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1 Introduction

This configuration manual document helps the end-users to reproduce the entire
implementation of the project “Football Player Selection Based on Positions and Skills
Using Ensemble Machine Learning and Similarity Measure Techniques”. It comprises
hardware and software requirements, the python program required for implementing this
research approach starting from data pre-processing, EDA, feature selection, model building,
hyperparameter tuning of the models, and the evaluation of the models. Also, the python
program developed for creating the web app in finding similar players using cosine similarity
is explained below.

2 Hardware Requirements

This research is implemented successfully on the “Lenovo IdeaPad S540-15IML D” laptop.
To reproduce this research implementation, the system should have the basic configuration
mentioned below or with advanced configurations

Operating System: Windows 10

Processor 1i5-10210U CPU
RAM :8GB
Storage 256 GB SSD

3 Software Requirements

This research code is implemented using jupyter notebook, which is an interactive web-based
platform and with python programming. The code is delivered as .ipynb files for reproducing
and the web app is also developed using the python inbuilt streamlit libraries. Below is the
procedure to install the jupyter notebook in two ways

3.1 Download and Installation of Jupyter Notebook using ANACONDA

e Download ANACONDA from ! and install anaconda simply by clicking next and
finish the installation process. Then Install the jupyter notebook easily from the
anaconda navigator by just simply clicking on Install.

! https://www.anaconda.com/products/individual


https://www.anaconda.com/products/individual
http://www.anaconda.com/products/individual

3.2 Installation of Jupyter Notebook using the commands

e Follow the instructions mentioned 2 to install the jupyter notebook using the
commands.

3.3 Documentation for Jupyter Notebook

e Please refer to the 2 documentation for further clarity regarding the jupyter notebook
and its installation.

4 Dataset

Once the setup is done by downloading and installing the jupyter notebook, Upload all the
three .ipynb files in the current working directory. The FIFA 21 dataset can be downloaded
from Kaggle  and placed under the same working directory where the .ipynb files are placed.
When you are running the .ipynb files, the data can be properly read from the data file in the
same working directory.

5 Importing Libraries

To implement this research right from cleaning the data, EDA, feature selection, model
building, hyperparameter tuning, evaluation can be done with the help of certain python
inbuilt libraries. To start with the implementation, let’s import all the required libraries first
as shown below in Figure 1.

Importing Libraries to build Ensemble Machine Learning Algorithms and Similarity Measures

Techniques
In [1]: |# This Python 3 environment come elpful analytics libraries installed
# For example, here's several hel to load

import numpy as np
import pandas as pd
from pandas import DataFrame
from scipy.spatial import distance #

#
#
#

import warnings # to repor
from sklearn.metrics import classification :
import matplotlib.pyplot as plt
import seaborn as sns

import plotly.express as px
from sklearn.feature selection import SelectKBest # Im
from sklearn.feature selection import chi2 #
from sklearn.preprocessing import MinMaxScaler # te
from collections import Counter # to
from imblearn.over_ sampling import SMOTE,ADASYN e
from sklearn.preprocessing import RobustScaler, Standardsaaler LabelEncod LabelBlnarlzer #
from sklearn.preprocessing import StandardScaler # To perform standard ssaling

< >

Figure 1: Imported Libraries

2 https://jupyter.org/install
3 https://jupyter.org/documentation
4 https://www.kaggle.com/umeshkumar017/fifa-21-player-and-formation-analysis
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https://jupyter.org/install
https://jupyter.org/documentation
https://www.kaggle.com/umeshkumar017/fifa-21-player-and-formation-analysis
http://www.kaggle.com/umeshkumar017/fifa-21-player-and-formation-analysis

6 Data Pre-Processing

Once the data is downloaded and read into jupyter notebook, it is raw data and with many
discrepancies. The model will not perform well with this raw data. So, the data has to be
cleaned and processed before feeding it to the ensemble machine learning models. A few pre-
processing steps are applied to clean the raw data like removing the unwanted columns,
replacing the null values, feature engineering, label encoding is shown in below Figure 2.

Data Pre-Processing

features = ['Name', 'Age', 'Nationality', 'Overall', 'Potential', 'Club', 'Value', 'Wage', 'Special',
'Preferred Foot', 'Weak Foot', 'Skill Moves', '"International Reputation', 'Work Rate', 'Body Type',
'Position', 'Height'| 'GK Reflexes']
# Incorporating those features in the dataframe
df = data[features]
df.shape
df['Volleys'].replace({np.NaN:data['Volleys'].mean ()}, inplace=True)
df['Curve'] .replace ({np.NaN:data['Curve'].mean ()}, inplace=True)
# function for transforming each positions to particular main position into 4 major positions as forward, midfielder, d¢
def complex function(vc):
4if vc in ['ST','RW','RS',"IW','CE", 'LS', 'LF',"RE']:
return 'Forward'
elif vc in ['RM','LM',6'LCM','CM','CAM', 'RAM', 'RCM','LDM', 'CDM', 'RDM', " 'LAM']:
return 'Midfielder’'
elif vc in ['RB','CB','LB','RCB','RWB', 'LCB','LWB']:
return 'Defender’
else:
return 'Goalkeeper'
# Applying function to create new field based on certain transformation
df new['Grouped Position'] = df new['Position'].apply(complex function)
# Label Encoding to convert the features to model understandable format
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder ()
for i in range (0,x.shape[1l]):
if x.dtypes[i]=="object':
x[x.columns[i]] = le.fit transform(x[x.columns[i]])

print (x)
< >

Figure 2: Few Data Pre-Processing steps involved in this implementation

Figure 3: Transformation used for predicting 27 different positions



Figure 3, shows the transformation used to transform the position field and to feed it to the
ensemble machine learning models to predict 27 different positions.

7 EDA

Exploratory Data Analysis

ratings', hover da:
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Figure 4: Code Developed for EDA

Once the data is cleaned, Exploratory Data Analysis EDA can be done on the data to
understand the data better. The EDA gives more insights about the particular data and based
on that conclusions can be drawn concerning the data and it can help in taking decisions in
the further steps of implementation. The few EDA codes developed are shown in Figure 4
and EDA visualization in this research can be shown below in Figure 5, Figure 6, Figure 7,
Figure 8.

Nationwise Representation in the FIFA Game

Counts
1800
1500 1600

1400

1200

1000

800

500

Illllllllllll
({ /Ir;

o, e
”J/,D G -, a2y 579 (‘“"'y b‘e,v, o

1000

Counts

5

=}

0

0

o, P
oy Or, b, e By, O,
g {Q‘:f ’Q*’-fa U"‘? el ot’bn g P, ”’-5 »
e

fpp s

Figure 5: Nation wise representation in the FIFA Game

From Figure 5, it is visible that the countries such as England, Germany, Spain, France, and
Brazil produce the highest number of players in the FIFA game while the country such as
Ireland, Belgium, Norway, Sweden produces the lowest number of players in the FIFA game.



The highest number of players is from England alone where around 1800 players are
representing the FIFA game.

Nationwise Player counts and Average Potential
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Figure 6: Nation wise player and average potential

From Figure 6, The average potential is determined from the overall ratings and the count of
the players in particular countries. From the graph, we can see that the yellow dot represents
the country England where the overall rating is less but the count of the player is more and
the last point represent the country Brazil where the overall rating is more but the player
count is less. So we can say that the average potential of the country Brazil is more than any
other country despite the less Player count.

Positionwise Player counts in FIFA 21

2300
Counts

2000
2000

Counts

1500
1000

1000
500
I I I I :
: EEEE
ST cB GK CM LB RB LM

=3

1 CAM RM CDM LCB RCB R RCM LCM RS RDM LDM LS

Paosition

Figure 7: Position Wise Player

From Figure 7, ST represents the striker position, CB represents the center-back position
and GK represents the goalkeeper position. So we can say that these three positions have
the highest number of players in FIFA 2021 games.



Age vs Maximum Potential Distribution of the young Players
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Figure 8: Age Vs Maximum Potential Distribution

Figure 8, tells about the age of a player related to the maximum potential of that particular
player. From the graph, we can see that the player who is 20 or 21 years old has the highest
number of potential as there are many players in this age range that have the maximum
potential.

8 Feature Selection

Once the EDA is completed, it gives a clear understanding of the data and helps to draw some
conclusions like which fields are important in building the ensemble models and so those
fields can be retained and the rest can be removed from the data. This can be done using
feature selection techniques. The SelectKBest technique is used in this research to select the
best features that contribute to the model prediction and the code for the feature selection is
shown in below Figure 9.

Feature selection using selectkBest technique

In [21]: # converted the features to given range and selected the top 30 features
X _norm = MinMaxScaler () .fit_transform(x)
chi_selector = SelectKBest(chi2, k=num feats)
chi_selector.fit(x_norm, y)
chi_support = chi selector.get_support ()
chi_ feature = x.loc[:,chi_support].columns.tolist ()
p:int(str(len(chi_feature)), 'selected features')

30 selected features

Figure 9: Code for SelectKBest Feature Selection Technique

9 Model Building

Once the features are selected using the feature selection techniques, those features are fed to
the ensemble machine learning models to learn and predict the player positions. Model
Building using 4 different Ensemble Machine Learning Models like Support Vector
Classifier, Logistic Regressor Classifier, Random Forest Classifier, and Decision Tree
Classifier which works on bagging and boosting approach and will help in improving the
model performance when compared to all the other traditional models. This model building
consists of two approaches one for predicting position with 4 major positions and another



approach for predicting 27 different positions. Let’s see the implementation of each model
one by one as follows.

9.1 Implementation of Support Vector Classifier Base and Tuned Models
( Major positions and 27 different positions)

In [41]: from sklearn.svm import SVC
from sklearn.model selection import RandomizedSearchCV
from sklearn.model selection import KFold
from sklearn.model_ selection import cross_val_score
svc = SVC( kernel= 'rbf', gamma= 0.1, C= 9)
svc.fit (X train, y_train)
y_pred = svc.predict(X_test)
# print('Train
#10-fold cross v
cv = cross_val score(estimator = svc, X = X train, y = y train, cv =3)
SVC_cv = cv.mean()
print("10 fold cross validation :", SVC cv)
from sklearn.metrics import accuracy score
SVC_ac = accuracy_score(y_pred,y test)
print ("accuracy :", SVC_ac)
from sklearn.metrics import precision_score
SVC_p = precision score(y pred,y test,average='weighted')
print("precision :", SVC p)
from sklearn.metrics import recall score
SVC_r = recall score(y pred,y test,average='weighted')
print("recall :", SVC r)
from sklearn.metrics import fl score
svC_fl = fl score(y_test, y pred,average='weighted')
print ("F1 Score :", SVC f1)

uracy: %1.3f.' % svc.score(X train, y train))

dation score

Figure 10: Code Implemented for SVC

The support vector classifier for both base and tuned models in predicting the 4 major
positions and in predicting the 27 different positions is achieved by using the code snippet
shown in the Figure 10 with few differences in data transformation.

9.2 Implementation of Logistic Regression Classifier Base and Tuned
Models ( Major positions and 27 different positions)

In [46]: from sklearn.linear model import LogisticRegression
from sklearn.model_selection import KFold
from sklearn.model selection import cross_val_ score
lr = LogisticRegression(penalty = '12', C =1 )
lr.fit(X train, y_train)
y pred = lr.predict (X test)
#10-fold cross validation score
cv = cross_val score(estimator = lr, X = X train, y = y train, cv =3)
log _cv = cv.mean()
print("10 fold cross validation :", log cv)
from sklearn.metrics import accuracy score
log_ac = accuracy_score(y_pred,y test)
print ("accuracy :", log_ac)
from sklearn.metrics import precision_score
log_p = precision score(y pred,y test,average='weighted')
print ("precision :", log_p)
from sklearn.metrics import recall score
log r = recall score(y_pred,y test,average='weighted')
print("recall :", log_r)
from sklearn.metrics import fl score
log f1 = f1 score(y_test, y pred,average='weighted')
print ("F1 Score :", log fl)

Figure 11: Code Implemented for LRC

The Logistic Regression classifier for both base and tuned models in predicting the 4 major
positions and in predicting the 27 different positions is achieved by using the code snippet
shown in the Figure 11 with few differences in data transformation.



9.3

In [52]:

Implementation of Random Forest Classifier Base and Tuned Models
( Major positions and 27 different positions)

from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import KFold

from sklearn.model selection import cross_val_ score

rf = RandomForestClassifier(n_estimators = 1860, min_samples_split = 2, min_samples_leaf = 4, max features='auto',6 max ¢
rf.fit(X_train, y train)

# Predicting the Test set results

y pred = rf.predict (X test)

#10-fold cross validation score

cv = cross_val score(estimator = rf, X = X train, y = y_train, cv =3)
rf cv = cv.mean()

print("10 fold cross validation :", rf cv)

from sklearn.metrics import accuracy_score

rf_ac = accuracy_score(y_pred,y_test)

print("accuracy :", rf_ac)

from sklearn.metrics import precision score

rf p = precision score(y pred,y test,average='weighted')
print("precision :", rf p)

from sklearn.metrics import recall score

rf r = recall score(y_pred,y test,average='weighted')
print(®recall =", rf'r)

from sklearn.metrics import fl score

rf f1 = f1 score(y_test, y pred,average='weighted')
print ("Fl1 Score :", rf f1)

< >

Figure 12: Code Implemented for RFC

The Random Forest classifier for both base and tuned models in predicting the 4 major
positions and in predicting the 27 different positions is achieved by using the code snippet
shown in Figure 12 with few differences in data transformation.

9.4

In [60]:

Implementation of Decision Tree Classifier Base and Tuned Models
( Major positions and 27 different positions)

# Fitting Decision Tree Classification to the Training
from sklearn.tree import DecisionTreeClassifier

from sklearn.model selection import KFold

from sklearn.model selection import cross_val_score
classifier = DecisionTreeClassifier (min samples_leaf = 6, max features=7, max depth= None, criterion = 'gini')
classifier.fit (X train, y_train)

0
[0}
ot

# Predicting the Test set results

y_pred = classifier.predict (X_test)

#10-fold cross validation score

cv = cross_val score(estimator = classifier, X = X train, y = y_train, cv =3)
dc cv = cv.mean()

print ("10 fold cross validation :", dc_cv)

from sklearn.metrics import accuracy score

dc_ac = accuracy score(y pred,y_test)

print("accuracy :", dc_ac)

from sklearn.metrics import precision_score

dec p = precision_score(y_pred,y_test,average:‘weigh:"d')
print("precision :", dc_p)

from sklearn.metrics import recall score

dc r = recall score(y pred,y test,average='weighted')
print("recall :", dc r)

from sklearn.metrics import fl score

dc_fl = f1 score(y_test, y pred,average='weighted')
print("F1 Score :", dc_f1)

Figure 13: Code Implemented for DTC

The Decision Tree classifier for both base and tuned models in predicting the 4 major
positions and in predicting the 27 different positions is achieved by using the code snippet
shown in the Figure 13 with few differences in data transformation.



10 Hyperparameter Tuning of Ensemble Models

SVC p

svc_params = {'C': range(l, 10, 1), 'gamma': np.arange(0.1, 1, 0.1), 'kernel': ['rbf', 'linear']}

lr param=
param_comb

I m

s
np.logspace(-3,3,7), "penalty":["11","12"],}# 11 lasse 12 ridge

# RFC p

from sklearn.model selection import RandomizedSearchCv

max features = ['auto',

n_estimators = range (200

max_depth = range

min_samples split

min samples leaf = [1, 2, 4]

bootstrap = [True, False]

random grid = {'n estimators': n estimators,

'max features': max features,
'max_depth': max depth,
'min samples split': min samples split,
'min_zamples leaf': min samples_leaf,
'bootstrap’: bootstrap

param comb = 100

# DTIC ‘C‘E:E.“’E‘E:SI

param dist = {"max depth": [3, Nene],
"max features": range(l, 9),
"min samples_leaf": range(l, 9),
"criterion”: ["gini", "entropy"l}

random search = RandomizedSearchCV(estimator = svc, param distributions = svc params, n iter = 20, cv = 5, wverbose=2, random :

random search.fit (X train, y_train)

('‘\n All results:')
(random search.cv results }

(random search.best estimater )

\n Best hyperparameters:')

int (random search.best _params )

esults = pd.DataFrame (random_search.cv_results_)

('\n Best estimator:")

Figure 14: Code Implemented for Hyperparameter Tuning of Models

The hyperparameter tuning of the models can be implemented using the code snippet shown
in Figure 14 by changing the parameter values of each model found using hyperparameter
optimization techniques.

11 Similarity Measures Techniques

Similarity Measures Using Cosine Similarity and Euclidean Distance

similarity after standard scaling

# Calculating cos
cossim=[]
for i in range (0,len(Similarityl)):

cossim.append (1 - distance.cosine(Similarityl[p ind],Similarityl[i]))
pd.Series (cossim)
sim2={"name":sn, "cossim":cossim}
sim2=pd.DataFrame (sim2)
# Sorting in ascending based on cosine similarity values after standard scaling
sim2.iloc[sim2["cossim"].sort_values (ascending=False) .index] .head (10)

lidean distance after standard scaling and sort in ascending values
dist=[]
for i in range (0,len(Similarityl)):
dist.append(distance.euclidean(Similarityl[p_ind],Similarityl[i]))
pd.Series (dist)
sim={"name":sn,"distance":dist}
sim=pd.DataFrame (sim)
sim.iloc[sim["distance"].sort_values() .index] .head ( 10)|

Figure 15: Code Implemented for Similarity Measures Techniques



The code snippet is shown in Figure 15 is used to develop the similarity measures approaches
to find the similar players using cosine similarity and Euclidean distance approach.

12 Evaluation Results of the Above Models

The developed models have to be evaluated before moving to the market. So, that the quality
of the product can be tested and can confirm the use of humans. The importance of evaluating
the product after development is explained in detail by (Ma and Ladisch, 2019).

Evaluation Summary Table for 4 Major Positions Classifier Base Model

1507 0888087 0853067 0.085809

841 0574928 087303
Decision Tree Classifier 0808218 0848590 0807710 0806609 0008318

Model y for 4 Major cl Tuned Model

Figure 16: Evaluation Results of Base and Tuned Models predicting 4 Major Positions

Random Forest Classifier performs better with above Both Base and Tuned models
evaluation metrics when compared to all other 3 models in predicting the major 4 positions of
the player is inferred from the Figure 16.

Figure 17: Evaluation Results of Base and Tuned Models predicting 27 Different Positions
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Overall, the conclusion for the 27 different positions classifier models comparing Base and
Tuned models is that Tuned Support Vector Classifier performs better when compared to all
other Classifier models evaluation metrics in predicting the 27 different positions of the
player is inferred from Figure 17.

Cosine Similarity Model Similarity Measure using Euclidean Distance
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Figure 18: Evaluation Results of Similarity Measures Techniques
Cosine similarity performs better when compared to the euclidean distance approach and

helps to find the more similar player and in replacing the particular player is inferred from
Figure 18.

13 Creating and Running the Web App

<O [ 1ocalhost

T Jupyter

http://localhost: 8508
http: //192.168.

Figure 19: Running in Terminal to get the Web App

Finally, a web app is created for the cosine similarity approach in finding similar players for
replacement based on skills and other attributes. This web app is developed using a stream lit
python inbuild library and created a custom function to pass the required attributes from the
similarity data frame. Once the user enters the particular player name and by that time custom
function developed uses the required attributes from the similarity.csv file and displays the
top 10 similar players for the value passed. The Similarity.csv file is just in which the data is
transferred after pre-processing to the CSV file from the main similarity measure code.
Figure 19 shows how to start up the web app on the local server by running the particular
streamlit_code.py file. While running, make sure that all the files like fifa2l.csv,

11



similarity.csv, and streamlit_code.py files are in the same current working directory along
with all the three .ipynb files.

O DO localhost

Player Selection

Enter Player Name

Lionel Messi

Predict

name

Lionel Messi

Dominik Szoboszlai

C. Ronaldo dos Santos Aveiro
Steven Bergwijn

Mikel Oyarzabal Ugarte
Everton Sousa Soares

Ferran Torres Garcia

Jodo Félix Sequeira

Rodrygo Silva de Goes

Figure 20: Web App Created Using Stream lit python Inbuilt Library

Once after running the streamlit_code.py file to start up the Player Selection ML web app, the
web app appears as shown in Figure 20. The user can enter the player name as required and
click predict and it will generate the top 10 similar players based on the skills and other
attributes of that player. So, those similar players can be replaced in the team in place of that
particular player.
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