
CricSum: Cricket News Generation from
Live Text Commentary using Abstractive

Text Summarization Technique

MSc Research Project

Data Analytics

Sachin Muttappanavar
Student ID: 20144253

School of Computing

National College of Ireland

Supervisor: Dr. Rejwanul Haque

www.ncirl.ie

National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Sachin Muttappanavar

Student ID: 20144253

Programme: Data Analytics

Year: 2022

Module: MSc Research Project

Supervisor: Dr. Rejwanul Haque

Submission Due Date: 31/01/2022

Project Title: CricSum: Cricket News Generation from Live Text Comment-
ary using Abstractive Text Summarization Technique

Word Count: 7500

Page Count: 20

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Sachin Muttappanavar

Date: 30th January 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

CricSum: Cricket News Generation from Live Text
Commentary using Abstractive Text Summarization

Technique

Sachin Muttappanavar
20144253

Abstract

Cricket is one of the most played and popular games in the world. There
are roughly 1 billion cricket enthusiasts worldwide. Most people rely on live text
commentaries rather than watching live video streaming of the Cricket match. This
resulted in the emergence of online websites providing live text commentaries. As
a result, a massive amount of live text data relating to cricket was generated.
There isn’t a lot of work done on summarising a cricket game using this live text
of Cricket game. Therefore, we implemented a system to generate news from the
live text commentaries of Cricket games. Data is collected from the ESPNCricinfo
website. Stakeholders may use our proposed model for the automatic creation of
news articles, which eliminates human effort and time spent drafting the report. We
have trained different models over commentary data and the best model is selected
based on the ROUGE score.

1 Introduction

Robotic journalism strives to generate automatic news from the existing corpus as a
completed output or as a template for the following post-editing. Robotic journalism, in
particular, is concentrating on sectors such as sports, finance, and comparable statistics-
based reporting. The automatic sports news generation has gained lots of attention in
recent days. Many sports games like cricket, football, hockey, and others are being played
every day. Manually writing the news article related to each game is tedious and time-
consuming. Also, no research is carried out to summarize cricket games. Therefore, we
are implementing a system that can generate automatic news from the live text com-
mentaries of the Cricket games. Cricket is the most famous sport in the world. Due to its
popularity, several websites emerged where one can find live text commentary as well as
match-related news articles. The emergence of live text commentary resulted in the accu-
mulation huge corpus of cricket commentaries. For a particular match, manually written
news articles and live text commentary data consist of the same wordings. Therefore we
are utilizing live commentaries data of the match to generate the news. We are using the
ESPNCricinfo website data for this work1. Implementing a system to generate cricket
news benefits stakeholders by reducing labor work and time. To implement our methods,
Natural Language Processing (NLP) text summarization techniques are employed. The

1ESPNCricinfo: https://www.espncricinfo.com/ci/content/site/company/terms_use.html

1

https://www.espncricinfo.com/ci/content/site/company/terms_use.html

goal of text summarization is to compress long source documents into shorter ones while
keeping the important points. The cricket game summarization task is more challenging
than traditional text summarization because there are distinct writing styles between the
news and commentaries. Particularly, commentary texts are more informal than the news.

Due to its practical importance, sports game summarization has steadily gained the
attention of scholars in recent days. Zhang et al. (2016) worked on constructing the
news from live commentaries of a football game. He created the dataset consisting of 150
samples for training the model. Later there were many improvements in the model built
by Huang et al. (2020) and Wang et al. (2021) contributed to the previously available
dataset. Also, there are other works on sport summarization in various sports like Hockey,
football, and many others using live commentaries. There haven’t been many efforts done
on cricket match summaries or news production from live text commentary. There is
no off-the-shelf dataset available for analysis of Cricket game summarization.Therefore,
Data collection was a crucial task in this work. We have built a separate scraper to
crawl the data from the ESPNCricinfo website and created CricSum dataset. For this
project, around 800 match instances are being gathered. We have collected all forms
of Cricket match data. The data contains a lot of noise. As a result, extensive data
cleaning activity is performed. Data processing plays a vital role in this research work
as it needs domain knowledge, insight into the cricket game. In this study, abstractive
text summarization approach is explored. Pre-trained abstractive summarization models
like T5, BART are fine tuned with our custom dataset. These sequence2sequence models
tend to produce high-frequency names in the summary than the actual right names. To
fix this issue we have masked the player names in the data. We have trained model in
template2template way. ROUGE score is used for an evaluation of model outputs. There
are many other areas where summarization of documents containing named entities and
written in different styles is required. One such application is event summarization using
tweets.

2 Related Work

Text summarization in NLP involves reducing long documents into concise summaries.
It is one of the application of the NLP. As manual text summarization work incurs lots
of time and cost, automatic summarization of the text has drawn a lot of attention and
therefore forms a substantial motivation for academic research. Various researches have
been done on text summarization using NLP. Text summarization finds its application
in areas like Newsletter, Media monitoring, Financial research books, sports, literature,
automated content creation, Email threads and many other. As part of the literature
Survey, we have reviewed researches that gave state-of-art results on extractive and ab-
stractive text summarization, Sports news generation.

2.1 Neural Abstractive Summarization:

The popularity of the neural abstractive summarization model has grown. They are cap-
able of producing coherent and flexible summaries. The neural abstractive model feeds
documents x containing n sentences to an encoder layer, which generates representations,
and then to a decoder, which generates a summary y one word at a time. Much re-
search is carried out to improvise model architecture. For instance, models that allow

2

directly copying words from input to output and models with coverage attention layer
to discourage the selection of the repetitive words by the model (Gu et al. (2016), See
et al. (2017)). Also, there are new approaches are being followed in the summarization of
text. One such is the usage of guidance signals along with input documents to make sum-
maries more correct. For example,Gehrmann et al. (2018b)implemented neural attention
model which takes the set of keywords along with input documents in the generation of
abstractive summary(Li et al. (2020)). Jin, T. Wang, and Wan 2020 extract important
relations like subject, relation, and object from source document and depict them in a
graph neural network. They demonstrated that fluent and faithful summaries can be
generated by decoding the extracted relations. Similar work is conducted by Saito et al.
(2020), keywords and highlighted sentences are pulled from the source document and
models are trained on these extracted sentences. Dou et al. (2021) built a GSum frame-
work for the summarization task. This framework can take different external guidance
signals as input along with the document. Guidance signals can be highlighted sentences,
keywords, relations, and retrieved summaries. For extracting the guidance signal from
the documents both manual and automatic systems are defined. In the manual process,
the user finds the important sentences from the document and prepares the guidance sig-
nal. In the case of an automatic system, an oracle extractor is used to create a guidance
signal. Both x and y are used to deduce the guidance signal in automatic prediction.
They implemented various models such as BertExt, BertAbs, MatchSum, BART. The
experiment is carried out on 6 datasets like Reddit, XSum, CNN/DM, WikiHow, New
York Times, PubMed. The results of the experiment show that their model is effect-
ive and performed well on the four prominent summarization datasets when highlighted
sentences were used as guidance.Overall, this research has implemented a remarkable
method to generate fluent summaries, and the interpretation of the results was good.The
standard approach in abstractive summarization involves supervised learning of models
with document-summary pairs which are costly to acquire. To address this problem
unsupervised learning model is built by Chu and Liu (2019) for summarization of the
multiple documents(Liu and Lapata (2019)). MeanSum model can produce good sum-
maries with the ROUGE score of 47.90. A drawback of this model is, it lacks attention or
pointers. Their model does not give a solution for an unsupervised way of summarizing
the single documents. Attentional encoder-decoder RNN models proposed by do well
in summarizing the text document without additional tuning. The model was trained
on the Gigaword and DUC datasets. Model generated summaries are not so coinciding
with gold summaries but summaries are readable and fluent. As part of future work,
they intend to research methods for successfully producing unique words in the sum-
mary. Marek et al. (2021) research work studies the summarization of the Czech news
reports and the effect of named entities for this task. SumeCzech dataset was used for
this task. Dataset consists of around one million news articles collected from the Czech
news website. Named entities present in the dataset are annotated using Spacy’s NER.
They first implemented extractive summarization using the baselines Random, TextRank
algorithm to select the single sentence headlines of the news articles. They proposed a
Named Entity Density extractive model to select the headline sentence. Model select the
sentence based on the highest ratio of the count of entities over the length of the sentence.
The investigation shows that the proposed model produced good results as a baseline in
selecting the headline sentences for the news article. To generate the novel summaries an
abstractive summarization sequence-to-sequence with NER model was developed. The
proposed model produced state-of-the-art results. They created ROGUE-NE, a novel

3

evaluation metric that quantifies the overlap of named items between the actual and
produced summaries. Evaluation results show that the model performs better than the
state-of-the-art methods that struggle with the named entities in summarization.

2.2 Abstractive summarization with transformed based model

Various researchers worked on the abstractive summarization of documents. Zolotareva
et al. (2020) explored Transfer Learning with unified Text-to-Text and recurrent neural
networks. Sequence-to-Squence model is built with TensorFlow, Keras, machine learning
and neural network libraries. This model is configured following values for hyperpara-
meters Epochs = 25, Optimizer = ’rmsprops’, batchSize = 64, latent dimensions = 256,
Embedding dimension = 200, Loss function = “sparsecategoricalcrossentropy” . These
parameters are selected through a manual process. The accuracy and loss values of the
model are analyzed to check the performance of the model. The model was trained and
tested over the BBC news dataset sourced from Kaggle. Similarly, pre-trained model T5
is fine tunned with BBC news custom data. 80 percent of data is used as a training set
and the rest as a test set. Results of this model are found and analyzed. They showed
that the T5 base model performed well on BBC news data compared to the recurrent
neural network model. As future work, they suggested studying the transformer-based
models for document summarization tasks. In this the research methods and model res-
ults are excellent. Gehrmann et al. (2018a)Neural Abstractive summarization models
are good at generating fluent summaries but fail to select the contents from the doc-
ument. In this research paper, this problem is addressed by applying the bottom-up
attention step as a selector. The bottom-up attention step restrains the model to select
the likely phrases from the document. The model is trained over CNN-DM and NYT
corpora. The system combined with the bottom-up attention layer has shown significant
improvement in ROUGE value. Bajaj et al. (2021) researched on summarizing the long
documents using pre-trained language models. They studied the low resource setting of
summarization of long source documents. They curated a dataset of 120 instances con-
sisting of the source document and summary from Amicus Briefs. Salient features from
the document are extracted using GPT-2 language model perplexity scores. Compressed
documents are fed to the BART model. ROUGE evaluation is used to evaluate the BART
model. BART model produced a good ROUGE value and the summary of the model was
coherent as well as fluent. Improvising the performance of the existing summarization
techniques is a challenging task. The research was done in this direction to improve
the existing techniques and one such work is by . They have used CNN/DailyMail and
NewsRooms datasets. Their proposed framework consists of the transformer to encode
the source document and then the sequence-to-sequence model. It is discovered that
the transformer and seq2seq models work well together, resulting in a more detailed en-
coded vector representation. This research outcome conveys that paying attention to
the wording of target words during abstraction improves performance. The proposed
hypothesis and framework experiment on the extractive and abstractive summarization
task and CNN/DailyMail datasets are used for evaluation. The results of the models are
outperform existing state-of-art models.The novel data-driven framework is developed
for abstractive summarization using semantic representation. It is an Abstractive Mean-
ing Representation driven statistical abstractive summarization framework. Here, MAR
graphs are constructed by parsing the source text, and then graphs are transformed into
a summary graph. Final summaries are generated from this summary graph. The graph-

4

to-graph transformation, which translates source semantics into a summary graph, is
their fundamental goal. The research approach was promising and experiment results are
favorable.Email thread summarization is a challenging task. EmailSum is a framework
developed by Zhang et al. (2021)which implements email thread summarization tasks.
Human annotated short and long summaries of 2549 email threads data related to dif-
ferent topics are used for this work. In this study different summarization techniques
like single-document and hierarchical models, transfer learning, semi-supervised learning,
extractive, and abstractive methods are explored. Manual evaluation of the summaries
is done to evaluate the generated summaries. The challenging part of this study was
understanding the sender’s intent and determining the roles of sender and receiver. They
discovered that treating email chain data as one document and fine-tuning T5establishes
a reasonable baseline. They emphasised more on the manual evaluation of the model
outputs as automatic evaluation does not ensure the correctness of summaries.

2.3 Sports new generation using natural Language Processing:

Constructing the news from the live text commentaries: In recent days, sports game
summarization has drawn the attention of many researchers. Much research is being
carried out to automatically generate the sports from the available sports-related data.
Kanerva et al. (2019) built a system to generate the news of Finnish ice hockey. The
system is trained on the news articles data collected from the Finnish News Agency STT.
They manually prepared the data to get it to a state appropriate for training the end-to-
end systems. Pointer generation network model having encoder-decoder with attention
mechanism was used for model a probability distribution of the words over the known
vocabulary. A distinct coverage attention vector is kept to tell the model about its previ-
ous attention decisions. Thus model prevents the repetition of texts in generated results.
Their proposed model performed well with a BLEU score of 19.67 on test data. But their
summary contains the high-frequency player names instead of the actual player name.
Also, factual content was missing in the summary text. Efforts are made towards gener-
ating the news from the live text commentaries of the football game. Zhang et al. (2016)
built a new dataset for their research. They have crawled live text commentaries of foot-
ball games and manually written news articles from both Sina Sports and 163 football.
They created a dataset consisting of 150 matches live text. Learning to rank model was
developed with novel task-specific features. A probabilistic sentence selection method
was implemented to prevent the local redundancy problem. Their experimental result
shows that their proposed model was appropriate and the task is achievable. They stated
that as live commentary and sports news are written in different styles, some post-editing
rewritings will make the summary more natural. Also, they suggested concentrating on
collecting datasets on a larger scale. Wang et al. (2021) extended this research by con-
tributing the data as well as different abstractive summarization models. They addressed
noise issues associated with the dataset and the neglect of lexical overlap between news
and commentaries results in the low-quality pseudo-labeling algorithm. They proposed
a two-step model consisting of Selector and Rewriter. Selector picks important sentences
from live text commentaries and then seq2seq models are trained over it. Their system
can summarise football games more appropriately. Gunasiri and Jayaratne (2019) worked
on natural language generation(NLG) by using the scorecard as an input to the system.
They tried to automate the Cricket game news generation process by using the NLP.
Their system can be utilized by the journalist to automatically generate news thereby re-

5

ducing time and cost incurred in the manual effort. A template-based system is developed
to generate news from the structured text data in the Sri Lankan Style. They studied the
usefulness of a template-based system for cricket sports news generation. They mentioned
that their system is useful particularly in a language other than English as there are not
many libraries, packages are available to build systems. Their proposed system typically
consists of two levels of templates namely sentence template and phrase template. It was
challenging to evaluate the NLG system because of the lack of evaluation metrics. They
have used three evaluation scores which are calculated to compare the actual output of
the system with the reference text from the two websites. Their system produced a good
score in terms of similarity score, degree of closeness, and data count. But fluency of the
summary was not good. Model was not able to follow the pattern in the news.

2.4 Summary:

A number of concerns and issues have been found as a result of the relevant literature
study. Fewer studies have been conducted in the sports summarization task, and the
majority of those that have been conducted are related to football and hockey games. To
the best of my knowledge, a little study is done on summarising a cricket game utilizing
live commentary and generating news. There are no off-the-shelf datasets available for
generating the news from the Cricket game. Also, from the literature review, it was
discovered that fewer studies linked to the use of pre-trained models in the sports news
production task.

3 Methodology

This research project employs a text summarization method to summarise a cricket game
leveraging live text commentary with great fluency and readability. Methodology followed
in this research study is shown in Figure 1. This research methodology ensures that the
investigation is conducted in a methodical manner.It consists of seven phases: Business
Understanding, Data Collection, Data Understanding, Data Processing, Data Transform-
ation, Modeling, Evaluation. The project cycle is described in these phases.

3.1 Business Understanding

At present, there is no existing system to automatically generate the news from the live
text commentaries of the Cricket game. Expertise is necessary to hand compose the news
article for the Cricket game, which is costly in terms of both money and time. To address
this issue, we are implementing a system that automatically summarises the Cricket game
post-completion. In terms of generating news stories, this approach is less labor-intensive,
cost-effective, and time-consuming. It may be used by stakeholders in the development
of cricket news. We have created a new dataset for this research work. To create the
system, several texts summarising approaches such as extractive techniques, abstractive
techniques, and pre-trained models are investigated and applied.

3.2 Data Collection

There are no off-the-shelf datasets for evaluating sports news creation, as far as we know.
As a result, for this study, a fresh dataset must be created from scratch. Meanwhile,

6

written commentary of cricket games is immensely popular all around the world. Most
cricket fans do not have access to live video streaming of matches, thus they must rely on
written commentary provided by online services. There are several internet sources that
offer ball-to-ball live text commentary of Cricket matches. ESPNcricinfo is a popular
website that offers live text commentary as well as news articles related to the Cricket
game. Data for all cricket formats, including Twenty20 international, International one-
day innings, and Test matches, is available on their website. Everyone has free access to
this information. This information is being gathered for our research purposes. We have
Cricket data of all the formats. We were required to collect both live text commentary
and news articles from the same Cricket match for evaluation purposes. For each Cricket
match, there exists a documented live text commentary after the matches and a manually
written news article on the ESPNCricinfo website. News articles are written by profes-
sional editors manually and hence they are suitable for our evaluation of the summaries.
We have scraped the 782 match instances data on the ESPNCricinfo. To scrape the
data we have implemented a Java-based automation tool. Scraped data is parsed using
a parser(Jsoup- Java library) to form the structured text file. Data includes information
such as over details, run scored for each ball, player details, and text commentary for
each ball. Sample cricket game report data is illustrated in the

3.3 Data Understanding

In this phase, we studied the scraped data. Data consists of live text commentaries and
news articles of the same game. The collection contains all forms of Cricket game data.
Test matches are often played over three to five days. They are made up of several innings.
As a result, the text data for test matches is slightly lengthier. One-day internationals
(ODIs) are played in a single day. When compared to Test matches, the size of ODI
matches is tiny. Twenty20 matches are 20-over contests that often collect fewer text data
than other types of matches. For our research study, we assume that all the formats of
Cricket games follow the same writing style for news articles. Data is collected in the
text files. The text consists of lots of noise. Some irrelevant data is captured in the
data such as tweets, player’s interviews, links, advertisements. These all data need to be
erased from the data. We have conducted extensive statistical analyses of the data. Some
cricket matches do not have commentary, indicating that the match was not played for
various reasons. Excluding such instances from the data forms a dataset of size (489,2).
Each Cricket match comprises an average of 143 sentences. The average number of words
present in the commentaries is around 6599. Where as gold standard news articles contain
an average of 5 sentences and around 232 words are present in each report. Dataset also
consists of information about the player of the match and toss results. Data needs to be
processed and transformed for training the models.

3.4 Data Pre-Processsing

This step focuses primarily on pre-processing to eliminate superfluous data from the given
dataset, allowing the model training process to go more efficiently. Data consists of a
lot of noise in it. Such noise will result in the prediction of inappropriate outputs by
the model. Such data needs to be processed from the data. Dataset consists the online
advertisements in the form of hyperlinks. These hyperlinks should be filtered out from
the dataset. It is observed that some of the data is either commentary or news articles for

7

some match instances. We have to delete such match instances from our dataset. Some
of the commentary phrases for certain match instances are too tiny, and it is apparent
that those words will not contribute to news production. So short sentences are should
be taken out from the dataset.

3.5 Data Transformation

Data transformation involves converting data from one format into another format. As
our data is text data, it needs to be transformed into vectors so that machine learning/
deep learning models can understand. Word embedding of the text should be done to
understand the semantic, syntactic context of a word and also to understand the closeness
between the words. There are various libraries available for tokenization of the sentences
like NLTK, genism, Keras. We have to make use of these packages for tokenization of the
text. For pre-trained models, respective tokenizers should be used to split the sentences
into small chunks of words. This helps the model in understanding the meaning or context
of the word in sequence.

3.6 Modelling

In this section, we have outlined architectures used for the BART, T5. The aforemen-
tioned models were employed to accomplish the work of summarising a Cricket game.

3.6.1 Pre-trained model - T5

In transfer learning the model is first trained on the data-rich tasks and knowledge gained
in solving this task is stored. Model apply this gained knowledge on different but similar
problems. These pre-trained models can also be fine-tuned with custom datasets for
the downstream task. T5 is one of the pre-trained models developed by google. It is a
unified framework that converts text-based language problems into a text-to-text format.
The model was trained on ”Colossal Clean Crawled Corpus”(C4), and they were able to
achieve state-of-the-art results on different tasks like summarization, text classification,
question answering, and more. To aid future work the T5 model implementation is
publicly available along with the C4 dataset.

3.6.2 Pre-trained model - BART

BART is a pre-trained denoising autoencoder for sequence-to-sequence models. It is
trained on Corrupted text with a random noising function and a learning model to regen-
erate the original texts. It is a denoising autoencoder that means optimizes the recon-
struction loss between the source document and the decoder’s output. Transformer-based
neural machine translation architecture is used by the BART. This BART model is pre-
trained for various language problems. It can also be fine-tuned for downstream tasks like
Sequence Classification, Token Classification tasks, Sequence Generation Tasks, Machine
Translation. The model has shown state-of-the-art results in various text generation
tasks.

8

3.7 Evaluation

In this step, we evaluate the degree to which the model meets our research objectives
and try to identify if there is any reason for the model deficiency. As our research task is
related to text summarization we will be using Recall-Oriented Understudy for Gisting
Evaluation(ROUGE) metrics to assess the model performance. ROUGE is a software
package(Lin (2004)) available for evaluating automatic text summarization. ROUGE
is more interpretable than any other text summary evaluation metrics. ROUGE score
basically a score of overlapping words. ROUGE score interpretation is as below:

• ROUGE n - recall: It tells about the what percent of the n grams present in the
reference summary are also present in the generated summary. Recall calculation
formula is shown in the Figure 2

• ROUGE n - precision: This score explains the what percent of n-grams in the
generated summary are also present in the reference summary. Precision calculation
formula is shown in the Figure 3

• ROUGE l - It denotes the number of longest sequences common between the pro-
duced summary and the reference summary.
where, n is number of grams

After assessing the models with respect to research success standards, implemented model
that meets the expected results become a final model.

4 Design Specification

This section explains about the implementation approach followed in this research. This
research study is to generate news from the Live commentary texts of Cricket games.
The goal of this project is to create a system that provides an abstractive summary of
a cricket game using its text commentary. For generating the summary, news articles
pertaining to the given match are used as a reference. To implement the system we
proposed a method. The proposed method flowchart is shown in the Figure 4. We ended
up with this framework through multiple experiments and observations. We first trained
sequence2sequence models such as BART, T5 with live text commentary. It is observed
that the transformer models are following the pattern in the reference but tend to generate
the news with high-frequency names instead of the right player names even though player
names are not present in the text commentaries. To overcome this name mismatch
issue, we train the transformer sequence2sequence model in a template2template way.
In template2template appraoch, we mask the player names with a special kind of token
’Player#’ both in the input and target summary. To achieve masking of the player
names we have implemented the script using the Standford NER tool. The Figure 7
depicts masked sample commentary. After replacing the player names with special tokens
sentences look like a template. Post converting commentaries into the template, we train
the transformer sequence2sequence model over templates. Through this approach, the
model concentrates more on the relations among the players and their actions and is least
impacted by the high-frequency names. Summary produced by the transformer models
contains special tokens Player. To generate news, the report editor might manually
replace these tokens.

9

Figure 1: Methodology

Figure 2: ROUGE Recall Formula

Figure 3: ROUGE Precision formula

10

Figure 4: Flow chart of proposed method

5 Implementation

This section describes the implementation of the different text summarization models and
scraper for data collection. As mentioned in section 3, the data was not readily available
for the research study. We have gathered data with help of a Java-based selenium auto-
mation script. For summarization tasks, TextRank, BART, T5 models are implemented.
A detailed explanation of the implementation of scraper and models are explained below.

5.1 Implementation of Scraper

We have collected data from the ESPNCricinfo web application. As we planned to col-
lect data from the web application, we have chosen the Selenium automation tool for
writing the automation script to fetch data using Java. Selenium is the best open source
automation tool available for the web browser application, it is easy to implement and
use. To gather the web pages of the commentary and report sections of the website,
two automation scripts are built. Like this, every match is visited on the website and
web pages of commentary and news articles are scraped. All the collected HTML files
need to be parsed. For parsing the web pages we have used the Jsoup, a java library
for parsing, extracting, and manipulating data available in the HTML files. HTML files
contain many irrelevant data along with text commentary and the news article. We
managed to extract the required data by writing the complex xpaths. Extracted data
contains information like current over, ball status, Player details, text commentary about
the respective ball, player of the match, Teams name, score of each team, the status of
the match. All the extracted data are saved into text files. Separate files are created
for live text commentary and for corresponding news articles. Like this, all the collected
HTML files are processed and required data are collected in the text files. Around 782
match instance data is collected. Sample data collected is shown in the Figure 6. Flow
chart of the Scraper implementation is shown in the Figure 5

11

Figure 5: Flowchart of Scraper implementation

Figure 6: Text commentary

12

5.2 Data Aggregation

We have used python language with latest version for code implementation. For data
aggregation and processing we have leveraged the pandas library of python. For model
training we have utilized the ”google colab” a google cloud platform. They provide the
free service for limited hours on daily basis. Because of this time constraint building the
model took more time.

5.3 Dataset Description

As explained in section 5.1, data is scraped from the ESPNCricinfo website. Dataset con-
sists of two columns and 465 rows. Description about is illustrated in Table 1. input text
contains live commentaries of Cricket matches and the target text column contains news
articles related to the match.

Table 1: Data Description

Column names input text,target text
Number of columns 2
Number of rows 465

5.4 Dataset Processing

As mentioned in the section 5.1 dataset is store in the text file. Text files are imported
into pandas dataframe. The dataset contains a lot of noise and was very unstructured.
We’ve done a huge amount of data processing work. Follow below for data-processing
steps:

• Some of the matches are not played due to rain or other reasons does not contain
any commentary. Such a match does not contain commentary data though news
article exists. This data is no longer useful for training the model and has been
deleted from the dataset.

• Data includes advertisements for social media platforms such as Facebook, Mes-
senger, Pinterest, and Twitter. These text records should be removed from the
dataset.

• Live commentary text dataset consists of the tweets related to the event that
happened in the game. Such text data is kept out of the dataset because our
study focuses on producing news from live text commentary.

• Along with text commentaries, players’ interviews text is also present in the data.
They are taken out from the data as the study concentrates only on commentary
texts.

• Some of the matches commentaries are too small(<15 characters). In the news
generation, this text will not communicate any information. They’ve been removed
from the data.

13

• All the commentary text was in decreasing order of the over. We should feed the
model with increasing order of the commentary texts. Due to this, we transformed
them into increasing order using pandas inverse function. Reverting the document
is handled carefully so that there should not be mismatch in the first innings data
and second innings data.

• News articles collected are too big. As per our research, we are trying to predict
brief news articles. Due to this, it is required to filter the news articles. We
manually observed the 10 news articles and tried to understand the pattern. It is
understood that the first 5 to 8 sentences brief the complete match summary. It
includes information like the winner of the match, player of the match, key players
in the respective match, and their scores. We decided to filter the first 6 sentences
from the news article and use them as reference summaries.

Processing of the commentary data and processing of the reports are conducted in differ-
ent files. Because of that both are saved into different file formats. Later both the files
are loaded into pandas dataframe and exported into excel files. Post processing there
were 465 match instances of data is left in the dataset. These datasets are divided into
three parts namely training set, test set, evaluation set in the ratio of 80%:10%:10%.

5.5 Implementation of Pre-Trained model - T5 base

T5 model was developed by Google(Raffel et al. (2019)) and it is pre-trained on data-rich
tasks. The knowledge gained during the training phase is retained with the model and it is
applied while solving the other different but similar problems. We are leveraging the Hug-
gingFace transformers library which is an extremely famous python library for providing
the pre-trained models that are significantly helpful in various natural processing tasks.
It supports PyTorch, TensorFlow 2. In this research work, the HuggingFace library is
being used for the implementation of the T5 model using PyTorch. PyTorch is an open-
source machine learning library developed by Facebook AI researchers. We will be using
the PyTorch software package as well for the implementation. We first implement the
PyTorch Dataset class by inheriting the Dataset class. This class basically houses the
functions required for fetching our dataset and loading data into the data loader and
then feeding it to the network for model fine-tuning. LightningDataModule class inherits
PyTorch Lightning data module. This class implementation consists of instance meth-
ods like train dataloader, test dataloader, val dataloader for loading respective data into
DataLoader. A LightningModule is implemented which inherits the PyTorch lightning
module. Lightning modules do not define the model but define the system. It houses
methods for the train loop, the validation loop, the prediction loop, the optimizer, the
inference. We have used ’adam’ optimizer for optimizing the weights of neurons and
and learning rate was set to 0.0001. T5Sum is a custom class and it defines methods
like from trained, train, load model, predict. from trained method loads the pre-trained
t5-base model. First, we create an instance of the T5Sum class. From this instance,
we call the from pretrained method to set the T5tokenizer and model. Tokenizers are
used to create chunks of words from the text. We commence the model’s training phase
after loading the tokenizer and T5 model. To train the t5-base model we defined the
train method which takes important arguments like training data frame, evaluation data
frame, source maximum tokens, target maximum tokens, number of epochs. Internally

14

these arguments are passed to the LightningDataModule and LightningModel class con-
structor to create their instance. Also, a trainer class instance is created and using this,
a model is fit on the training dataset. Once the model is trained on the training data it
is can be loaded using the load model method. Once the model is loaded it can be used
for the prediction of output summary. Dataset is split into training, test, and evaluation
datasets. Model is trained using train dataset and for the testing, the test dataset is
employed.

5.6 Implementation of Pre-Trained model - BART

BART is a model developed by Facebook(Lewis et al. (2019)) which is a denoising au-
toencoder. It is trained by corrupting the text documents and optimizing the recon-
struction loss in regenerating the source document. In this research study, we have used
the publicly available simple transformer package of python for loading the Pre-Trained
BART model. The simple transformer provides a simple way of utilizing the pre-trained
models. We have used the Seq2SeqModel class of simpletransformers.seq2seq package
for our text summarization task. We have also created the instance of Seq2SeqArgs
class for defining the important arguments for the model. Using this instance we set
the parameters like the number of epochs, the maximum length, optimizer, early stop-
ping, learning rate. Seq2SeqModel class constructor method takes important arguments
like encoder decoder type, encoder decoder name, Seq2SeqArgs instance. Internally the
Seq2SeqModel connects with the HugginFace transformers library to load the requested
model. Tokenizer, optimizer initialization happens internally. Dataset is divided into a
training set, test set, evaluation set. On Seq2SeqModel instance train model method is
called to which training, as well as evaluation dataset, are passed. This initializes the
training phase of the model. After the training phase, the model is evaluated using an
evaluation dataset. Then evaluation loss is calculated. Both evaluation and training loss
values are illustrated on the graph using the matplotlib library. We have experimented
by running the model for different epochs and tried to find the optimal epoch value for
which a model showed good results. Also, the training and evaluation loss graphs are
illustrated to understand the model training process.

5.7 Implementation to mask the Player names in the dataset
using Named Entity Recognizer(Standford NER)

Standford NER is a Java based Named Entity Recognizer. NER recognizes the person
name, company name in the sequences of words in the text. NER jar files are downloaded
into the local machine. NLTK library provides a way of reading these java files into
python. We have implemented code to identify the player names in each match data.
Some of the names identified are not proper. We have done extensive processing of these
names manually. Then all the player names present in each match data are replaced by
the special token ’Player’. Figure 7 shows the text with masked player names.

6 Evaluation

In this section, we discuss about the evaluation process and interpretation of the model
results. As we know, this research work goal is to generate the news or summary from the

15

Figure 7: Sample masked dataset

live text commentary, we trained T5 and BART transformer models for summarization
work. Given that our target variable data type is text summary, we require metrics that
compare the generated summary to the reference summary and indicate how close and
fluent the generated summary is to the reference summary. Therefore, we have used
the popular text summary evaluation metric Recall-Oriented Understudy for Gisting
Evaluation(ROUGE). ROUGE score near to zero indicates low similarity between the
generated summary and reference summary, whereas ROUGE score close to 1 shows that
the created summary and reference summary are quite comparable. We experimented
with the models with different parameter values and selected the models parameters
which showed high ROUGE values as final models. We have selected the following three
models and their ROUGE score results are showcased in the Table 2.

Table 2: ROUGE Score of all models

Models ROUGE-1 ROUGE 2 ROUGE-l
T5 base 32.8125 6.9444 29.6875
BART 37.5147 10.4743 32.1678
BART with mask data 38.2057 5.1557 34.8633

6.1 Experiment 1

First we fine-tuned the pretrained T5 model with our custom dataset. Dataset was split
into training, test, evaluation set. T5 model configuration is given in the table Table 3.

Table 3: Model 1 configuration

Model T5 base
source maximum token length 512
target maximum token length 128
batch size 4
Epochs 5
Early stopping True
Learning Rate 0.0001
Optimizer AdamW

After training the T5 model with our own dataset, we imported it from its stored
location and used it to forecast the output summary. On the test dataset, we discovered
the model’s ROUGE score. ROUGE score of T5 base model is showed in the Table 2. The

16

ROUGE 1 accuracy score is 32%, which implies that 32% of the uni-grams in the produced
summary are also present in the target summary. The precision score of ROUGE 1 is
acceptable, however the ROUGE 2 value of 6% is less than the permissible margin. The
ROUGE-l value is 29.68 %, which is a good result.

6.2 Experiment 2

Second model we trained is BART model. It is fine-tuned with the our custom dataset.
Model configuration shown in the Table 4.

Table 4: Model 2 configuration

Model BART
source maximum token length 1024
target maximum token length 1024
batch size 4
Epochs 5
Early stopping True
Learning Rate 0.0001
Optimizer AdamW

We trained the model on training dataset and trained model is used for prediction of
summarise for the test dataset. It is discovered that the model summaries are excellent
and provide high ROUGE scores. ROUGE score of the BART model is mentioned in the
Table 2 . It generates summaries rather well, with a ROUGE 1 precision value of 37.5
percent, a ROUGE 2 precision value of 10.47 percent, ROUGE-l precision value of 29.6%.
Results are slightly higher compared to the model 1 scores. This indicates that the high
number of overlapping words present in BART generated summary are also present in
the reference summary.

6.3 Experiment 3

Third experiment done using the masked data. BART model is trained on the masked
data with parameter configuration showed in the Table 5 . Results of the model are

Table 5: Model 3 configuration

Model BART
source maximum token length 1024
target maximum token length 1024
batch size 4
Epochs 10
Early stopping True
Learning Rate 0.0001
Optimizer AdamW

showcased in the Table 2.ROUGE 1, ROUGE 2, ROUGE L values are 38.2057, 5.1557,
34.8633 respectively. We can clearly see that the model is producing the significant

17

ROUGE 1, ROUGE L score. But fail to improve the ROUGE 2 values. In terms of
generating common 1 grams and longest subsequent model 3 is performing well.

6.4 Discussion

The research project on Cricket live text commentary was a challenging work right from
the data collection to the model evaluation. We have extraordinary work on the data
creation part. We have scraped data of 782 matches. As the dataset gathered was
unstructured and consists of a lot of noise in it we have conducted rigorous data pro-
cessing tasks to prepare data for model training. We implemented the pre-trained models
T5 base, BART. Models are fine-tuned with our dataset. It was observed that the se-
quence2sequence models tend to generate summaries with high-frequency player names
instead of the actual player names present in the commentary. To address this issue,
we employed a template2template model where input and output templates are with
masked player names. This approach produced good results in terms of the ROUGE 1
and ROUGE L but scored less ROUGE 2 value. Dataset consists of a lot of noise. Names
of the player are mentioned differently at different positions in the data. For example,
AB de Villiers was written completely at some places, and in other places, it was just de
or AB or Villiers. Due to this Named entity recognizer failed to find the names properly.
We should have conducted manual cleaning of player names. Maybe due to this reason
the model was not generating fair results. In fine-tuning the hyperparameters, we should
have done more trial and error. Furthermore, since the sample size was small, the model
was unable to understand the pattern in the data adequately. Due to time restrictions,
we gathered around 800 matches of live text commentary. Overall, we were able to pro-
duce state-of-the-art results with fair and fluent summaries using the BART abstractive
summarizer in template2template way.

7 Conclusion and Future Work

In this research work, we implemented challenging task Cricket game news generation
using live text commentary. We have done excellent work in creating the dataset for
our research study. A system is developed based on the pre-trained model BART for
summarising the Cricket game using live text commentary. We trained the model in a
template2template way. Our proposed method is appropriate. Model is able to produce
fair and fluent summaries with high ROUGE 1 and ROUGE L scores. ROUGE 2 score is
bit low.We propose that future effort focus on enhancing the model’s ROUGE 2 score and
contributing data to CricSum dataset. Source code and dataset is available on GitHub.2

References

Bajaj, A., Dangati, P., Krishna, K., Ashok Kumar, P., Uppaal, R., Windsor, B., Brenner,
E., Dotterrer, D., Das, R. and McCallum, A. (2021). Long document summarization in
a low resource setting using pretrained language models, Proceedings of the 59th Annual
Meeting of the Association for Computational Linguistics and the 11th International

2For source code: https://github.com/sachinm226/CricSum

18

https://github.com/sachinm226/CricSum

Joint Conference on Natural Language Processing: Student Research Workshop, Asso-
ciation for Computational Linguistics, Online, pp. 71–80.
URL: https://aclanthology.org/2021.acl-srw.7

Chu, E. and Liu, P. (2019). MeanSum: A neural model for unsupervised multi-document
abstractive summarization, in K. Chaudhuri and R. Salakhutdinov (eds), Proceedings
of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of
Machine Learning Research, PMLR, pp. 1223–1232.
URL: https://proceedings.mlr.press/v97/chu19b.html

Dou, Z.-Y., Liu, P., Hayashi, H., Jiang, Z. and Neubig, G. (2021). GSum: A gen-
eral framework for guided neural abstractive summarization, Proceedings of the 2021
Conference of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Association for Computational Linguistics,
Online, pp. 4830–4842.
URL: https://aclanthology.org/2021.naacl-main.384

Gehrmann, S., Deng, Y. and Rush, A. (2018a). Bottom-up abstractive summarization,
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Pro-
cessing, Association for Computational Linguistics, Brussels, Belgium, pp. 4098–4109.
URL: https://aclanthology.org/D18-1443

Gehrmann, S., Deng, Y. and Rush, A. M. (2018b). Bottom-up abstractive summarization,
EMNLP.

Gu, J., Lu, Z., Li, H. and Li, V. O. (2016). Incorporating copying mechanism in sequence-
to-sequence learning, Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), Association for Computational
Linguistics, Berlin, Germany, pp. 1631–1640.
URL: https://aclanthology.org/P16-1154

Gunasiri, D. and Jayaratne, L. (2019). Automated cricket news generation in sri lankan
style using natural language generation.

Huang, K.-H., Li, C. and Chang, K.-W. (2020). Generating sports news from live com-
mentary: A chinese dataset for sports game summarization, Proceedings of the 1st Con-
ference of the Asia-Pacific Chapter of the Association for Computational Linguistics
and the 10th International Joint Conference on Natural Language Processing, pp. 609–
615.

Kanerva, J., Rönnqvist, S., Kekki, R., Salakoski, T. and Ginter, F. (2019). Template-free
data-to-text generation of Finnish sports news, Proceedings of the 22nd Nordic Con-
ference on Computational Linguistics, Linköping University Electronic Press, Turku,
Finland, pp. 242–252.
URL: https://aclanthology.org/W19-6125

Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., Stoy-
anov, V. and Zettlemoyer, L. (2019). Bart: Denoising sequence-to-sequence pre-
training for natural language generation, translation, and comprehension, arXiv pre-
print arXiv:1910.13461 .

19

Li, H., Zhu, J., Zhang, J., Zong, C. and He, X. (2020). Keywords-guided abstractive
sentence summarization, Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 34, pp. 8196–8203.

Lin, C.-Y. (2004). Rouge: A package for automatic evaluation of summaries, Text sum-
marization branches out, pp. 74–81.

Liu, Y. and Lapata, M. (2019). Hierarchical transformers for multi-document summariz-
ation, arXiv preprint arXiv:1905.13164 .

Marek, P., Müller, Š., Konrád, J., Lorenc, P., Pichl, J. and Šedivỳ, J. (2021). Text sum-
marization of czech news articles using named entities, arXiv preprint arXiv:2104.10454
.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li,
W. and Liu, P. J. (2019). Exploring the limits of transfer learning with a unified
text-to-text transformer, arXiv preprint arXiv:1910.10683 .

Saito, I., Nishida, K., Nishida, K. and Tomita, J. (2020). Abstractive summarization with
combination of pre-trained sequence-to-sequence and saliency models, arXiv preprint
arXiv:2003.13028 .

See, A., Liu, P. J. and Manning, C. D. (2017). Get to the point: Summarization with
pointer-generator networks, Proceedings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), Association for Computa-
tional Linguistics, Vancouver, Canada, pp. 1073–1083.
URL: https://aclanthology.org/P17-1099

Wang, J., Li, Z., Yang, Q., Qu, J., Chen, Z., Liu, Q. and Hu, G. (2021). Sportssum2.0:
Generating high-quality sports news from live text commentary, Proceedings of the 30th
ACM International Conference on Information amp; Knowledge Management, CIKM
’21, Association for Computing Machinery, New York, NY, USA, p. 3463–3467.
URL: https://doi.org/10.1145/3459637.3482188

Zhang, J., Yao, J.-g. and Wan, X. (2016). Towards constructing sports news from live
text commentary, Proceedings of the 54th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), Berlin, Germany.

Zhang, S., Celikyilmaz, A., Gao, J. and Bansal, M. (2021). EmailSum: Abstractive email
thread summarization, Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), Association for Computational Linguistics,
Online, pp. 6895–6909.
URL: https://aclanthology.org/2021.acl-long.537

Zolotareva, E., Misikir Tashu, T. and Horvath, T. (2020). Abstractive text summarization
using transfer learning.

20

	Introduction
	Related Work
	Neural Abstractive Summarization:
	Abstractive summarization with transformed based model
	Sports new generation using natural Language Processing:
	Summary:

	Methodology
	Business Understanding
	Data Collection
	Data Understanding
	Data Pre-Processsing
	Data Transformation
	Modelling
	Pre-trained model - T5
	Pre-trained model - BART

	Evaluation

	Design Specification
	Implementation
	Implementation of Scraper
	Data Aggregation
	Dataset Description
	Dataset Processing
	Implementation of Pre-Trained model - T5 base
	Implementation of Pre-Trained model - BART
	Implementation to mask the Player names in the dataset using Named Entity Recognizer(Standford NER)

	Evaluation
	Experiment 1
	Experiment 2
	Experiment 3
	Discussion

	Conclusion and Future Work

