax.set_ylabel('Avg. trestbps’)

plot.show()

140

120 A

100 4

Avg. trestbps

Fig. 5: Bar chart for Average resting BP against Sex.

scatter plot with axes names
#colour the points by value of df.sex
#plot first the data points for df.sex of @ and then 1
#setting colour to 'none’ gives open circles
_,ax = plot.subplots()
for catvalue, color in (8, 'C1'), (1, 'C8"):
subset_df = df[df.sex == catValue]
ax.scatter(subset_df.age, subset_df.trestbps, color = 'none’, edgecolor = coleor)
ax.set_xlabel('age”’)}
ax.set_ylabel('trestbps')
ax.legend(['female &', 'male 1']}
plot.show()

200 1 c o female 0
o o malel
180
160
w
o
=]
i
£ 140
© [s]
120 A [+
100
T
£

Fig. 6: Scatter plot of Resting BP against Age.

scatter plot with axes names
_sax = plot.subplots()
for catValue, color in (&, 'C1'), (1, "C&'):
subset_df = df[df.sex == catValue]
ax.scatter(subset_df.age, subset_df.chol, color = 'none’, edgecolor = color)
ax.set_xlabel('age")
ax.set_ylabel('chol")
ax.legend(['female &', 'male 1'])
plot.show()

famale 0 o
o malel
500 A
400 1 °o p°
=
e
300 o
o
001 ©)

Fig. 7: Code and Output for Scatter plot of Cholesterol levels against Age.

Similarly, some distribution plots were derived to test for the measures of central tendency,
shape and spread amongst some selected predictor variables. The aim of doing this in the
research is to understand the distribution of values in the data and then know the level of
importance of the features to our models. The “getdistprops” function was used to generate
these measures as seen in the code lines in Figure 8. This function also shows the skewness
and level of deviation of the features.

def getdistprops{seriestotest):
out = {}
normstat, normpvalue = scistat.shapiro(seriestotest)
if (not math.isnan(normstat)):
out["normstat’] = normstat
if(normpvalue>=8.85):
out['nmormpvalue’] = str({round(normpvalue, 2)) + ":Accept Normal”
elif (normpvalue<8.85):
out['mormpvalue’] = str(round(normpvalue, 2)}) + ": Reject Normal"
out['mean'] = seriestotest.mean()
out['median’] = seriestotest.median()
out['std'] = seriestotest.std()
out["kurtosis'] = seriestotest.kurtosis()
out['skew'] = seriestotest.skew()
out['count'] = seriestotest.count()
return out

def dist_plot(data, variable, title):
#function to plot a distribution plot
sns.distplot{df[variable])
plot.title(title}
plot.show()

Fig. 8: Distribution Measures

The graphs of the distribution plots obtained along with the skewness values for some of the
variables are then also shown below in Figures 9 tol11.

dist_age = getdistprops(df.age)
print({dist_age)

{'normstat’: ©.9843646287918891, 'normpvalue’': '©.8: Reject Normal', 'mean': 54.43414634146342, 'median’: 56.8, 'std': 9.8@72
208233244278, "kurtosis®: -8.525617812868433%, 'skew': -8.248865%908174584555, 'count': 1825}

dist_plot(df, 'age', 'Distribution Plot for Age')

Distribution Plot for Age

Density

Fig. 9: Distribution plot for Age.

dist_trestbps = getdistprops(df.trestbps)
print(dist_trestbps)

{'normstat’: @.9633121498478516, 'normpvalue’': '@.8: Reject MNormal’, 'mean’: 131.6117@731707318, 'median’': 138.@, 'std': 17.
516718@085376488, ‘kurtosis': @.9912287431245537, 'skew': 8.739768226@50874, 'count': 1825}

dist_plot(df, "trestbps', 'Distribution Plot for Resting Blood Pressure’)

Distribution Plot for Resting Blood Pressure

0.035

0.030

0025

0.020

Density

0.015

0.010

0.005

0.000 T T T T T T T
80 100 120 140 160 180 200
trestbps

Fig. 10: Distribution Plot for Resting BP.

dist_exang = getdistprops{df.exang)
print{dist_exang)

{'normstat’: ©.5965365171432495, ‘normpvalue’: '@.8: Reject Normal', 'mean’: ©.33658536585365356, 'median’': @.8, 'std': .47
277237608371186, 'kurtosis': -1.5232847382747@14, 'skew': ©.692655178469321, 'count': 1825}

dist_plot(df, ‘exang’', 'Distribution Plot for Exercise Induced Angina')

Distribution Plot for Exercise Induced Angina

—0.25 0.00 0.25 0.50 075 100 135
exang

Fig. 11: Distribution Plot for Exercise Induced Angina.

Next, box plots of the variables were constructed to help find which features have outliers that
could affect our models. It is very important to treat outliers in data to avoid possibility of bias
in the modelling stage. The box plots derived before treating outliers is seen in Figure 12, while
the one derived after treating the outliers is shown in Figure 14.

plot.figure(figsize=(35,7))

sns.boxplot(x="variable", y="value", data=pd.melt(df))

plot.title(Boxplot showing the distribution of the values for each of the features in the dataset’)
plot.show()

At shomrg Fe drbiutior af the val ses e each o e deatures i the ditssst

Fig. 12: Box Plot showing the features with outliers.

From the graph above, it is observed that the “trestbps”, “chol” and “thalach™ are the three
features which have very distinct number of outliers. The outliers in these three features were
then trimmed using the code below in Figure 13, while the result of the trim is seen in Figure
14.

#Trimming the values of the specified columns to be between the 5th and 95th quantile with the code below
out cols = ['chol’, 'thalach', '"trestbps']
df[out_cols] = df[out_cols].clip(lower = df[out_cols].quantile(®.85),

upper = df[out_cols].quantile(.95), axis = 1)

Fig. 13: Trimming the Outliers.

plot.figure(figsize=(35,7))

sns.boxplot(x="variable", y="value", data=pd.melt(df))

plot.title(Boxplot showing the distribution of the values for each of the features in the dataset after treating outliers’)
plot.show()

Fig. 14: Box Plot showing features without outliers.
3.3 Feature Engineering

Here, we changed the datatype of the categorical columns and then one-hot encode them. The
categorical columns in our data include sex, cp, fbs, restecg, exang, slope, ca, thal, and
heart_disease. This would generate more columns in our dataset by making each categorical
data to have a column based on the number of its distinct values. The aim of doing this is to
know the multicollinearity level of each of the features and the drop the ones who has little to
no correlation with our target feature. The code for doing this is seen below in Figure 15.

cat_cols = ['sex", 'cp', "fbs', 'restecg', 'exang', 'slope’, 'ca’, 'thal', "heart disease']
df[cat_cols] = df[cat_cols].astype(category')

df = pd.get_dummies(df, drop_first = True) #one-hot encode the categorical variables

Fig. 15: Feature Engineering
3.4 Correlation Analysis and Feature Selection

Correlation analysis is a good way to detect duplication of variables in the data. One way of
finding redundancies in our data is to look at a correlation matrix. A correlation heatmap has
been generated to try and identify strong correlations and multicollinearity. The correlation
heatmap is seen in Figure 16.

df_corr = df.corr()

fig, ax = plot.subplots()

fig.set_size_inches(26,18)

sns.heatmap(df_corr, annot = True, fmt = ".2f", cmap = "RdBu", center = @, ax = ax)
plot.show()

- 100

age S 006 005 012 018 007 009 017 019 019 022 016 013 005 013 011 023

trestbps - O 004 016 016 015 004 004 003 008 006 008 010 002 009 013 009 D12
ol - 007 005 003 017 006 009 005 003 003 007 012 012 009 000 005 013
thalach - 4. 017 010 000 013 013 040 043 04N 021 003 020 007 016 030 -0.22 '043

oldpeak -

022 019 011 011 034 030 043
011 008 003 000 011 014 001 001 010 003 006 009 014 037 031 028

sex 1
&1 - 050
@2-006 004 007 017 015 011
@3- 005 016 005 010 007 008
fos1- 012 016 003 000 001 003 -025
mstecg 1- 018 015 017 013 014 000
restecg 2- 007 004 006 013 018 011 <
exang 1- 003 004 009 040 -000
siope 1- 017 003 005 F043
slope 2- 019 008 003 NOEE

--025

@l-019 006 003 021
@2-022 008 007 003 022 003
@3-016 010 012 020 019 006
@4-013 002 012 007 D11 009
thal 1- 005 009 009 016 011 014
thal 2- 013 013 000 030 934 037
thal 3- 011 009 005 022 030 031 --0.75
heart disease 1 - 023 012 013 [043 044 028

dope_1
dope 2
@
@
a
@4
3l

thalach -
thal

age
trestbps -
chol
dldpeak
sex_1
)
@
@3
for
restecg 2 -

heart_disease_1 -JESY

Fig. 16: Correlation Heatmap.

Using the correlation table, we focus on the correlation figures of predictors with the target
variable (trestbps). We select only the predictors that reduces the effect of multicollinearity,
and these variables are age, trestbps, chol, thalach, oldpeak, sex 1, cp_1, cp_2, fbs 1,
restecg_1, exang_1, slope 1, slope_2,ca_1,ca 2,ca 3, ca 4,thal 2, thal_3, heart _disease 1.
The listed independent variables are ones to be used for modelling.

4 Implementation of the Models.
4.1 Model Building

This section of the report describes the models that were used in the research. Here, we show
the codes of how each of the models were built and the results of each of the models were then
evaluated. The models used in this research include Decision Tree Regressor, ExtraTrees,
Random Forest, Light GBM, XGBoost and CatBoost. After evaluation of the models,
hyperparameter tuning was done on the best performing model which is CatBoost to further
get a better performance from the model.

All the necessary libraries and models have been imported at the beginning, so the dataset is
split into the training and test data first here. Then the shapes of the data that would be fed into
the models are also seen below in Figure 17.

variables = ['age', ‘chol’, ‘thalach', 'oldpeak’, 'sex_1', 'cp_1', ‘cp_2', 'fbs_1', 'restecg_1', 'exang_l', 'slope_1', 'slope
‘ca 1", 'ca_2', 'ca 3", "ca_4', 'thal_2', "thal_3', 'heart_disease_1'] ##Independent variable

X = df[variables]

y = df['trestbps’'] #dependent/target variable

train X, valid_X, train_y, valid_y = train_test_split(X, y, test_size = 8.2, random_state = 1)

print('Shape of the X_train {}'.format(train_X.shape))
print('Shape of the y_train {}'.format(train_y.shape))
print('Shape of the X_test {}'.format(valid_X.shape))
print('Shape of the y_test {}'.format(valid_y.shape))

Shape of the X_train (828, 19)
Shape of the y_train (828,)
Shape of the X_test (285, 19)
Shape of the y test (2@5,)

Fig. 17: Splitting of the dataset

The code for building the six models is shown below in Figure 18.

"*'We use mostly default parameters for each of the algorithms selected and after discovering the one with the best performac
we peform a grid search on the best model to improve its performance. To avoid the problem of overfitting, we set max_depth t
of estimators to 38"

algos = [DecisionTreeRegressor(max_depth = 5),
ExtraTressRegressor(max_depth = 5},
RandomForestRegressor{max_depth = 5, n_estimators = 3@),
LGBMRegressor({max_depth = 5, n_estimators = 38),
XGBRegressor(max_depth = 5, n_estimators = 3@),
CatBoostRegressor(max_depth = 5, n_estimators = 38, learning_rate = 8.5)]

names = ['DecisionTree’, "ExtraTress’', 'RandomForest’, ‘LightGbm®, *XGBoost', 'CatBoost']

eval_list_rmse = []
eval_list _mae = []

for name in algos:
model = name
model.fit(train_X, train_y)
pred_y = model.predict(valid X)
mse = mean_squarad_srror(valid_y, pred_y)
mae = mean_absolute_error(valid y, pred_y)
score_rmse = math.sqrit(mse)
eval_list_rmse.append(score_rmse)
aval_list_mae.append(mae)

Fig. 18: Building of the Model.

The results of the evaluation of the models are then shown below in Figure 19.

evaluation = pd.DataFrame({ 'Model': names,
'"RMSE Score’: eval list rmse,
"MAE Score’: eval list mae})

evaluation

Model RMSE Score MAE Score

0 DecisionTree 13.433263 10.706429
1 ExtraTrees 12423837 10.336027
2 RandomForest 12.366252 10.006297

3 LightGbm 10.845500 8.790167
4 XGBoost 11.799123 0.327126
5 CatBoost 7.307459 5790854

Fig. 19: Results of the Data Modelling.
4.2 Hyperparameter Optimization

From the results gotten using the RMSE and MAE metrics, CatBoost gave the best performance
of all the models used. We then applied hyperparameter optimization using Grid Search on this
model for better performance. The code used to obtain the parameters for the hyperparameter
optimization is shown below in Figure 20.

#using grid search to find optimized tree: param_grid ={ 'max _depth’: [3, 4, 5, 6, 7, 8, 9, 18],
gridsearch = GridSearchCV{CatBoostRegressor(), param_grid, cv = 5, n_jobs = -1}

gridSearch.fit({train_X, train_y, eval_set = (valid X, wvalid_y))

#print('Improved parameters:', gridSearch.best_params_)

Fig. 20: Obtaining Improved parameters for the Optimization.

Then we would run the hyperparameter optimization using the new improved parameters as
shown below in Figure 21. After that, the model is re-evaluated to obtain the new values of
RMSE and MAE for the CatBoost model. The code for that is seen in Figure 22.

#using the hyper optimised parameters on the catboost model

params = {'max_depth’': 9,
"learning_rate': 8.3,
'n_estimators’': 280,
‘random_seed': 68,
"loss_function’: °"RMSE’,
‘eval _metric': "RMSE',
'od_type’: "Iter’, #overfit detector
‘od_wait': 28, #most recent best iteration
"verbose': True,
"use_best_model': True}

best_model = CatBoostRegressor(**params)
best_model.fit(train_X, train_y,

eval_set = (valid_X, walid_vy),
use_ best_model = True)

Fig. 21: Hyperparameter optimization of the model.

pred y = best model.predict(valid X)

mse = mean_squared_error(valid_y, pred_y)
score_mae = mean_absolute error(valid y, pred y)
score_rmse = math.sgrt(mse)

print('Root Mean Squared Error:’, score_rmse)
print(‘Mean Absolute Error:’', score_mae)

Root Mean Squared Error: ©.37773738345696969
Mean Absolute Error: 8.1225622298277183

Fig. 22: Re-evaluation of the Final Model.

From the figure above, we can see how the performance of the model has been greatly
improved to obtain an RMSE value of 0.8777 and MAE value of 0.1225 as the closer the values
are to zero, the better the performance of the model.

Finally, we looked at the most important features for predicting blood pressure levels, and the
features who are most important are shown accordingly in the chart below in Figure 23.

fea_imp = pd.DatafFrame({ imp’ :best_model.feature_importances_, 'col’': X.columns})

fea_imp = fea_imp.sort_values([imp’', "col'], ascending=[True, False]).iloc[-35:]

_ = fea_imp.plot(kind="barh', x="col', y="imp", figsize=(18, 5))

plot.title('Feature Importance of Predictors with Respect to the Target Variable(trestbps)")
plot.show()

Feature Importance of Predictors with Respect to the Target Variable(trestbps)

age

thalach —

chol

oldpeak —

slope_1
ca_l
exang_l
sex_ 1
restecg_1
fos 1
o_2
thal_2
slope_2
ca_2
thal_3
heart_disease_1
ca_3

ol

@ 1 - imp
ca_4

00 25 5.0 15 10.0 125 150 175

Fig. 23: Feature Importance of Predictors.

