
Developing Bengali Text Summarization
with Transformer Base model

MSc Research Project

Data Analytics

Aditya Mukherjee
Student ID: X20161131

School of Computing

National College of Ireland

Supervisor: Dr. Rejawanul Haque

www.ncirl.ie

National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Aditya Mukherjee

Student ID: X20161131

Programme: Data Analytics

Year: 2021

Module: MSc Research Project

Supervisor: Dr. Rejawanul Haque

Submission Due Date: 31/01/2022

Project Title: Developing Bengali Text Summarization with Transformer
Base model

Word Count: 5702

Page Count: 20

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:
Aditya Mukherjee

Date: 30th January 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Developing Bengali Text Summarization with
Transformer Base model

Aditya Mukherjee
X20161131

Abstract

For high-resource languages like English and other European languages, text
summarization using deep learning has become a well-studied research subject.
However, for poorly available resource languages such as Indian subcontinent lan-
guages and African languages, relatively few efforts have been done on the Internet.
Due to a lack of a sufficient parallel corpus, parser, tokenizer, POS taggers, and
other tools, resource-constrained languages have a restricted reach in natural lan-
guage processing (NLP). We propose an abstractive text summarization sequence
for a deep learning model for Bengali in this Research study. This Research study
adopt a novel approach towards Summarizing the Bengali text which have been
collected from Bangla news corpus and try to implement the LSTM-RNN based En-
coder and decoder model with attention mechanism and Transformer based model
called multilingual- T5 model and will Evaluate their result with each other using
ROUGE metric. In this study we will be using many NLP tools too, to process the
data and will clean it before inputting the data into our model.

1 Introduction

We live in a fast-paced world where we are more reliant on mobile and other technologies
to make our lives easier. Amount of textual data in the world is growing by the second,
and researchers and data scientists all around the world are attempting to find out how to
extract meaningful information from the data without having to read the full data set. To
solve this problem researchers have come up with Automatic document summarization.
A document summarization goal to provide the most important and relevant information
in a form of text and present the text in a condensed form.

Text summarizing may be viewed as a difficult task since writing a brief, exact, and
fluent summary of a longer text content is difficult. Automatic text summarizing meth-
ods are badly needed to handle the ever-increasing volume of text data available online in
order to find relevant information and consume relevant information faster. If we think
of internet, which consists of web pages, news items, status updates, blogs, and a variety
of other things. Because the data is unstructured, the most we can do is conduct a search
and skim the results. There is great need of an algorithm or machine learning model
which can reduce the length of text, focused summaries that capture every relevant detail
of the textual data that we are feeding it. Automatic text summarization is of two types-:

1

1) Extractive Text Summarization-: Extractive summarization involve, to create the new
summary, phrases and sentences that are chosen from the original text. The relevance of
phrases is rated in order to select just those that are most important to the meaning of
the source.
2) Abstractive Text Summarization-: Abstractive text summarization is process where it
create an entire new words and phrases in order to convey the meaning of the original
information. This is a more challenging method, but it is the one that humans will even-
tually choose. Traditional approaches are used to select and compress the material of the
source document.

Many of text summarization models are being applied and tested on different type of
textual data as well as different language like Hindi, Spanish, German, Russian, Bengali
etc. The language of textual data matter to the model and its algorithm. There are only
handful of models which are being implemented on Bengali language.

Bengali is one of the widely spoken language in the world and native language of the
Bengali community. Bengali is second most spoken language in India out of 22 language
and its national language of Bangladesh and over 98% of Bangladesh population speak
Bengali as their primary language. Over the span of more than 1,300 years, Bengali has
evolved. Bengali literature is one of Asia’s most prolific and diverse literary traditions,
with a millennium-old literary history that thrived during the Bengali Renaissance. As
Bengali literature grow, the amount of textual data has increased. In this era of digitiza-
tion of media, people don’t have time to read whole book, articles, or blogs. On internet
there are so many Bengali article which are quite big and need to be reduced to make it
more readable. So, building a good Bengali Text summarization method is much needed
to get a better perspective and knowledge out of long textual data. And building Bengali
text summarization model is difficult as there are not many openly accessible resources
available.

1.1 Research Motivation and Background

There are many research going on the field of Bengali text summarization and many of
Bengali summarization have been built like in the work by Uddin and Khan (2007) presen-
ted a method for summarizing Bengali documents based on extraction. The sentences
were ranked using a variety of factors, including geography, term frequency, numerical
data, and so on. They created the Bengali summarizer based on the attributes and
determined that the summary size should be 40% of the real text. Das and Bandyopad-
hyay [3] used emotion information to summarize Bengali documents. They attempted to
extract sentiment information from a document and then aggregated it to create a sum-
mary. According to Sarkar (2012) Text summarizing entails pre-processing, stemming,
sentence rating, and summary generation. Stopwords must be removed, stemming must
be performed, and the input must be converted into a collection of sentences. These are
few of the works which have done in the Bengali Text summarization. Mihalcea Mihalcea
and Tarau (2004) Mihalcea (2004) has worked on graph-based text summarization. The
sentences can be represented as nodes in a graph, with edges linking them. Edge weights
may then be calculated by calculating the similarity of two nodes.

Till now most used model to summarize Bengali text is LSTM based Encoder and decoder
model. Until now, one of the greatest approaches to capture the timely dependencies in

2

sequences was to use recurrent networks. However, the authors of the article Joshi et al.
(2019) demonstrated that an architecture based only on attention processes that is trans-
former models, rather than RNNs (Recurrent Neural Networks), can enhance performance
in machine translation and other activities.

Therefore, the domain needs a transformer model that can enhance the performance
of the Bengali text summarization model and give accurate text summarization. Trans-
former model can find pattern within the data which helps them to give the result more
efficiently than the RNN model. Transformer model mechanism works by taking data,
encoding it, and then recording how each word connects to the words that come before
and after it. Here we will be using MT5 transformer model for the Bengali Abstractive
text summarization. The working of transformer model is shown in figure[1]

Figure 1: Transformer model[1]

1.2 Research Question

How well can Fine-tuned Multi-lingual T5 model can perform in comparisons to LSTM
based encoder-decoder model?

1.3 Research Pattern

Table 1: Research Pattern
Objective Description Metrics
1 A critical review of existing method
2 Data pre-processing and EDA
3 Implementation of LSTM model
4 Implementation of MT5 model
5 Comparison of MT5 and LSTM model Rouge metric and Summaries

3

2 Related Work

This section provides an overview of many types of research relevant to automated text
summarization. The majority of text summarizing research is centered on English ma-
terials. Despite the fact that Bengali is the world’s seventh most spoken language, there
have been few studies on automatic Bengali text summarization.

2.1 Tranformer based Model Implementation

While the architecture of all of these models is almost identical, the self-supervised tasks
performed in the pretraining stage varies significantly. These objectives target the models
to learn broad elements of the language, such as masking tokens or rearranging sentences,
in certain situations, such as BART, T5, and ProphetNet. BART has been pre-trained
to rebuild masked spans (text infilling) and to reassemble phrases after they have been
permuted (sentence permutation). T5 is also pre-trained on encoder-decoder masked
language modeling in order to solve all text-based language difficulties in a text-to-text
format globally. Pretraining ProphetNet on future n-gram prediction encourages the
model to prepare for future tokens rather than the next token, preventing overfitting
on strong local correlations. In other situations, such as PEGASUS, the self-supervised
tasks are designed to seem like the summation task in order to foster whole-document
comprehension and summary-like creation. Unlike prior models, PEGASUS is trained
via Gap Sentences Generation (GSG), which entails rebuilding sentences that maximize
the ROUGE over the whole document. According to the authors of PEGASUS, GSG is
more suited to abstractive summarization than other pretraining methodologies since it
closely reflects the downstream job.
News Abstractive Summarizing for Catalan is a monolingual news summarization meth-
odology developed for the paper (NASca). BART Lewis et al. (2019) is a Transformer
encoder-decoder model with the same architecture and hyper-parameters. They opted to
integrate different pretraining tasks to introduce linguistic information into the pretrain-
ing stage with the goal of boosting the abstractivity of the summaries generated by the
model, inspired by the work of Cohn et al. (2020). Sentence permutation, text infilling
[6, Gap Sentence Generation (GSG) Zhang et al. (2020), and Next Segment Generation
(NSG) [27] were the four tasks that were integrated. NASca is pre-trained simultaneously
with the four tasks, which are chosen at random from a uniform distribution in each batch.

Abstractive summarizing research has traditionally concentrated on the development of
models employing methods other than those employed in extractive summarizationZhong
et al. (2020) Inui et al. (2019)Nallapati et al. (2017)Rush et al. (2015)Nallapati et al.
(2016)See et al. (2017). Abstractive summarizers have recently been popular owing to
their tremendous generation capabilities, which are attained by pretraining them with
self-supervised language modeling tasks on large text corpora and employing encoder-
decoder architectures with Transformers Vaswani et al. (2017) as the backbone. The
state of the art in abstractive summarization benchmarks is PEGASUS Zhang et al.
(2020), BART Lewis et al. (2019), T5 Raffel et al. (2019), and ProphetNet Qi et al.
(2020), which are fine-tuned for summarizing tasks.

All of the models and recommendations presented in this section are aimed towards
the English language, however there are many more languages that need to be con-

4

sidered. Multilingual models such as mBART Liu et al. (2020) and mT5 Xue et al.
(2020) have been used to consider additional languages alongside the English language.
Although these efforts are practical and effective in many circumstances, the perform-
ance of multilingual models is often poorer on languages that are underrepresented in the
pretraining data or deviate significantly from the most represented languages in terms
of linguistic keywords Virtanen et al. (2019)Pires et al. (2019). Pretraining monolingual
BERT models were used to investigate learning monolingual models from scratch for
language understanding, with outstanding results in various languages such as French
Martin et al. (2019)Le et al. (2019) Dutch de Vries et al. (2019), and Spanish Canete
et al. (2020)Gonzalez et al. (2021).

2.2 Bengali Text summarization Approaches

Sarkar (2012) has studied automatic text summarization for only one single document
which is in Bengali dialect and highlight the influence of position feature of sentences and
thematic term feature. Thematic feature is a linguistic term that refers to how something
relates to the topic of a piece of literature. Preprocessing, sentence rating, and summary
production were the three primary phases of the project. Thematic words and sentence
position were used to rate sentences. In their earlier work Sarkar (2014), they have de-
scribed a key-based approach to summarizing that focused on extracting a collection of
key words from a document and constructing an extractive summary based on them.
Single-word or multi-word key phrases are acceptable. He utilized two separate datasets,
one for English and one for Bengali. In compared to prior research, he judged that the
findings were pretty satisfactory. Srivastava and Gupta Srivastava and Gupta (2014)
used Extract Technology to provide a summary based on the frequency of terms in their
study. They proposed the Gradual NLP algorithm, which is an NLP (Natural Language
Processing)-based approach. Analysis, development, and synthesis are the three steps of
the summation process. The analyzation step examines the data’s text and picks a few
essential qualities. The transformation procedure converts empirical data into a graph-
ical representation. The synthe- sis process next takes the summary representation and
generates an appropriate summary that meets the user’s requirements. The algorithm
estimates the average frequency after counting the overall frequency of words other than
stopwords. The frequency of sentences with cue words included in them is enhanced for
summary generation, and sentences with a score larger than the average frequency are
picked for a summary.
Chandro et al. (2018) experimented with extraction-based summarization strategies by
collaborating individual words and scoring phrases. Experimentation documents were
gathered from famous Bengali daily newspapers. They ranked sentences based on Term
Frequency, Positional Value, Connecting Words, and Document Sentence Length. Using
these factors, sentences were sorted, and the top K ranked sentences were chosen for the
summary. Uddin and Khan (2007) studied Bengali text summarization and found that
sentence placement, cue phrase presence, title word presence, term frequency, and nu-
merical data were all significant. They claim that sentences that come at the beginning
or end of a passage are more important. Furthermore, the presence of trigger phrases,
terms from titles, high-frequency words, and numerical data adds weight to a statement.

Efat et al. (2013) investigated Bengali summary while taking a variety of criteria into
account. They graded sentences based on frequency, sentence placement, trigger words,

5

and other characteristics. After generating scores based on a variety of factors, the final
sentence scores were calculated as a weighted sum of the individual feature ratings. They
discovered that 83.57 percent of summary phrases correlated to human-created summaries

The usage of key terms in Bangla summarization was investigated by Haque et al. (2016).
They emphasized sentences with numerical figures and ordered the sentences in increas-
ing order based on their scores. After the scores were added together, the sentences were
ranked. The dataset was created using 400 newspaper documents of various sorts. They
stated that utilizing ROUGE-1 and ROUGE-2 increased the quality of their summaries.
Das and Bandyopadhyay (2010) summarized Bengali documents using sentiment inform-
ation. They used a classification approach based on support vector machines. There are
three types of characteristics considered: lexico-syntactic features, syntactic features, and
discourse level features. The work includes features such as parts of speech, Senti-Word-
Net, frequency, stemming, chunk label, de-pendency parsing depth, document title, first
paragraph, term distribution, and collocation.

3 Methodology

In this research paper, modified Knowledge Discovery in database (KDD) have been used
to meet the objective of this research. In this research paper, a Bengali Text Summarizer
has been developed which will generate an abstractive summary out of Bengali documents.
The whole process flow diagram of the proposed model is shown in below figure.[2]

3.1 Input Document

Any of the Bengali news document can be used as input and can be feed to summarizer.
According to research by several sectors, it is found that consumer or user are more
interested in in reading news concerning accidents, entertainment, economy, and politics.
For any summary, there is significant amount of data needed. There only few amounts
of dataset are available in Bengali newspaper. For this research paper data has been
collected by Kaggle. The dataset is only made for Abstractive news summarization
purpose only. The authors of the dataset have built a data crawler and crawled the
data from bangla.bdnews24.com and fetched 19k article and their summaries out of the
website and standardized the data.

6

Figure 2: Process flow

3.2 Explanatory data analysis

Figure 3: news vs summary

7

Figure 4: Clean summary

In above figure’s[3][4], the article and its respective summary is displayed. All the text
have been cleaned and preprocessed.

Figure 5: Length of the articles

In above figure[5] the length of the article has been plotted.

8

Figure 6: Length of the summary

In above figure[6] the length of the summaries has been plotted

3.3 Pre-Processing

In any machine learning task, it is important to clean and pre-process the data before
feeding it to model. Textual data comes in one of the most unstructured forms, and when
it comes from human its way to complicated to machine to understand. For this research,
only 5k articles and summary was taken for our T5 model input and whole 19k were data
point where taken for our LSTM based Encoder and Decoder model. The datasets were
divided into 80-20% split for training and validation. Bengali text is very difficult to pro-
cess, we need to remove the space from the word or sentence, remove unwanted special
character. We must first include Bengali contractions in the dataset since contractions
employ the abbreviated form of the term, whereas embedding requires the complete form
of the word. The ‘article’ is being considered as complete text from which need to get
summarize and ‘Summary’ is considered as our summary. Below are the steps taken for
pre-processing-:
A) Removing any English character, any digits, symbols, punctuations and unwanted
character in our textual data.
B) Removing the Bengali punctuation.
C) Stopwords were being removed

In this research project, LSTM based encoder and decoder and MT5 model have been

9

used and for that we have done two different set of Further pre-processing. Below are the
steps for LSTM based encoder decoder further pre-processing steps

1) Then we have done tokenization and build Bengali vocabulary dictionary.
2) WE implemented the Genism Word2vec skipgram model with the configuration of
size=300, min count=1 and window size=10 and trained on the dataset, which have gen-
erated Bengali word vectors.
3) Finally, we will sort our summaries and article to an extent as max(len(summary))=
20, max(len(text)) = 60, max(unk count of summary) =10, max(unk count of text)= 20.

For MT5 the further preprocessing is different from the LSTM model. After cleaning
the dataset we have added a new string “summarize” to the article, so that model can
know the task which it has to do. As the dataset was little big to pass through the neural
network, we have used DataLoader to load the data into neural network. DataLoader
is much needed because we cannot feed all the data into the memory at once. We also
tokenized the word with the help of pretrained MT5 tokenizer. Tokenization is been done
using length parameter.

3.4 Creating Model

In this step, the selected seq2seq learning models are LSTM based encoder and decoder
model and multilingual-T5 base model which we are going to fine tune it to produce
Abstractive Bengali summary. All the models that we will use, will be fine tuned, and we
will see the accuracy and according to the performance of the models we will be compare
the models to each other to select the best model. All the models will be run for different
epoch to get best result out of it.

3.5 Evaluation

Loss, Rouge 1, rouge 2, rouge L score are the evaluation metric we will be using to check
the performance of the model. As well as we will compare the summary of the model
that has been generated with respect to the actual summary to check whether the model
is giving gold standard summary or not. Each of the models was evaluated using the
summaries created by the system, and the average scores were reported. ROUGE-1: It
calculates the 1-gram (per word) overlap between the system-generated and reference
summaries [28]. ROUGE-2: It checks if the system generated, and reference summaries
coincide in terms of bi-grams. Recall, Precision, and F-Measure are the three basic scor-
ing methods used by ROUGE. The following formulas can be used to compute them:

1) Recall= Number of overlapping words/ Number of words in gold summary

2) Precision = Number of overlapping words/ Number of words in the reference summary

3) F-Measure = 2 X [(Precision X Recall)/(Precision + Recall)]

10

4 Design Specification

In this research work a Four tier framework has been implemented for the summarization
of the Bengali text using NLP with LSTM-RNN based models and Transformer based
model as been displayed in below figure. As shown in figure[7]various stages have been
Implemented in this research project and the four tiers consist of a data layer, then
data cleaning layer in which we have done our EDA and data pre-processing and then
modelling layer in which we have trained our model and produce summarized text and
in the last step we evaluated the model on the basis of Rouge metric.

Figure 7: Frame work that has been Implemented

4.0.1 LSTM based encoder and decoder model

Our aim for the word level training for multi-language models is to optimize the predic-
tions of the next token[Ranzato et al. (2015). In the case for abstractive summarization,
given a source article x as input, a seq2seq model outputs a summary y with the probab-
ility P(y—x), where denotes model parameters (e.g., weights W and bias b). P(yt — y¡t
,x) is the conditional probability of the next token yt given all previous tokens represented
by y¡t = (y1, y2,..., yt1) and source x in a neural language model (Bengioetal.2003). The
text generating process may be expressed intuitively as follows:

• The decoding procedure begins with a special token ’GO¿’ (start of sequence), after
which the model generates a token yt with the probability P (yt — y¡t , x) = Pvocab,t(yt)
at a time t.
• By greedy search, this token can be obtained that is yt = argmaxyt Pvocab,t or we
can simple use sampling method.
• The produced token is used in the following stage of decoding. Unless the model emits a
’EOS’ (end of sequence) token or the user-defined maximum threshold length is achieved,
the generation continues.

11

Figure 8: Pseudo Code for LSTM

To learn the model parameters we have used end to end cross entropy i.e. 0 and 1.For
better understanding refer to the Sudo code of the Algorithm in figure[8]

Functioning -:

Firstly, the entire dataset was imported. Then the dataset was treated by removing
stopwords and any other symbol and character are been removed. On the Bengali news
dataset that we utilized in our trials, we employed 300-dimension word embeddings pre-
trained by the word2vec method (Mikolov et al. (2013)), and we allowed the embeddings
to be changed during training. After getting the word embedding, we have split the
dataset for training and validation purpose. After that, the train dataset was passed
through the model. The encoder is made up of two bidirectional LSTM-RNNs, each with
a 400-state hidden state dimension. We have tried the to change the number of BiLSTM
encoder layer from 2-3 and for decoder layer we consist an unidirectional LSTM-RNN
with the same hidden state size and an attention mechanism over the source hidden state
and we have put softmax layer over the target vocabulary so that it can generate words.
The decoder’s output is restricted to the summary’s maximum length, which is set by the
user. Because the target vocabulary is substantially smaller, we maintained the source
and target vocabularies distinct for computational efficiency. For optimizer we have used
Adam optimizer for our training model with learning rate of 0.001. For every epoch,
we randomly shuffled the training data with a batch size of 32, 64. Dropout probability
was also utilized, with values ranging from 0.5 to 0.7. Gradient clipping was also used

12

to decrease the gradient explosion of RNN networks. We also used early stopping based
on the validation set and reported all performance metrics using the best model on the
validation set. To construct summaries, we employed a beam size of 10 for the beam
search decoder. After that we checked our model performance on testing dataset. After
that machine summaries were compared with the actual summaries and we evaluated
those summaries with the Rouge metric to see the accuracy at which model is building
the summary.

4.0.2 MT5 Transformer Base Model

A MT5 base is on T5 model and work like T5 recipe which improve upon T5 by using
GeGLU nonlinearities. As in condition with T5 model, we will be using SentencePiece
model to get trained in our language sampling. The MT5 I already been pretrained on
C4 corpus which has Bengali in their training set. MT5 is an encoder- decoder model
and has roughly twice as parameter than just encoder only models like XLM-R, MT5 has
been trained on over 1billion parameter whereas XLM-R only trained for 550 million and
still the computation cost of both model is same. In mT5, the decoder usually generates
two extra tokens: a class label and a sequence end token. The computational cost of
classification using mT5 is generally T + 2 tokens, compared to T + 1 for an encoder-
only model, because the decoder has the same architecture as the encoder (ignoring
encoder-decoder attention). Encoder-decoder architectures, on the other hand, offer the
advantage of being suitable to generative tasks such as abstractive summarization or
conversation. At figure[9] the T5 artchiture has been briefly explained

Figure 9: T5 model structure

Functioning -:

To implement the MT5 model, Firstly, the entire dataset was imported. Then the data-
set was treated by removing stopwords and any other symbol and character are being
removed. After that we have made a custom dataset class, this dataclass take the dataset

13

and tokenize the data. To tokenize the data we have chosen the pretrained MT5 token-
izer, which uses batch encode plus method to perform tokenization which will produce
the necessary outputs which are Source id and source mak for the article and target id
and target mask for the summary. We also have used dataloader, which helps us to
create training and validation dataloader so that data can be enter into the the neural
network in a systematic matter. After that we have split the dataset into 80:20, 80%
is for training and 20% for validation. We will use 80% training data to fine tune our
model. First we have defined the EPOCH, an epoch defines that how many times the
whole dataset will be passed through the network, we have decided to train our model for
4 epoch. The batch-size and max len parameters are used to accomplish this control the
data which passes the model. We have set our input batch-size to 2 for the training and
4 for the validation, and also we have kept our MAX LEN to 64. The language model
labels are calculated from the target ids and also attention mask and source ids are been
extracted. When the model produce outputs for the first element it gives out the loss
for the forward pass. That loss value then is used to optimize the weights of the neuron
in the network. For every 200 steps the loss value are been printed in console. We have
also set are learning rate to 0.0001 with ADAM optimizer. To construct summaries, we
employed a beam size of 2 for the beam search decoder. After that we checked our model
performance on testing dataset. After that machine summaries were compared with the
actual summaries and we evaluated those summaries with the Rouge metric to see the
accuracy at which model is building the summary.

5 Implementation

This section is more focussed on discussing the implementation of the MT5 model and the
LSTM-RNN based encoder decoder model for summarizing the Bengali News document.
We have fine-tune both of the model to get the best result out of the model. The pre-
processing of both the model are little different as in LSTM Based model we have used
Word2vec for word embedding and in case for MT5 model we have used MT5 tokenizer
to tokenize the words before we input it to model. All the model have been using Adam
as their optimizer. MT5 have also failed to run the model due to memory allocation, for
this reason we have implemented data-loader, so that the data which we are feeding to
the model can be controlled. We also fine-tuned the data-loader so that our GPU space
doesn’t max out, we have done this by changing the Number of workers(Number of worker
decide how many data should be trained simultaneously). Batch size and maximum text
length were also changed, so that our GPU memory doesn’t get exhausted. In this step
we will see whether state of the art MT5 base model outperform the LSTM based encoder
and decoder model.

5.1 Implementation of LSTM based Encoder and decoder Model

The architecture of the LSTM based Encoder and decoder consist of an encoder which is
made up of two Bidirectional LSTM-RNN with each having 400 hidden state dimensions.
The number of encoder layer is 2 and for decoder layer there is unidirectional LSTM-
RNN with same 400 hidden state with an attention mechanism over the hidden state and
also a softmax layer over the target vocabulary to generate words. Dropout probability
was also utilized, with values ranging from 0.5. We ran the training model for 10 epoch
with batch size of 32. In decode time, the maximum length of the summary in the

14

dataset is 62 words, we utilized a beam search of size 20 to construct the summary at
decode time, and we limited the size of the summary to a maximum of 30 words. Using
the evaluation script, we present Precision, Recall, and F1-scores from the full-length
versions of Rouge-1, Rouge-2, and Rouge-L.

5.1.1 Hypertuning the LSTM based Encoder and decoder Model

In our experiments, we altered hyperparameters such as the number of epochs to , the
number of RNN layers, the batch size, and the dropout probability. We have noticed
that the model which have 3 layers performed well and given good Rouge scores than 2
layer model. We also noticed that increasing the number of epochs and setting a dropout
probability of 0.5 and a batch size of 64 led in higher overall scores than the other tuning
parameters.

5.2 Implementation of transformers based MT5 base model

In this section we will be discussing the training details for our MT5 model. First we
have defined the Epoch for 5 with batch size of 4. We also used Data-loader so that we
can load our dataset into neural network in a defined way. Because all of the data from
the dataset cannot be put into memory at the same time, the quantity of data stored
into memory and subsequently delivered to the neural network must be managed. We
set number of workers to 2. The language model labels are calculated from the target
ids and also attention mask and source ids are been extracted. When the model produce
outputs for the first element it gives out the loss for the forward pass. That loss value
then is used to optimize the weights of the neuron in the network. For every 200 steps
the loss value are been printed in console.

5.2.1 Hyper parameter tuning of Base MT5 model

In our experiment, we have altered hyperparameters such as Number of epoch to 2,
batch size to 2 and number of worker in data-loader to 1. We have encountered memory
allocation error multiple times due to various factor, mainly because of the batch size
and number of workers. For this we have hyper tuned the parameter as well as reduced
the size of the data for the training and testing. We have noticed that model which has
batch size of 2 and with epoch 2 have given overall higher score than other parameter
tuning.

6 Evaluation

In this section we will be comparing the our model with each other on the basis of Rouge
metric and will also compare the summary produced by the model. Using the evaluation
script, we present Precision, Recall, and F1-scores from the full-length versions of Rouge-
1, Rouge-2, and Rouge-L. We give the unseen data (Testing Dataset), trained model,
tokenizer, and device characteristics to the function to execute the validation run during
the validation step. This phase creates a fresh summary for any datasets that were not
used during the training session.

15

6.1 LSTM based encoder and decoder Model with attention
mechanism

In decode time, the maximum length of the summary in the dataset is 62 words, we
utilized a beam search of size 10 to construct the summary at decode time, and we
limited the size of the summary to a maximum of 30 words. When the hyper-tuning was
done to the model, we noticed that with increase of the number of layer have increased
model performance and also if when the epoch were increased its been seen that the
model have outperformed the other model with less epoch cycle. It was also observed
that model with 3 layer achieving the F1-score of 75% and have outperformed the 2 layer
bi-directional LSTM model where it only got 63.68%. We also have plotted the loss for
our best model which will give us better understanding on figure[9]

Figure 10: Loss plot for LSTM Model

6.2 MT5 Base model

In decode time, the maximum length of the summary in the dataset is 62 words, we
utilized a beam search of size 5 to construct the summary at decode time, and we limited
the size of the summary to a maximum of 20 words. It is been observed that model
hyper-tuned Mt5 model with batch size of 2 and epoch is 2 with F1 score of 56.27% have
outperformed the MT5 base model with batch size of 4 and with epoch 5 with F1 score
of 48.67%.

6.3 Discussion

Similar Abstractive summarization has been presented by Ahuir et al. (2021) and their
study has achieved highest F1 score 95% using MT5 base model. This Research paper
tried to improve the summarization model using transformer based models but failed to
do so. There might be the case that due to lack of data and computational power we
failed to outperform the previous studies. But we have created base model for further

16

research. We will discuss more about how to we can perform well in our Future work
Section

Table 2: A table caption.

Model Description F1-score
Previous Study MT5 model 95%
Model 1 LSTM model with attention based 63.68%
Model 2 Tuned LSTM model with attention based 75%
Model 3 Fine-tuned MT5 model 56.27%
Model 4 MT5 base model 48.67

7 Conclusion and Future Work

In this Research paper we used a sequence-to-sequence encoder-decoder deep learning
architecture as well as transformer-based model to address the challenge of abstractive
text summarization for the low-resource South Asian language Bengali. We also used
the popular ROUGE measure to assess the summary generation. The Study observed
that the performance of the Transformer based model is little less than the Bidirectional
LSTM model. In this study, both of the models were fine-tuned, and the best model were
chosen as our final model. As Bengali is very low resource language and many research
is going on the field of Bengali NLP application. Due to low resource language many of
the phases of this research study lacked on finding the resources. The biggest problem
which might have caused our models lack performance is the data source, the data source
is too little, particularly on the length of summary and article were little short and thus
model might have trouble to understand the pattern in the dataset. Second reason for our
model to perform so poorly is computational power, as the model was running on Google
colab and whenever we input large batch size the GPU memory got Max out and thus
model get crashed. We tried to retify that thing with the Data loader, but then too the
memory crashed keep on happening. In future, a custom dataset can be created with large
article and their summary, and a custom transformer-based architecture can be built that
specifically for the Bengali summarization. Also, as we only explored supervised learning
field, there can be a reinforcement learning model which could apply in the dataset.

References

Ahuir, V., Hurtado, L.-F., González, J. Á. and Segarra, E. (2021). Nasca and nases: Two
monolingual pre-trained models for abstractive summarization in catalan and spanish,
Applied Sciences 11(21): 9872.

Canete, J., Chaperon, G., Fuentes, R., Ho, J.-H., Kang, H. and Pérez, J. (2020). Spanish
pre-trained bert model and evaluation data, Pml4dc at iclr 2020: 2020.

Chandro, P., Arif, M. F. H., Rahman, M. M., Siddik, M. S., Rahman, M. S. and Rah-
man, M. A. (2018). Automated bengali document summarization by collaborating
individual word & sentence scoring, 2018 21st International Conference of Computer
and Information Technology (ICCIT), IEEE, pp. 1–6.

17

Cohn, T., He, Y. and Liu, Y. (2020). Proceedings of the 2020 conference on empirical
methods in natural language processing (emnlp), Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing (EMNLP).

Das, A. and Bandyopadhyay, S. (2010). Topic-based bengali opinion summarization,
Coling 2010: Posters, pp. 232–240.

de Vries, W., van Cranenburgh, A., Bisazza, A., Caselli, T., van Noord, G. and Nissim,
M. (2019). Bertje: A dutch bert model, arXiv preprint arXiv:1912.09582 .

Efat, M. I. A., Ibrahim, M. and Kayesh, H. (2013). Automated bangla text summariz-
ation by sentence scoring and ranking, 2013 International Conference on Informatics,
Electronics and Vision (ICIEV), IEEE, pp. 1–5.

Gonzalez, J. A., Hurtado, L.-F. and Pla, F. (2021). Twilbert: Pre-trained deep bidirec-
tional transformers for spanish twitter, Neurocomputing 426: 58–69.

Haque, M. M., Pervin, S. and Begum, Z. (2016). Enhancement of keyphrase-based ap-
proach of automatic bangla text summarization, 2016 IEEE Region 10 Conference
(TENCON), IEEE, pp. 42–46.

Inui, K., Jiang, J., Ng, V. and Wan, X. (2019). Proceedings of the 2019 conference
on empirical methods in natural language processing and the 9th international joint
conference on natural language processing (emnlp-ijcnlp), Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP).

Joshi, A., Fidalgo, E., Alegre, E. and Fernández-Robles, L. (2019). Summcoder: An un-
supervised framework for extractive text summarization based on deep auto-encoders,
Expert Systems with Applications 129: 200–215.

Le, H., Vial, L., Frej, J., Segonne, V., Coavoux, M., Lecouteux, B., Allauzen, A., Crabbé,
B., Besacier, L. and Schwab, D. (2019). Flaubert: Unsupervised language model pre-
training for french, arXiv preprint arXiv:1912.05372 .

Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., Stoy-
anov, V. and Zettlemoyer, L. (2019). Bart: Denoising sequence-to-sequence pre-
training for natural language generation, translation, and comprehension, arXiv pre-
print arXiv:1910.13461 .

Liu, Y., Gu, J., Goyal, N., Li, X., Edunov, S., Ghazvininejad, M., Lewis, M. and
Zettlemoyer, L. (2020). Multilingual denoising pre-training for neural machine trans-
lation, Transactions of the Association for Computational Linguistics 8: 726–742.

Martin, L., Muller, B., Suárez, P. J. O., Dupont, Y., Romary, L., de La Clergerie, É. V.,
Seddah, D. and Sagot, B. (2019). Camembert: a tasty french language model, arXiv
preprint arXiv:1911.03894 .

Mihalcea, R. (2004). Graph-based ranking algorithms for sentence extraction, applied
to text summarization, Proceedings of the ACL interactive poster and demonstration
sessions, pp. 170–173.

18

Mihalcea, R. and Tarau, P. (2004). Textrank: Bringing order into text, Proceedings of
the 2004 conference on empirical methods in natural language processing, pp. 404–411.

Nallapati, R., Zhai, F. and Zhou, B. (2017). Summarunner: A recurrent neural network
based sequence model for extractive summarization of documents, Thirty-First AAAI
Conference on Artificial Intelligence.

Nallapati, R., Zhou, B., Gulcehre, C., Xiang, B. et al. (2016). Abstractive text summar-
ization using sequence-to-sequence rnns and beyond, arXiv preprint arXiv:1602.06023
.

Pires, T., Schlinger, E. and Garrette, D. (2019). How multilingual is multilingual bert?,
arXiv preprint arXiv:1906.01502 .

Qi, W., Yan, Y., Gong, Y., Liu, D., Duan, N., Chen, J., Zhang, R. and Zhou, M.
(2020). Prophetnet: Predicting future n-gram for sequence-to-sequence pre-training,
arXiv preprint arXiv:2001.04063 .

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li,
W. and Liu, P. J. (2019). Exploring the limits of transfer learning with a unified
text-to-text transformer, arXiv preprint arXiv:1910.10683 .

Rush, A. M., Chopra, S. and Weston, J. (2015). A neural attention model for abstractive
sentence summarization, arXiv preprint arXiv:1509.00685 .

Sarkar, K. (2012). An approach to summarizing bengali news documents, proceedings
of the International Conference on Advances in Computing, Communications and In-
formatics, pp. 857–862.

Sarkar, K. (2014). A Keyphrase-Based Approach to Text Summarization for English and
Bengali Documents, International Journal of Technology Diffusion (IJTD) 5(2): 28–38.
URL: https://ideas.repec.org/a/igg/jtd000/v5y2014i2p28-38.html

See, A., Liu, P. J. and Manning, C. D. (2017). Get to the point: Summarization with
pointer-generator networks, arXiv preprint arXiv:1704.04368 .

Srivastava, N. and Gupta, B. K. (2014). An algorithm for summarization of paragraph up
to one third with the help of cue word comparison, International Journal of Advanced
Computer Science and Application (IJACSA) 5: 167–171.

Uddin, M. N. and Khan, S. A. (2007). A study on text summarization techniques and
implement few of them for bangla language, 2007 10th international conference on
computer and information technology, IEEE, pp. 1–4.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L.
and Polosukhin, I. (2017). Attention is all you need, Advances in neural information
processing systems, pp. 5998–6008.

Virtanen, A., Kanerva, J., Ilo, R., Luoma, J., Luotolahti, J., Salakoski, T., Ginter, F.
and Pyysalo, S. (2019). Multilingual is not enough: Bert for finnish, arXiv preprint
arXiv:1912.07076 .

19

Xue, L., Constant, N., Roberts, A., Kale, M., Al-Rfou, R., Siddhant, A., Barua, A. and
Raffel, C. (2020). mt5: A massively multilingual pre-trained text-to-text transformer,
arXiv preprint arXiv:2010.11934 .

Zhang, J., Zhao, Y., Saleh, M. and Liu, P. (2020). Pegasus: Pre-training with extrac-
ted gap-sentences for abstractive summarization, International Conference on Machine
Learning, PMLR, pp. 11328–11339.

Zhong, M., Liu, P., Chen, Y., Wang, D., Qiu, X. and Huang, X. (2020). Extractive
summarization as text matching, arXiv preprint arXiv:2004.08795 .

20

	Introduction
	Research Motivation and Background
	Research Question
	Research Pattern

	Related Work
	Tranformer based Model Implementation
	 Bengali Text summarization Approaches

	Methodology
	Input Document
	 Explanatory data analysis
	 Pre-Processing
	Creating Model
	Evaluation

	Design Specification
	LSTM based encoder and decoder model
	MT5 Transformer Base Model

	Implementation
	Implementation of LSTM based Encoder and decoder Model
	Hypertuning the LSTM based Encoder and decoder Model

	Implementation of transformers based MT5 base model
	Hyper parameter tuning of Base MT5 model

	Evaluation
	LSTM based encoder and decoder Model with attention mechanism
	MT5 Base model
	Discussion

	Conclusion and Future Work

