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Configuration Manual

Prithvi Mysore Dayananda
x19242204

1 Introduction

This configuration manual is an overview and presents the hardware, software require-
ments, design details, implementation details, and settings of the projection detail: ”A
Comparative Analysis for Trash image classification using Deep Learning.”
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2.1

2.2

System Configuration

Hardware
Processor:Intel(R) Core(TM) i7-10510U CPU @ 1.80GHz 2.30 GHz

RAM: 8.00 GB
System Type: Windows OS, 64-bit
GPU: Intel(R) UHD Graphics Family, 8GB

GPUStorage: 1 TB HDD

Software

Jupyter Notebook (Version 6.0.3): The Jupyter Notebook is an open-source web
application that allows data scientists to create and share documents that integrate
live code, equations, computational output, visualizations, and other multimedia
resources, along with explanatory text in a single document.

Python (Version 3.8.3): Python is a computer programming language often used to
build websites and software, automate tasks, and conduct data analysis. Python is
a general purpose language, meaning it can be used to create a variety of different
programs and isn’t specialized for any specific problems.

Excel: A spreadsheet program offered by Microsoft is used for visualization of data,
plots, table formation.

Tableau: Tableau Software is a tool that helps make Big Data small, and small
data insightful and actionable. The main use of tableau software is to help people
see and understand their data.



3 Walkthorugh of zipped Artecraft

The artecraft folder can be divided into two parts i.e, Data and Python files. A seperate
file for each model has been created. VGG16, ResNet50 and Custom MLH-CNN model
from Shi et al.| (2021)) can be seen. While on data there are two folders Garbage_classification
and splitdata whch will be discussed further. Figure
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Figure 1: Explaination of zipped artefact folder

Since the data set is huge the link for the same is provided in the dataset pdf. This can
be directly downloaded and uncomment the splitfolder code to divide correspondingly.

4 Data Exploration

4.1 Data Acquisition

Garbage classification Data has been obtained from public platform called Kaggle. The
total number of images is 15515 which consists of 12 different categories as shown in

Figure [2|

al Paper Plastic Shoes Trash Whit

Batte..Biolo.. Brow.. Card.. Cloth.. Gree.. Met

Figure 2: Image count of each category

4.2 Data Preprocessing and Augmentation

Before we begin preprocessing our data, it is necessary for us to import necessary libraries
to perform our required action in python. Figure (3] lists all the libraries required.



In [1]:

L]

import matplotlib.pyplot as plt

from keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.optimizers import Adam

from keras.preprocessing.image import img_to_array
from tensorflow.keras.utils import to_categorical
from tensorflow.keras import optimizers

from tensorflow.keras import models

from tensorflow.keras import layers

import numpy as np

import pandas as pd

import random

import cv2

import os

from PIL import Image

from glob import glob

from tensorflow.keras.layers import *

from tensorflow.keras.models import *

import keras

import tensorflow as tf

Figure 3: Required python libraries

Once, the libraries are successfully loaded, we load the dataset downloaded from the
garbage _classification folder. Once it is loaded, we see that it is not split into training,
testing, and validation folders. Hence, we use python’s splitfolder to split the data re-
spectively as seen in Figure [dl This is now stored in a folder called splitdata which has
already been created in the same directory.

= (s 2,00, group prefix = None)

Figure 4: Splitting Dataset

Now that we have our data, since all the images are of different shapes, we shape the
input into 64*64 as suggested from the paper [Shi et al| (2021)). It is necessary that we
rescale the values from 0 to 1 to better understanding for the machine. The Figure
shows us how. It also gives us the code implemented to perform data augmentation using

In [8]:

In [9]:

]

L}

# re-size all the images to thi
IMAGE_SIZE = [64, 64]

# training config:
epochs = 10 #can be set to a huge number for better perfromance
batch_size = 32

#Perfroming Data Augmentation, with scaling all images

train_gen = ImageDataGenerator(
rescale = 1./255,
rotation_range=40,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True

)

val_gen = ImageDataGenerator
rescale = 1./255

)

test_gen = ImageDataGenerator(
rescale = 1./255

Figure 5: Preprocessing images

the Image Generator package which dynamically creates images while training on the go
for the provided parameters. We see that rotation, the sheer range of zoom, horizontal
flip, and many other operations performed.

Figure[0]shows the conversion of the labels from images category into one hot encoding
way and shuffling has been done before training will be done so that the randomness will
have a positive impact on model and it learns on all different patterns.



Figure 6: Performing shuffling and Data Augmentation for Training

5 Modelling

5.1 Custom MLH-CNN Model

As we are perfroming a comparitive analysis on exiting model propsed by |Shi et al.| (2021)),
the same architecture has been implemnted as we see from Figure [7]

', input_shape=input_shape, padding = "same"))

relu’, padding = “sane’))

imods
inodel_add (HaxPooL ing2D (poo!

Figure 7: Custom MLH-CNN model Architecture

The Figure |8 shows the optimizer and callback set for the model which runs for 10

Figure 8: Callback and optimizer setting

epochs where the model accuracy can be seen per epoch in Figure [9] we can see an
accuracy of 55.75%.

5.2 ResNet50

The data preparation for all the models implemeted is same except the input size of the
images is of 224*224, hence the model strucutre has been presented in Figure 7?7 and
Figure [11] gives us the ResNet50 structure built from scratch.



The model has been trained and ran for 10 epochs with a learning rate

see from Figure

£poch 1/10
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2cy: 05563
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Figure 9: Training of MLH-CNN model
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#8uilaing ResNetso model architecture from scroteh:

def idertity Block(input , kernel.size, filters):
, F3 = filters

= convan(fl, (1, 1),
kernel_initializ

input_)
Batchiiormalization() (x)
Activation('relu')(x)

= Conan(s2, kernel size, pading='sane’,
kernel_initializers'he_normal

Batchnoralization() (x)
Activation( "relu’)(x)

convan(#3, (1, 1),
kernelnitializ

*he_normal'

) i
X = Batcmormalizatien() (x)

% = add([x, Inaut 1)
x = Activation('relu')(x)
return x

block(input_,

kernel siz
filters
strides=(z, 2)):
1, f2, £3 = filters

- (@, (1, 1), stridesstrides,
kernelinitiali

- Batchiiornal; ion() (x)
= r\(t]vat]uﬂ( rLLu )x)

X = Convap(f2, kernel size
kernel_initialize;

Batchiorm: ion() (x)
:t)vatmn( r.l.u )x)

X = conva(f3, (1, 1),
kernel_initializ

*he_normal'

)0
- Batchnormalization() (x)

shorteut = Convad(f2, (L, 1), strides-strides,
ernel_initializer='he_normal’

) (input )
SPorseut = Batchuormalization()(shorteut)

add([x, shortcut])
Activation( *relu’)(x)
eturn x

Figure 10: Architecture of ResNet50 model

In [13]:

In [14]:

L

L

1 # our custom resnet
2 i = Input(shape=IMAGE_SIZE + [3])

3 X = ZeroPadding2D(padding=(3, 3))(i)

4 x = Convap(ed, (7, 7),

5 strides=(2, 2),

6 padding="valid’,

7 kernel_initializer='he_normal’

8 )(x)

9 x = BatchNormalization()(x)

1@ x = Activation('relu’)(x)

11 X = ZeroPadding2D(padding=(1, 1))(x)

12 x = MaxPooling2D((3, 3), strides=(2, 2))(x)
13

conv_block(x, 3, [64, 64, 256], strides=(1, 1))
identity_block(x, 3, [64, 64, 256])
16 x = identity_block(x, 3, [64, 64, 256])

conv_block(x, 3, [128, 128, 512])
identity_block(x, 3, [128, 128, 512])
identity_block(x, 3, [128, 128, 512])
identity_block(x, 3, [128, 128, 512])

1 # our Layers
2 x = Flatten()(x)

x = Dense(1608, activatio )(x)
pr‘ed)ct)on B Dense(len(folder‘s), activatio

s

Figure 11: Architecture of ResNet50 model

of 0.01 as we



5.3 VGG16

Figure 12: Training of ResNet50 model

The images are scaled for a dimension of 224*224 and the model is imported from keras
in built application pretrained models. The last layer is freezed and a softmax layer of
12 differnt categories are implemented isntead of default 1000 categories. as we observe

from the Figure 77?.

‘2216 = VSG16(input_shape=TMAGE SIZE + [3], weights='imagenet’, include_ top=False)

n [11]
(2 M| 1 #our you can add more if you
x = Flatten() (vggls.output)
n[13]: M| 1 prediction folders), activation-'softmax)(x)
input, outputs-prediction)
(el M

utput Shape Faran &

Blocke_pool e
blockz_cony 73558
blockz_conv 7558
Elocka_pecl i
blocka_cony 295188
blocka_cony B
Blocks_cony B
blocka_pool (MaxPoo °
blocka_cony e
blocka_conv 2353508
blocka_cony 2353888
blocke_pool (MaxPoo one, 12, 12, 512) °
blocks_conv one, 14, 14, 512) 2353888
Blocks_cony ene, 14, 14, 512) 2353808
blocks_cony one, 12, 12, 512) 2359808
blocks_pool (MaxPooling2p)  (uene, 7, 7, 512) 0

Figure 13: Training of VGG16 model

Training of 10 epochs has been done while it gives an accuracy of 80.47% Figure 77

6 Evaluation

The model evaluation is done in terms of accuracy, confusion matrix, precision, and recall
values. The measures of all models are mentioned as followed.



Figure 14: Training of VGG16 model

6.1 FEvaluation of Custom MLH-CNN Model

Figure [24] gives us accuracy change across each epoch and we see a rise of accuracy from
the 3rd epoch and a pretty constant and small improvement can be seen further. Figure[I7]
presents the loss and the validation accuracy is higher which presents the goodness of the
model than the rest of the model.

In [16]: M| 1 # loss
2 plt.plot(r.history['loss'], label='train loss')

3 plt.plot(r.history['val loss'], label='validation loss') m[17]: M # accuracy )
4 plt.legend() 2 plt.plot(r.history[ accuracy’], label='train accuracy')

5 plt.show() plt.plot(r.history[ 'val accuracy'], label='validation accuracy')
= plt.legend()
5 plt.show()

—— train loss
validation loss

— train accuracy

055 validation accuracy /

Figure 15: Loss of MLH-CNN Figure 16: Accuracy of MLH-CNN
model model

Figure bring out the confusion matrix and Figure gives the us the overall
precision and recall of the model implemented.

Figure 17: Confusion Matrix of MLH-CNN model



In [30]: M print("OverAll Recall ---",np.mean(recall))

print(“OverAll Precision ---",np.mean(precision))
OverAll Recall --- ©.444795204839397
OverAll Precision --- 0.5440140543162063

Figure 18: Precision and Recall of MLH-CNN model

6.2 FEvaluation of ResNet50 model

Figure 20| gives us accuracy change across each epoch and we see a rise of accuracy from
the 3rd epoch and a pretty constant and small improvement can be seen further. We can
see that this is the highest of all the models Figure |19 presents the loss and the validation
accuracy is higher which presents the goodness of the model than the rest of the model.

In [19]: M # accuracy

In [23]: M # loss plt.plot(r.history[‘accuracy'], label='train acc')
plt.plot(r.history['loss'], label='train loss') plt.plot(r.history[ 'val accuracy’], label='val acc’)
plt.plot(r.history['val loss'], label="val loss') plt.legend()
plt. legend() p1t. show()
plt. show()

08| — trainace
120 wval acc

— train loss
00 val loss 07
@ 06
® 05
w0 04
0 03
1) 2 4 13 8
o —
0 2 4 6 8

Figure 20: Accuracy of ResNet50
Figure 19: Loss of ResNet50 model model

Figure [21] and Figure 22| represents the code implemented to bring out the confusion
matrix and precision and recall.

In [35]: M recall = np.diag(cm) / np.sum(cm, axis = 1)
precision = np.diag(cm) / np.sum(cm, axis = 0)

In [36]: M recall

. . . I . . e . I . 0ut[36]: array([@.95007564, ©.6574746 , ©.93867925, 0.74959872, 0.97799839,
0.88181818, 0.72862454, ©.89387755, 0.67272727, 0.79609544,

, . . . . 0.80082136, 0.59594096])

- 2 2 2 ' 1 - In [37]: M precision

0ut[37]: array([0.76492083, ©.94769874, ©.78039216, ©.86964618, 0.8670314 ,
0.96517413, 0.875 , ©.85324675, 0.8641189 , 0.831571 ,
©.76320939, ©.85449735])

In [38]: M print("OverAll Recall ---",np.mean(recall))
print("OverAll Precision ---",np.mean(precision))

OverAll Recall --- ©.8036443246124213
OverAll Precision --- 0.8530422362035602

Figure 21: Code for confusion mat- Figure 22: Precision and Recall of
rix ResNet50 model ResNet50 model



6.3 Evaluation of VGG16 model

Figure

gives us accuracy change across each epoch and we see a rise of accuracy from
the 3rd epoch and a pretty constant and small improvement can be seen further. Figure

presents the loss and the validation accuracy is higher which presents the goodness of the

model than the rest of the model.

# loss
plt.plot(r.history['loss'], label='train loss')
plt.plot(r.history['val_loss'], label='validation loss')
plt.legend()

plt. show()

In [21]: M

— train loss
validation loss

Figure 24:
model

Loss of VGG16 model

Figure 23

and Figure

Figure
matrix.

def get_confusion_matrix(data_path, N):
# we need to see the data in the same order
# for both predictions and targets

print(“"Generating confusion matrix”, N)
predictions = []

targets = []

izo

In [25]: M

n_images = 0
for x, y in test_gen.flou_from_directory(
data_path,
target_size=IMAGE_SIZE,
shuffleFalse,
batch_size=batch_size * 2):
i 1
n_images += len(y)
if i % 50 == @:
print(f'{n_images} images processed.')
p = v.predict(x)
p = np.argmax(p, axis=1)
y = np.argmax(y, axis=1)
predictions = np.concatenate((predictions, p))
targets = np.concatenate((targets, y))
if len(targets) >= N:
break

cm = confusion_matrix(targets, predictions)
return cm

from sklearn.metrics import confusion_matrix

In [34]:
cm = get_confusion_matrix(train_dir, len(image_files))

L]

In [27] L test_cm = get_confusion_matrix(test_dir, len(test_image_files))

Generating confusion matrix 1561
Found 1561 images belonging to 12 classes.

Figure 25: Code for confusion mat-
rix VGG16 model

In [22]:

In [28]

In [31]:

Figure 26:

L

L

plt.plot(r.history[ accuracy'], label='train accuracy')
plt.plot(r.history[ 'val_accuracy'], label='validation accuracy’)
plt.legend()

plt. show()

0850
0825
0800
07175
0750
07125

0700

— train accuracy
validation accuracy

0675

0650
4 5 6

Accuracy of VGGI16

represents the code implemented to bring out the confusion

def plot_confusion_matrix(cm, classes,
normalize=False,
title='Confusion matrix’,
cmap=plt.cm.Blues):

This function prints and plots the confusion matrix.
Normalization can be applied by setting “normalize=True’ .

if normalize:
en = cm.astype('Float’) / cm.sum(axis=1)[:, np.newaxis]
print("Normalized confusion matrix")

1se
print(‘Confusion matrix, without normalization')

print(cm)

plt.figure(figsize=(15, 15))
plt.imshow(cm, interpolation='nearest’, cmap=cmap)
plt.title(title)

plt.colorbar()

tick_marks = np.arange(len(classes))
plt.xticks(tick marks, classes, rotation=45)
plt.yticks(tick_marks, classes)

fmt = '.2f" if normalize else 'd’
thresh = cm.max() / 2.
for i in range (cm.shape[0]):
for j in range (cm.shape[1]):
plt.text(j, i, format(cm[i, j], fmt),
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")

plt.tight_layout()
plt.ylabel( True label')
plt.xlabel('Predicted label')
plt.show()

plot_confusion_matrix(cm, labels, title='Train confusion matrix')

Confusion Matrix of

VGG16 model

Figure [27) gives the us the overall precision and recall of the model implemented.

In [32]: M 1 recall = np.diag(cm) / np.sum(cm, axis = 1)
precision = np.diag(cm) / np.sum(cm, axis = @)
In [35]: M 1 print("OverAll Recall ---",np.mean(recall))
2 print("OverAll Precision ---",np.mean(precision))

OverAll Recall --- 0.7894639933866543
OverAll Precision --- ©.8327940994085766

Figure 27: Precision and Recall of VGG16 model
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