~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Programme Name

Nihar Devidas Mhaske
Student ID: X20234813

School of Computing
National College of Ireland

Supervisor: Dr.Hicham Rifai

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Nihar Devidas Mhaske
Student ID: X20234813
Programme: Programme Name
Year: 2022
Module: MSc Research Project
Supervisor: Dr.Hicham Rifai
Submission Due Date: 15/08/2022
Project Title: Configuration Manual
Word Count: XXX
Page Count: [

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Nihar

Date: 17th September 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Nihar Devidas Mhaske
X20234813

1 Introduction

The objective of this paper is to present details concerning the key stages in carrying
out the research project 'House Price Prediction Using Genetic Algorithms and Tree-
based Methods for Feature Selection: The Case of House Pricing in King County, USA.
The configuration manual outlines the phase to complete the research. The study’s
objective is to determine which feature selection performed better in predicting house
sales. We used two machine learning algorithms to predict house sale prices and compare
the evaluation of the machine learning techniques used in this research. The following is
the structure of the configuration manual, which describes the project’s implementation
steps.

2 Software and hardware Specifications:

Configuration of the System
e GPU:NVIDIA RTX 2060
e Operating System:Windows 10
e Processor:Intel i9 9th generation

e Speed:3.1 GHz

3 Installation and Downloads

3.1 Python

This study makes use of the Python programming language. It includes a massive library
for performing analysis and developing machine learning models. The Python library
helps in exploratory analysis, data cleaning, and data visualization. The first step in
running the script is to obtain the most recent version of Python from the Python website
show in Fig.1. Following the successful download of Python installation instructions
should be completed.

Python

& python

About Downloads Documentation Community Success Stories

Download the latest version for Windows

Download Python 3.10.6

Looking for Python with a different 0S? Python for Windows,
Linux/UNIX, macOS, Other

Want to help test development versions of Python? Prereleases,
Docker images

Looking for Python 2.7? See below for specific releases

Figure 1: Python Download Page

3.2 Anaconda

Anaconda prompt is a Python IDE that is used for coding and evaluating the results. It
offers a variety of user-friendly Python-based IDEs show in Fig.2. Spyder and Jupyter
Notebook are most commonly used in Anaconda Navigator. It is available for download
from the official website. Following the successful download and installation of Anaconda
Navigator, many IDEs are presented which can be selected depending on the user’s re-
quirements. The Jupyter IDE is used in this research

X} O Anaconda Navigator
) ANACONDA NAVIGATOR
1 Home Applications on | base (ros) | | cranness (o
@ Environments b = o . © =

A — B
Jupyter |
g b
N Learning
Datalore 18M Watson Studio Cloud JupyterLab Notebook PyCham Professional
" 32 7 6as a3
§ o youthe forinteractive | Web-based, a
s Community s3IstaE by JeXBrains. EIt and run your , 80 cleanse computing, bised anthe | environment, Edic scientific
Python notebooks inthe cloud andshare | and shape cata, Jupyter Notehook I 5, andSQL.
them with your team. learning models. Prepare data and build
madels, using open source data science tooks.
or visual modedina.
Launch (™) Launch Launch | Launch
& -] o L *
m 7 'g
a @
QtConsole Spyder Glueviz orange 3 Rstudio
Ast 515 100 3260 e
proper cata mining framework. | Asat of incagrated tools designedtohelp
mulziine edzing with syntax hghlghing, EnviRonment Powerful Python IDE with Flles. Expl For Includes &
nd g
debugging and Inirospection features witha arge toolbo.
Launch ("auncn) (“sea | szall Tnseall |
Doamentation —
Anaconda Blog
¥y e 9 v

Figure 2: |Anaconda Features

3.3 Data Collection

The dataset is collected from open source Kaggle website. This research uses House Sales
Price King County dataset for predicting the house prices.

https://www.python.org/downloads/
https://docs.anaconda.com/anaconda/navigator/

4 Project Development

By selecting new options in the Jupyter Notebook shows Fig.3 a new Python 3 notebook
is being created, and the document may be given a filename. The file has the exten-
sion.ipynb. To analyze data, visualized the data, and develop models, several libraries
must be installed and imported. Pip command is used to install libraries. The following
libraries are imported and install for this research.

 Jupyter

Files Running Clusters
select items to perform actions on them.
(Do ~ | W/ Downloads / RIC FINAL PROJECT
[am]

& X20234813_THESIS_CODE .ipynb

O & untitied7 ipynb
Figure 3:
e Scikit-Learn
e Numpy
e Pandas
e Sklearn
e Matplotlib

Quit

Upload

Last Modified

seconds ago

Name

Running 14 hours ago
3 days ago
3 days ago

3 days ago

Homepage:Jupyter Notebook

Logout

New v

File size

14.4MB
134 MB
804 kB

1.37 MB

After one cell of code is successfully executed or run, it will return to the next cell and
if there is an error in the code, it will display the code where it needs to be debugged To
read the data collected from Kaggle, the pandas library is used to read the data and store
it in a data frame to perform analyses.

4.1 Importing Libraries

import os #os
import numpy as np #array
import pandas as pd #dataframe
#visualization

import seaborn as sns

import matplotlib.pyplot as plt
from random import randint
%matplotlib inline

#sklearn Library

from sklearn.
from sklearn.
from xgboost
from sklearn.
from sklearn.

import XGBRegressor

metrics import accuracy
metrics import mean_squared_error,mean_absolute_error,r2_score

model _selection import train_test split
ensemble import RandomForestRegressor, AdaBoostRegressor,GradientBoostingRegressor

score

pd.set_option(“"display.max_columns",None)
from sklearn.model_selection import RandomizedSearchcV
from sklearn.model_selection import GridSearchcv

from sklearn.model_selection impert train_test_split
from sklearn.preprocessing impert MinMaxScaler

Cross Validation
from sklearn.

sklearn.
sklearn.

from
from

metrics import
metrics import
from sklearn.metrics import
from sklearn.metrics import
import xgboost as xgb

r2_score

model_selection impert cross_val_ score

mean_squared_error
mean_absolute_error
accuracy_

score

Figure 4: Libraries imported

All these libraries show in Fig.4 are imported for analysis and building machine learning
models.

In [208]: data=pd.read csv('kc_house data.csv')

Figure 5:

The Fig.5 show how the data has been read and stored in dataframe for further
analysis.

In [26]: data["date”] = pd.to datetime(data.date)
data["year"] = data.date.dt.year
data["month"] = data.date.dt.month
data["day"] = data.date.dt.day
data["day week"] = data.date.dt.day_name()
data = data.drop(“"date”, axis=1)

Figure 6:

The block in Fig.6 shows the transformation done on date column.Date was further
transform into year, month, day and day week columns for analysis and date column was
dropped.

In [3@]: plt.figure(figsize=(8,6))
sns.boxplot(data.price)

out[30]: <Axessubplot:xlabel="price'>

Y RINEL X e
0 1 2 3 3 5 6 7 8
price leb

Figure 7:

The Boxplot depicts the outliers of the features shown in Fig.7

4

In [74]: #Barplot for no of bedrooms
plt.figure(figsize=(10,4))

beds = data.groupby(by=["bedrooms"])
bed_bar = beds.size()
bed_bar_plot = sns.barplot(bed_bar.index, bed_bar.values)

bed_bar_plot.set(xlabel="No of Bedrooms", ylabel="Count", title="Disturbution of House Brought by No of Bedrooms™)
plt.show()

Disturbution of House Brought by No of Bedrooms

10000

8000

6000

Count

4000

2000

1 2 3 4 5 6 7 8 9

Nn af Radmame

Figure 8:

Fig.8 show barplot chart house purchase by numbers of bedrooms.

In [95]: df1l = data.drop(["id","day", "month", "id", "long", "zipcode"”,"year™,"day week™],axis=1)
df1

Figure 9:
The irrelevant columns were dropped as shown in Fig.9

In [96]: X
y

dfl.drop(['price’],axis=1)
df1['price’]

In [97]: X train, X test, y train, y test = train test split(X, y, test size=0.25, random state=42)

Figure 10:

The Fig.10 data is spitted into train and test 75:25 ratio.

e Random Forest

In [98]: model RFR = RandomForestRegressor(n_estimators=100)
model RFR.fit(X train, y_train)

Figure 11:

e Extreme Gradient Boosting

In [104]: model xghoost = XGBRegressor()
model xgboost.fit(X train, y train)

Figure 12:

The Fig.11 and Fig.12 shows the model build from Random Forest and XGBoost
Model.

Feature Importance

grade
waterfront
saft_living
lat

view

yr_built
saft_livingl5
condition
yr_renovated
sqft_above
sqft_lotl5
bathrooms
sqft_lot
sgft_basement
floors
bedrooms

00 01 02 03 0.4

Figure 13:

df2 = data[["grade”,"waterfront”, "sqft living", "lat","view","yr built","sqft livingl5","price"]]
df2.head()

Figure 14:

The Fig.13 shows barplot of feature importance Fig.14 show selected important fea-
tures by XGBoost Model.

Feature Importance

grade
sqft_living
lat

yr_built
sqft_living15
waterfront
sqft_lot
sqft_lot15
view
sqft_above
bathrooms
sqft_basement
condition
bedrooms
floors

yr_renovated

0.00 0.05 0.10 015 0.20 025 030 035

Figure 15:

non wow

In [218]: df3 = data[["grade","sqft_living", "lat","yr_built","sqft_livingls","waterfront”,"sqft_lot","price"]]
df3.head()

Figure 16:

The Fig.15 shows barplot of feature importance and Fig.16 show selected important
features by Random Forest Model

In [186]: pred_xgboost_fs = model_xgboost fs.predict(X1_test)

In [187]: cross val xgboost fs = round(np.mean(cross val score(model xgboost fs,Xl train,yl train)),4)
R2 xghoost fs = round(r2 score(yl test, pred xgboost fs),4)
MAE xgboost fs = int(mean absolute error(yl test,pred xgboost fs))

In [188]: cross_val_xgboost_fs

out[188]: 0.8208

In [189]: R2_xgboost fs

out[189]: @.8425

In [198]: MAE_xgboost_fs

out[198]: 82568
Figure 17:

The Fig.17 show the evaluation score of Xghoost model

In [222]: pred_RFR_fs = model RFR_fs.predict(X2_test)

In [223]: cross_val RFR_fs = round(np.mean(cross_val_score(model RFR_fs,X2_train,y2_train)),4)
R2_RFR_Ts = round(r2_score(y2_test,pred_RFR_Ts),4)
MAE RFR _fs = int(mean absolute error(y2 test,pred RFR fs))

In [224]: cross val RFR fs

out[224]: @.8243

In [225]: R2_RFR_fs

out[225]: o.8412

Tn [226]: MAE_RFR_fs

out[226]: 81171

Figure 18:

The Fig.18 show the evaluation score of Random Forest model.

¢ Genetic Algorithm for Feature Selection

In [243]: def initilization_of_population(size,n_feat):

population = []

for i in range(size):
chromosome = np.ones(n_feat,dtype=np.bool)
print(“"generated population:",chromosome)
chromosome[:int(@.3*n_feat)]=False
print("After added false population:",chromosome)
np.random. shuffle(chromosome)
print("after shuffled population:",chromosome)
population.append(chromosome)

print("Population:", population)

return population

Figure 19:
The Fig.19 above function used to generate population.

7

def fitness_score(population):

scores = []

for chromosome in population:
print({chromosome)
logmodel.fit(X_train.iloc[:,chromosome],Y_train)
predictions = logmodel.predict(X_test.iloc[:,chromosome])
scores.append(accuracy_score(y_test,predictions))

scores, population = np.array(scores), np.array(population)

print("scores:",scores)

print("Population:”,population)

inds = np.argsort(scores)

print("Indeces:",inds)

print(list(scores[inds][::-1]))

print(list(population[inds,:][::-1]))

return list(scores[inds][::-1]), list(population[inds,:][::-1])

Figure 20:
This fitness score function in Fig.20 select population with best score.

def selection(pop_after fit,n_parents):
population_nextgen = []
for i in range(n parents):
population_nextgen.append(pop_after_fit[i])
print("selected nextgen:",len(population_nextgen))
return population_nextgen

Figure 21:

In Fig,21 selection process, select the size of population. It has two parameter one is
output of fitness score function and other one is size of number of best score of population.

def crossover(pop_after_sel):

pop nextgen = pop after sel

for i in range(@,len(pop_after_sel),2):
print("Before Crossover childl:",pop_nextgen[i])
print("Before Crossover child2:",pop nextgen[i+1])
child 1 , child 2 = pop nextgen[i] , pop nextgen[i+1]
new_par = np.concatenate((child_1[:len(child_1)//2],child_2[len(child_1)//2:1})
print("After Crossover:",new par)
pop_nextgen.append(new par)

print("length of population after crossover:",len(pop nextgen))

return pop_nextgen

Figure 22:

In Fig.22 Cross over process it increases the selected population size and takes two
population one is child 1 and another one is child 2.

def mutation(pop_after_cross,mutation_rate,n feat):

mutation_range = int(mutation_rate*n_feat)
print("Mutation range:",mutation_range,"\n")
pop_next_gen = []
for n in range(@,len(pop after cross))

chromo = pop_after_cross[n]

rand_posi = []

for i in range(®,mutation range):

pos = randint(e,n feat-1)
print("Position:",pos)
rand posi.append(pos)

print(“positions:"”,rand posi)
for j in rand posi:

print("BEFORE CHROMO:",chromo)
chromo[j] = not chromo[j]
print("AFTER CHROMO:",chromo)

pop_next_gen.append(chromo)
return pop next _gen

Figure 23:

In Fig.23 mutation function is use mutate the elements in the populations. The
function generates two random numbers between feature size of the dataset.

def generations(df,label,size,n feat,n parents,mutation rate,n gen,X train,

best chromo= []
best score= []

X test, Y train, Y test):

population nextgen=initilization of population(size,n feat)

for i in range(n_gen):
scores, pop after fit = fitness score(population nextgen)
print(“size of scores:",len(scores))
print(“size of pop_after_fit:",len(pop_after_fit))
print('Best score in generation',i+1,':",scores[:1])
pop after sel = selection(pop after fit,n parents)
print("Before Cross over population size:",len(pop_after_sel))

pop_after_cross

crossover(pop_after_sel)

print("After Cross over population size:",len(pop_after_cross))
population_nextgen = mutation(pop_after_cross,mutation_rate,n_feat)
best_chromo.append(pop_after_fit[e])

best_score.append(scores[@])

print("Best Chromo:"

,best_chromo)

print("Best Chromo Score:",best_score)
return best_chromo,best_score

Figure 24:

In Fig.24 Generation function returns best 5 population which have given the 5 gen-

erations with importance score.
generations.

The population with best score is selected from five

sel fea=list(chromo df bc[-5])
print(sel fea)
[True, False, False, True, True, True, False, False, True, False, True, True, True, True, True, True]
cols=1ist(data bc.columns)
sel cols=[]
for i in range(len(sel_fea)):
if sel fea[i]==True:
sel cols.append(cols[i])
else:
continue

sel_cols.append("price")
print(sel cols)

['bedrooms', 'sgft_lot', 'floors', 'waterfront’, 'grade’, 'sqft_basement', 'yr_ built', 'yr_renovated', 'lat’, ‘sqft_livingls’,
'sgft_lot1s', 'price’]

Figure 25:

The Fig,25 shows the best features selected by Genetic algorithm for model building.

In [258]: pred RFR_GA = model RFR GA.predict(X5 test)

In [259]: cross_val RFR_GA = round(np.mean(cross_val_score(model RFR_GA,X5_train,y5_train)),4)
RZ_RFR_GA = round(r2_score(y5_test, pred_RFR_GA),4)
MAE_RFR_GA = int(mean_absolute error(y5_test,pred_RFR_GA))

In [260]: cross val RFR GA

out[26@]: 0.6169

In [261]: R2_RFR_GA

out[261]: ©.6523

In [262]: MAE RFR GA

out[262]: 136151

Figure 26:

The Fig.26 shows the evaluation score of Random Forest using Genetic algorithm
feature selection method.

In [264]: pred_xgboost_GaA = model_xgboost_GA.predict(Xs_test)

In [265]: cross val xgboost GA = round(np.mean(cross val score(model xgboost GA,X5 train,y5 train)),4)
R2_xgboost_GA = round(r2_score(y5_test, pred_xgboost_GA),4)
MAE xghoost GA = int(mean absclute error(y5 test,pred xgboost GA))

In [266]: cross_val_xgboost_GA

out[266]: @.6259

In [267]: R2_xgboost_GA

Out[267]: 0.6569

In [268]: MAE_xgboost_GA

out[268]: 134939

Figure 27:

10

The Fig.27 shows the evaluation score of XGBoost using Genetic algorithm feature
selection method.

11

	Introduction
	Software and hardware Specifications:
	Installation and Downloads
	Python
	Anaconda
	Data Collection

	Project Development
	Importing Libraries

