

Configuration Manual

MSc Research Project MSc in Data Analytics

Sneham Mukherjee Student ID:x19224826

School of Computing National College of Ireland

Supervisor: Dr. Barry Haycock

National College of Ireland Project Submission Sheet School of Computing

Student Name:	Sneham mukherjee
Student ID:	x19224826
Programme:	MSc in Data Analytics
Year:	2021
Module:	MSc Research Project
Supervisor:	Dr. Barry Haycock
Submission Due Date:	31/01/2022
Project Title:	Configuration Manual
Word Count:	316
Page Count:	6

I hereby certify that the information contained in this (my submission) is information pertaining to research I conducted for this project. All information other than my own contribution will be fully referenced and listed in the relevant bibliography section at the rear of the project.

<u>ALL</u> internet material must be referenced in the bibliography section. Students are required to use the Referencing Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature:	Sneham Mukherjee
Date:	31st January 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies).Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).You must ensure that you retain a HARD COPY of the project, both for

your own reference and in case a project is lost or mislaid. It is not sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed into the assignment box located outside the office.

Office Use Only	
Signature:	
Date:	
Penalty Applied (if applicable):	

Configuration Manual

Sneham Mukherjee x19224826

1 Introduction

The aim of this report is to offer a step-by-step instruction to carry out the research work. It contains information regarding the hardware and software configuration, pre-processing steps, model building steps, implementation steps and evaluation.

2 System Configuration

2.1 Hardware Configuration

Device specifications

Yoga Slim 7 14IIL05		
Device name	Sneham	
Processor	Intel(R) Core(TM) i7-1065G7 CPU @ 1.30GHz 1.50 GHz	
Installed RAM	16.0 GB (15.8 GB usable)	
Device ID	D43D3AFE-CFE2-4C16-838A-61D87238F49A	
Product ID	00327-35887-75797-AAOEM	
System type	64-bit operating system, x64-based processor	
Pen and touch	No pen or touch input is available for this display	

Figure 1: Hardware Configuration

2.2 Software Specification

Software	Specification
Operating System	Windows 10 Home
Programming Language	Python 3.8.5
IDE	Jupyter Notebook
Tools	Ms. Excel, Ms. Word
Report	Overleaf
Web Browser	Google Chrome

Figure 2: Software Specification

3 Data Collection

The dataset is collected from Kaggle¹ which is a openly sourced. It contains images in both .json format and .png format.

Figure 3: 'Ships in Satellite Imagery' dataset

4 Importing Libraries

The following python libraries are imported to carry out the research task.

Imp	orting all libraries to carry out the research code
1	import numpy as np
2	import pandas as pd
3	import matplotlib.pyplot as plt
4	import seaborn as sns
5	import os, random, cv2, pickle, json, itertools
6	import imgaug.augmenters as iaa
7	import ingaug.imgaug
8	import inutils
9	from tqdm import tqdm
10	from imutils.object_detection import non_max_suppression
11	from IPython.display import SVG
12	from tensorriow.keras.utiis import piot_model, model_to_dot
1.5	Tom skiednihodel_selection_import_train_test_spirt
14	Trom skledni metrics import contusion_matrix
16	From schearen utilig immore councer
17	From Fadm import Fadm
18	from skilarin neprote count internet labelBinarizer
19	The State The Concessing ample Concessing ter
20	from tensorflow,keras,utils import to categorical
21	from tensorflow, keras, models import Sequential. Model
22	from tensorflow.keras.layers import (Add, Input, Conv2D, Dropout, Activation, BatchNormalization, MaxPooling2D, ZeroPadding2
23	from tensorflow.keras.optimizers import Adam, SGD
24	from tensorflow.keras.callbacks import TensorBoard, ModelCheckpoint, Callback
25	from tensorflow.keras.preprocessing.image import ImageDataGenerator
26	from tensorflow.keras.initializers import *
27	<pre>from tensorflow.keras.models import load_model</pre>
28	
29	<pre>from sklearn.metrics import f1_score</pre>
30	from sklearn.metrics import precision_score
31	from sklearn.metrics import recall_score
32	from sklearn.metrics import accuracy_score

Figure 4: List of Libraries

5 Data Loading

Below is the code for loading the image data for preprocessing

Figure 5: Loading Data

¹https://www.kaggle.com/rhammell/ships-in-satellite-imagery

6 EDA of the dataset

The below code is for the EDA of the dataset

Figure 6: EDA of the dataset

7 Augmentation and Transformation

For Augmentation and Transformation, below code is used.

Figure 7: Augmentation and Transformation

8 Splitting of Data

The dataset is divided in the ratio mentioned below.

1	<pre>total_count = len(images)</pre>
2	total_count
3	
4	<pre>train = int(0.7*total_count)</pre>
5	<pre>val = int(0.2*total_count)</pre>
6	<pre>test = int(0.1*total_count)</pre>
7	
8	<pre>train_images, train_labels = images[:train], labels[:train]</pre>
9	<pre>val_images, val_labels = images[train:(val+train)], labels[train:(val+train)]</pre>
10	<pre>test_images, test_labels = images[-test:], labels[-test:]</pre>
11	
12	train_images.shape, val_images.shape, test_images.shape

Figure 8: Splitting of Data

9 Building Model

Below functions are used to build basic model and conv block.

```
def conv_block(X,k,filters,stage,block,s=2):
   conv_base_name = 'conv_' + str(stage)+block+'_branch'
bn_base_name = 'bn_'+str(stage)+block+"_branch"
    F1 = filters
   X = Activation('relu')(X)
    return X
    pass
def basic_model(input_shape,classes):
    X_input = Input(input_shape)
   X = ZeroPadding2D((5,5))(X_input)
   X = Conv2D(16,(3,3),strides=(2,2),name='conv1',padding="same")(X)
X = BatchNormalization(name='bn_conv1')(X)
    # stage 2
   X = conv_block(X,3,32,2,block='A',s=1)
   X = MaxPooling2D((2,2))(X)
X = Dropout(0.25)(X)
     Stage 3
   X = conv_block(X,5,32,3,block='A',s=2)
X = MaxPooling2D((2,2))(X)
   X = Dropout(0.25)(X)
     Stage 4
   X = conv_block(X,3,64,4,block='A',s=1)
    X = MaxPooling2D((2,2))(X)
    X = Dropout(0.25)(X)
   Output Layer
   X = Flatten()(X)
X = Dense(64)(X)
   X = Dropout(0.5)(X)
   X = Dense(128)(X)
    X = Activation("relu")(X)
    X = Dense(classes,activation="softmax",name="fc"+str(classes))(X)
```

Figure 9: Building Model

10 Model Implementation

Adam Optimizer is used for the implementation along with loss function binary crossentropy. And the model is trained with 50 epochs with a batch size 16.

```
1 opt = Adam(lr=1e-3)
2 model.compile(optimizer=opt,loss='binary_crossentropy',metrics=['accuracy'])
```

Figure 10: Adam Optimizer

```
epochs = 50
 1
 2
   batch size = 16
 З
   history = model.fit(train_images,train_labels,
 4
 5
                        steps per epoch=len(train images)//batch size,
 6
                        epochs=epochs,
 7
                        verbose=1,
8
                        validation_data=(val_images,val_labels),
9
                        validation steps=len(val images)//batch size,
                        callbacks=[checkpoint, logs]
10
11
   ź
12
                        )
```

Figure 11: Training Model

11 Model Evaluation

Below code is for the Accuracy/Loss graph for training and validation data

```
def show_final_history(history):
    plt.style.use("ggplot")
    fig, ax = plt.subplots(1,2,figsize=(15,5))
    ax[0].set_title('Loss')
    ax[1].set_title('Accuracy')
    ax[0].plot(history.history['loss'],label='Train Loss')
    ax[0].plot(history.history['val_loss'],label='Validation Loss')
    ax[1].plot(history.history['accuracy'],label='Train Accuracy')
    ax[1].plot(history.history['val_accuracy'],label='Validation Accuracy')
    ax[0].legend(loc='upper right')
    ax[1].legend(loc='lower right')
    plt.show();
    pass
```


Below are the codes for F1 score, Precision, Recall, Accuracy and Confusion Matrix

Figure 13: F1 score, Precision, Recall and Accuracy

```
1 val_actual = np.argmax(val_labels,axis=1)
2
3 cnf_mat = confusion_matrix(val_actual, val_pred)
4 np.set_printoptions(precision=2)
5 sns.heatmap(cnf_mat, annot=True, fmt='d', cmap='BuPu')
6 plt.title("Confusion Matrix of Validation Set")
7 plt.figure()
```

Figure 14: Confusion Matrix

Checking Actual vs Predicted on test data

```
rnd_idx = random.sample(range(0,500),10)
class_labels = {i:class_name for (class_name,i) in class_name_labels.items()}
class_labels
for i,idx in enumerate(rnd_idx):
    plt.imshow(test_images[idx])
    plt.title("Actual: {}\nPredicted: {}".format(class_labels[test_actual[idx]],class_labels[test_pred[idx]]))
    plt.grid(None)
    plt.show()
    pass
```

Figure 15: Actual vs Predicted

The code file name is saved as x19224826_Sneham_Mukherjee_Research_Project_Code.ipynb