~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
MSc Data Analytics

Kshitija Kiran Manore
Student ID: x20191308

School of Computing
National College of Ireland

Supervisor: Dr Catherine Mulwa

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Kshitija Kiran Manore
Student ID: x20191308
Programme: MSc Data Analytics
Year: 2022
Module: MSc Research Project
Supervisor: Dr Catherine Mulwa
Submission Due Date: 15/08/2022
Project Title: Configuration Manual
Word Count: 1337
Page Count: 23

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Kshitija Kiran Manore

Date: 14th August 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Kshitija Kiran Manore
x20191308

1 Introduction

How to execute the developed scripts for the current study subject is described in the con-
figuration document. This will guarantee error-free operation of the code. This provides
the same specified minimum need as well as details about the hardware configuration of
the machine on which the programs are run. Following these steps will make it easier
to reproduce the project’s results. This may then be examined, making it simple to do
more study.

2 System Specification

2.1 Hardware configuration

The system’s hardware specifications, which are listed below, are as follows:

Processor: Ryzen 7 — 8265U CPU @ 1.60GHz

RAM: 8 GB

Storage: 1TB SSD

Operating System: 64-bit operating system, Windows 11

Python (version 3.6.9) was used to performthe task’s execution since it has a wealth
of readily importable library modules. Its deployment made advantage of both the local
workstation and the Google online services. The on-site PC was a 64-bit Windows 11
laptop including an 8GB RAM and Ryzen 7 CPU. Because Step 2 required more pro-
cessing power as well as a graphics processing unit, the evaluation was conducted on a
local workstation (GPU).

2.2 Software configuration

The Google Compute Engine serves as the foundation for all computing activities on the
Google Cloud Platform, which is essentially an Infrastructure as a Service (IaaS). Google
provides it. The configuration was set up to make advantage of the 2496 CUDA cores,
12GB of RAM, and 1xTesla K80 available GPU for the length of the execution. The
GPU service was restricted to a total of twelve hours per day because the cloud hosting
was simply a free service. The model training procedure therefore took around a week.

3 Downloads and Installation

e Python

Python is utilized in this research study because of the abundance of libraries, machine
learning models, plus deep learning tools it offers. Additionally, it has a number of
modules that facilitate pre-processing and image alteration, making it easier to use and
put into practice. As a result, it is essential that the machine running the script has the
most recent version of Python downloaded. To achieve this, go to the Python website’s
download link at [[] and download the installer for the chosen version based upon that
machine’s operating system. Fig. 1 displays a snapshot of the website where the most
recent version may be downloaded.

Python

& python’ EDN.

About Downloads Documentation Community Success Stories News Events

Looking for Python with a different 0S? Python for Windows,

Linux/UNIX, macOS, Other \

. a \ .
Download the latest version for Windows m \
|
Download Python 3.9.6 \ | / /
\\\ //
\ o7

Want to help test development versions of Python? Prereleases,

Docker images

Looking for Python 2.7? See below for specific releases

Figure 1. Download page of python

By using python -version’ command on the Command line, you may check whether
the installation was successful. You can find out what version of Python is installed there.

e Data Source

The data for this study was collected from Amazon’s online reviews’] of gourmet foods. It
includes a variety of information, including the user’s identity, user ID, product informa-
tion, ratings, the text of the user reviews, and a reference summary of those user reviews.
All of the aforementioned data was retrieved and put together into csv file for later use.
The total dataset contains around 570,000 reviews, and depending on the computing ca-
pacity or resource we have available, we may choose sequence data of 50,000 or 100,000
entries for our application.

e Project Development

Additional Python modules will be required as necessary because the project uses
transfer learning-based machine as well as deep learning methodologies. You may install

thttps:/ /www.python.org/downloads/
https://www.kaggle.com/datasets/snap/amazon-fine-food-reviews

them by using pip install at the Windows command - line interface, as seen in the example
below.

e TensorFlow

e Keras

e Pandas

e RE

e Numpy

e OS

e BeautifulSoup

e Tokenizer

e pad_Sequences

e Stopwords

e Warnings

o Wget

e NLTK

e Pickle

e Stringcode

e Unicodedata

e Randint

e Seaborn

e Matplotlib

e Wordcloud

e SKlearn

e contractions

e Rouge-Score

Ipip install tensorflow-gpu==1.15

Ipip install keras==2.2.4

Ipip install numpy==1.19.5

#import keras==2.2.4

import numpy as np

import pandas as pd

import re

import os

from bsa import BeautifulSoup

from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
from nltk.corpus import stopwords

from tensorflow.keras.layers import Input, LSTM, Embedding, Dense, Concatenate, TimeDistributed, Bidirectional
from tensorflow.keras.models import Model

from tensorflow.keras.callbacks import EarlyStopping
import warnings

pd.set_option(“display.max_colwidth", 20@)
warnings.filterwarnings("ignore")

Ipip install wget

import wget

import nltk

Figure 2. Necessary Libraries-1

import os

import re

import pickle

import string

import unicodedata

from random import randint

import numpy as np

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

from nltk.corpus import stopwords
from wordcloud import STOPWORDS, WordCloud

from sklearn.model_selection import train_test_split

import tensorflow as tf

from tensorflow.keras import Input, Model

from tensorflow.keras.preprocessing.text import Tokenizer

from tensorflow.keras.preprocessing.sequence import pad_sequences

from tensorflow.keras.callbacks import EarlyStopping, ReduceLROnPlateau

from tensorflow.keras.layers import LSTM, Bidirectional, Dense, Embedding, TimeDistributed
from tensorflow.keras.models import load_model

lpip install -q contractions==06.8.48
Ipip install rouge-score

Figure 3. Necessary Libraries-2

4 Code

e Preprocessing of Data

e Defining the Contraction Dictionary

trom contractions import contractions_dict

for key, value in list(contractions dict.items())[:1@]:
print(f'{key} == {value}')

I'm==1 am

I'm'a == I am about to

I'm'o == I am going to

I've == I have

I'11 == I will

I'll've == I will have

I'd == I would

I'd've == I would have

Whatcha == What are you
amn't == am not

Figure 4

Figure 4 shows declaration of contraction dictionary.

e Expanding the Contractions

def expand_contractions(text, contraction_map=contractions_dict):
Using regex for getting all contracted words
contractions_keys = '|'.join(contraction_map.keys())
contractions_pattern = re.compile(f'({contractions_keys})"', flags=re.DOTALL)

def expand_match{contraction):
Getting entire matched sub-string
match = contraction.group(®)
expanded_contraction = contraction_map.get(match)
if not expand contractions:
print(match)
return match
return expanded_contraction

expanded text = contractions pattern.sub(expand match, text)
expanded_text = re.sub("'", "", expanded_text)
return expanded_text

expand_contractions("y'all can't expand contractions i'd think™)

‘you all can not expand contractions id think'

Figure 5

Figure 5 shows the expansion of contractions.

e Removing Punctuation Marks

Remove puncuation from word
def rm_punc_from_word(word):
clean_alphabet_list = [
alphabet for alphabet in word if alphabet not in string.punctuation

]

return " '.join(clean alphabet list)

print{rm_punc_from_word(" #cool!"))

Remove puncuation from text

def rm_punc_from text(text):
clean_word_list = [rm_punc_from word{word) for word in text]
return " ".join{clean_word_list)

print(rm_punc_from text("Frankly, my dear, I don't give a damn"))

cool
Frankly my dear I dont give a damn

Figure 6

Figure 6 shows the removal of punctuation marks.

e Removing Numbers

Remove numbers from text
def rm_number_from_text(text):
text = re.sub('[@-9]+", "', text)
return * '.join(text.split()) # to rm “extra’ white space

print(rm_number_from_text('You are 1@@times more sexier than me’))
print(rm_number_from_text('If you taught yes then you are 10 times more delusional than me'))

You are times more sexier than me
If you taught yes then you are times more delusional than me

Figure 7

Figure 7 shows the removal of the numbers.

e Removing Stopwords

Remove stopwords from text
def rm_stopwords_from_text(text):
_stopwords = stopwords.words('english’)
text = text.split()
word_list = [word for word in text if word not in _stopwords]
return ° ".join(word_list)

rm_stopwords_from_text("Love means never having to say you're sorry™)

'Love means never say sorry’

Figure 8

Figure 8 shows the removal of the stop words.

e Saving the data after Preprocessing

saving the cleaned data
df.to_csv('/content/drive/MyDrive/customer review summarizer/Data/cleaned data.csv')

Figure 9

Figure 9 shows saving of the data after preprocessing.

e Creating a Word Cloud

bag used grmga..t "

nder ful

Figure 10
Figure 10 shows the aspects in a WordCloud.

e Rare word Analysis

rare word analysis
def get rare_word_percent(tokenizer, threshold):
threshold: if the word's occurrence is less than this then it's rare word

count = @

total count = @
frequency = @
total frequency =

for key, value in tokenizer.word_counts.items():
total_count += 1
total_frequency += value
if value < threshold:
count += 1
frequency += value

return {
‘percent’: round({count / total_count) * 180, 2),
"total_coverage': round(frequency / total_frequency * 1ee, 2),
‘count': count,
‘total_count': total_count

Figure 11

Figure 11 shows the rare word analysis. The word which has less occurrence is a rare
word.

e Splitting the dataset

splitting the training and validation sets
x train, x val, y train, y val = train test split(
np.array(df["text’]),
np.array(df[" 'summary']),
test_size=0.1,
random_state=1,
shuffle=True

Figure 12

Figure 12 shows splitting the data in training and testing sets.

e Tokenizing

%x_tokenizer = Tokenizer()
x_tokenizer.fit_on_texts(list(x_train))

x_tokens_data = get_rare_word_percent(x_tokenizer, 4)
print(x_tokens_data)

{'percent': 71.52, 'total coverage': 2.37, 'count': 48321, 'total_count': 67561}
x_tokenizer = Tokenizer(num_words=x_tokens_data[‘total_count'] - x_tokens_data[‘count'])

else use this
x_tokenizer = Tokenizer()
%_tokenizer.fit_on_texts(list(x_train))

save tokenizer
with open(’/content/drive/MyDrive/customer_review_summarizer/x_tokenizer®, 'wb') as f:
pickle.dump(x_tokenizer, f, protocol=pickle.HIGHEST_PROTOCOL)

Figure 13

Figure 13 shows the code for tokenizing the words.

e LSTM Model

def build_seq2seq_model with_just_lstm(
embedding_dim, latent_dim, max_text_len,
x_wvocab_size, y vocab_size,
x_embedding_matrix, y_embedding_matrix

)-

encoder embedding layer
encoder_embedding = Embedding(
x_vocab_size,
embedding_dim,

trainable=False
)(encoder_input)

encoder lstm 1
encoder_lstml = LSTM(
latent_dim,
return_sequences=True,
return_state=True,
dropout=0.4,
recurrent_dropout=6.4

)

encoder lstm 2
encoder_lstm2 = LSTM(
latent_dim,

encoder_input = Input(shape=(max_text_len, })

instantiating the model in the strategy scope creates the model on the TPU

embeddings_initializer=tf.keras.initializers.Constant(x_embedding_matrix),

encoder_outputl, state_hl, state_cl = encoder_lstml(encoder_embedding)

Figure 14

Figure 14 shows building of the LSTM Model.

e Summary of LSTM Model

ﬁad;i;“ﬁm;aéi: e e e mn g ol
Layer (type) Output Shape Param # Connected to
input_1 E;;;;;[ayer) ---[(None, 19535 2] o
embedding (Embedding) (None, 1@@, 300) 20268600 input_1[@][e]
input_2 (InputLayer) [(None, None)] 2]

1stm (LSTM) [(None, 1@, 240), (519360

embedding[@][e]

embedding_1 (Embedding) (None, None, 300) 4467900

input_2[e][e]

Istm 1 (LSTM) [(None, 100, 240), (461760

Istm[0][0]

lstm_2 (LSTM) [(Mone, Wone, 248), 519360 embedding_1[@][0]
1stm_1[e][1]
1stm_1[@][2]
time_distributed (TimeDistribut (None, None, 14893) 3589213 lstm_2[@][e]
Total params: 29,826,193
Trainable params: 9,557,593
Non-trainable params: 20,268,600
Figure 15

Figure 15 shows the summary for LSTM model.

e Epochs of LSTM

WARNING:tensorflow:From /usr/local/lib/python3.7/dist-packages/tensorflow_core/python/ops/math_grad.py:1424: where (from tensorflow.python.op:
Instructions for updating:

Use tf.where in 2.8, which has the same broadcast rule as np.where

Train on 84048 samples, validate on 9339 samples

;zgig/éigaa [==] - 119s ims/sample - loss: 1.9503 - acc: ©.7505 - val_loss: 1.5707 - val_acc: ©.7883
gzg;g/;:;a [] - 117s 1ms/sample - loss: 1.6272 - acc: ©.7818 - val loss: 1.5058 - val acc: @.7915
[Sggzg/;:gdﬁ [] - 117s 1ms/sample - loss: 1.56@4 - acc: ©.7845 - val_loss: 1.4457 - val_acc: ©.7934
;ggzg/gi:aa [==] - 127s 2ms/sample - loss: 1.5087 - acc: ©.7864 - val_loss: 1.4099 - val_acc: 0.7949
;z;;g/::;a [] - 115s 1ms/sample - loss: 1.4731 - acc: ©.7882 - val loss: 1.3918 - val acc: @.7961
;Eg;g/::zdﬁ [] - 1165 1ms/sample - loss: 1.4432 - acc: ©.7899 - val_loss: 1.3634 - val_acc: ©.7983
;gg;z/;i:aa [==] - 117s ims/sample - loss: 1.4158 - acc: ©.7916 - val_loss: 1.3439 - val_acc: 8.7995
gzgfig/g:ﬁtla [] - 118s 1ms/sample - loss: 1.3925 - acc: ©.793@ - val loss: 1.3322 - val acc: ©.8003

4

Figure 16

Figure 16 shows the 8 epochs for LSTM model.

e Accuracy of LSTM model for Text Summarization

0.98 _ -

0.96 1

0.90 - = train acc
val

0 2 4 6 8
Epoch

Figure 17

Figure 17 shows a graph for accuracy of training and testing data.

e Loss of LSTM model for Text Summarization

10

0.2 -

== train loss

= val
D]. ~ T T T T T
0 2 4 6 8

Epoch

Figure 18

Figure 18 shows a graph for loss of training and testing data

o Inference LSTM model

Inference LSTM

[] # Next, let’s build the dictionary to convert the index to word for target and source vocabulary:
reverse_target_word_index = y_tokenizer, index_word
reverse_source_word_index = x_tokenizer,index_word
target_word_index = y_tokenizer.word_index

[1 def build_seq2seq_model with_just_lstm_inference(
max_text_len, latent_dim, encoder_input, encoder_output,
encoder_final_states, decoder_input, decoder_output,
decoder_embedding_layer, decoder_dense, last_decoder_lstm

Encode the input sequence to get the feature vector
encoder_model = Model(
inputs=encoder_input, outputs=[encoder_output] + encoder_final_states

)

Decoder setup

Below tensors will hold the states of the previous time step
decoder_state_input_h = Input(shape=(latent_dim,))
decoder_state_input_c = Input(shape=(latent_dim,))
decoder_hidden_state_input = Input(shape=(max_text_len, latent_dim))

Get the embeddings of the decoder sequence
decoder_embedding = decoder_embedding_layer(decoder_input)

To predict the next word in the sequence, set the initial

states to the states from the previous time step

decoder_output, *decoder states = last decoder lstm(
decoder_embedding,

B I N e e O N = 1 ST N N, W N VN WV S VN, Ny

Figure 19

11

Figure 19 shows the inference LSTM model.

e Creating a Predicting Model

def predict_text(text, decode_sequence, encoder_model, decoder_model):
original_text = text
text = clean_text([text]) # generator
text list = original text.split()

if len(text_list) <= max_text_len:
text = expand_contractions(text)
text = clean_text(text)
text = f'_START_ {text} _END '
text = f'{start_token} {text} {end_token}'

seq = x_tokenizer.texts_to_sequences([' '.join(text_list)])
padded = pad_sequences(seq, maxlen=max_text_len, padding="post’)
pred_summary = decode_sequence(

padded.reshape(1, max_text_len), encoder_model, decoder_model
)
return pred_summary

else:

pred_summary =

breaking long texts to individual max_text_len texts and predicting on them
while len(text_list) % max_text_len == @:
text_list.append('")

Ist_i = max_text_len
for i in range(@, len(text_list), max_text_len):
_text_list = original_text.split()[i:i + 1st_i]
_text = ' '.join(_text_list)
_text = ' ".join(
_text.split()
) # to remove spaces that were added to make len(text_list) % max_text_len ==

Figure 20

Figure 20 shows creation of a model to predict the summary.

e Summarization with LSTM

1 News: great snack bought try ordering morethey taste somewhat like cross jack parmesan cheeseyou get dimesized fat discs crispy baked cheese saltybut love ththem
original summary: start crispy salty cheezyyum end
predicted summary: start great snack end

#2 News: one favorite flavors green tea happy find amazon local wal stopped carrying itbr br got nice peach skin essence flavor easy taste peach flavor green tea get nice strong
original summary: start great tasting well priced green tea end
Predicted summary: start great tea end

3 News: using cat food years vet recommended dental cleaning expensive put ththem anesthesia way cat healthy teeth sethem good condition loves taste size eat small food anymore
original summary: start live without cat food end
predicted summary: start cat loves end

4 News: received selection kcups im familiar green mountain thought id try something newand good made ounce cup well flavared nice deep bitter would definitely buy one
Original summary: start nice strong cupnot bitter end
predicted summary: start good coffee end

#5 News: compared grocery store mix sissy
original summary: start great deal end
predicted summary: start great product end

6 News: want know pleased quality service company provides sincerely appreciate responsiveness way conduct business recommended company others satisfaction service product look
Original summary: start grrrrate end
predicted sumiary: start great product end

#7 News: honestly say shots sometimes crutches feel like im pass im majoring mechanical engineering things phenomenal need get late night studying done need energy focus exams t.
original summary: start college students best friend end
Predicted summary: start great product end

8 News: amazon clearly stacks sitting around warehouse months bars chalky tasted old besides though know much would like bars anyway mean love anything peanut butter bars cut t
original summary: start poor taste fresh end
predicted summary: start great snack end

#9 News: tasty filling easy would recommend kraft velveeta ultimate cheesburger skillets dinner body wants hand fast tasty meal

Figure 21

Figure 21 shows the summarization of the food reviews by the LSTM model.
e ROUGE Score

12

from rouge_score import rouge_scorer
scorer = rouge scorer.Rougescorer(['rougel’])
results = {'precision’: [], 'recall': [], 'fmeasure': []}
for (h, r) in zip(text, predicted):
computing the ROUGE
score = scorer.score(h, r)
separating the measurements
precision, recall, fmeasure = score['rougel’]
add them to the proper list in the dictionary
results['precision’].append{precision)
results['recall’].append(recall)
results['fmeasure’].append(fmeasure)

result = pd.DataFrame(results)
result

Figure 22
Figure 22 shows the code for ROUGE score for LSTM model.

e ROUGE Matrix for LSTM

precision recall fmeasure

0 0.000000 0.00000 0.000000

1 0.000000 0.00000 0.000000

2 0.000000 0.00000 0.000000

3 0.000000 0.00000 0.000000

4 0.000000 0.00000 0.000000

5 0.000000 0.00000 0.000000

6 0.000000 0.00000 0.000000

T 0.000000 0.00000 0.000000

8 0.000000 0.00000 0.000000

9 0.000000 0.00000 0.000000

10 0.000000 0.00000 0.000000
11 0.000000 0.00000 0.000000
12 0.000000 0.00000 0.000000
13 0.083333 0.01087 0.019231

14 0.000000 0.00000 0.000000

13

Figure 23

Figure 23 shows the precision, recall and flmeasure for LSTM model.

e BDLSTM Model

Bidirectional LSTMs

[1 def build_seq2seq_model with_bidirectional lstm(
embedding_dim, latent_dim, max_text_len,
x_vocab_size, y_vocab_size,
x_embedding_matrix, y_embedding_matrix

instantiating the model in the strategy scope creates the model on the TPU

encoder_input = Input(shape=(max_text_len,))

encoder embedding layer
encoder_embedding = Embedding(

x_wvocab_size,
embedding_dim,
embeddings_initializer=tf.keras.initializers.Constant(x_embedding_matrix),
trainable=False,
name="encoder_embedding’

)(encoder_input)

encoder lstml
encoder_bi_lstml = Bidirectional(
LSTM(

latent_dim,
return_sequences=True,
return_state=True,
dropout=0.4,
recurrent dropout=0.4.

Figure 24
Figure 24 shows building of the BDLSTM Model.

e Summary of BDLSTM Model

14

_______ —————— O

seq2seq_model_with_bidirectional_lstm”

Layer (type) output Shape Param # Connected to
input_6 (InputLayer) [(none, 18@)] 0
encoder_embedding (Embedding) (MNone, 100, 300) 20268600 input_s[e][e]

encoder_bidirectional_lstm_1 (B [(None, le@, 48@), (1938720

encoder_embedding[e][®@]

input_7 (InputLayer) [(None, None)]

2]

encoder_bidirectional_lstm_2 (B [(None, 100, 480), (1384320

encoder_bidirectional_lstm_1[e][e

decoder_embedding (Embedding) (MNone, None, 30@)

4467980

input_7[e][e]

encoder_bidirectional_lstm_3 (B [(None, 10@, 480), (1384320

encoder_bidirectional_lstm_2[e][e

decoder_bidirectional_lstm_1 (B [(None, None, 480),

1038720

decoder_embedding[e][®]

encoder_bidirectional_lstm_3[e@][1
encoder_bidirectional_lstm_3[e][2
encoder_bidirectional_lstm_3[e@][3
encoder_bidirectional_lstm_3[e][4

time_distributed_1 (TimeDistrib (Mone, None, 14893)

7163533

decoder_bidirectional_lstm_1[@][@

Total params: 36,746,113
Trainable params: 12,009,613
Non-trainable params: 24,736,500

Figure 25

Figure 25 shows the summary for LSTM model.

e Epochs of BDLSTM

Train on 84048 samples, validate on 9339 samples

Epoch 1/1@

84048/84048 [] - 311s 4ms/sample
Epoch 2/1@

84048/84048 [] - 303s 4ms/sample
Epoch 3/1@

84048/84048 [] - 299s 4ams/sample
Epoch 4/1@

84048/84048 [] - 298s 4ams/sample
Epoch 5/1@

84048/84048 [1 - 3@3s 4ms/sample
Epoch &/1@

84048/84048 [=================] - 315s 4ms/sample
Epoch 7/1@

84048/84048 [] - 3e6s ams/sample
Epoch 8/1@

84048/84048 [] - 304s 4ams/sample
Epoch 9/1@

84048/84048 [] - 3e5s 4ms/sample
Epoch 18/10

84048/84048 [================= 1 - 303s 4ms/sample

loss: 1.4095 -

loss: ©.7058

loss: ©.4963

loss: ©.3902 -

loss: ©.3233

loss: @.2798

loss: ©.2442 -

loss: ©.2185

loss: ©.1978

loss: @.181@ -

acc: 0.8137 - val_loss: ©.7651 - val_acc:
acc: 0.9049 - val_loss: @.4565 - val_acc:
acc: 9.9371 - val_loss: ©.3300 - val_acc:
acc: @,9522 - val_loss: ©.2611 - val_acc:
acc: 0.9609 - val_loss: @8.2194 - val_acc:
acc: ©.9664 - val_loss: ©.1896 - val_acc:
acc: 9.9701 - val_loss: @.1672 - val_acc:
acc: 0.9730 - val_loss: ©.1530 - val_acc:
acc: 0.9751 - val_loss: ©8.1367 - val_acc:

acc: ©.9767 - val_loss: ©.1260 - val_acc:

.8926

19372

.9562

.966@

L9713

.9754

.9781

.9795

.9816

.9827

Figure 26

Figure 26 shows the 10 epochs for BDLSTM model.

e Accuracy of BDLSTM model for Text Summarization

15

0.7975 - -
0.7950 - _—
0.7925 -

0.7900 -

Accuracy

0.7875 1

0.7850 1
0.7825 -

0.8000 1 _—

= train acc

val

Epoch

0 1 2 3 - 5 [

Figure 27

Figure 27 shows a graph for accuracy of training and testing data.

e Loss of BDLSTM model for Text Summarization

160 1

155 1

150 1

Loss

145

140 1

135 1

Epoch

Figure 28

Figure 28 shows a graph for loss of training and testing data
e Inference BDLSTM model

16

Inference

encoder_model, decoder_model = build_seq2seq_model_with_bidirectional_lstm_inference(
max_text len, latent_dim, encoder_input, encoder output,
encoder_final_states, decoder_input, decoder_output,
decoder_embedding_layer, decoder_dense, last_decoder_lstm

encoder_model. summary()

Model: "model_ 3"

Layer (type) Output Shape Param #

[(NUI’-\;, 100)])

input_6 (InputLayer)

encoder_embedding (Embedding (Mone, 100, 30@) 20268600

encoder_bidirectional_lstm_1 [(None, 100, 480), (None, 1838720

encoder_bidirectional_lstm_2 [(None, 108, 488), (None, 1384320

encoder_bidirectional lstm_3 [(None, 108, 488), (MNone,

Total params: 24,075,960
Trainable params: 3,807,360
Non-trainable params: 20,268,600

Figure 29
Figure 29 shows the inference BDLSTM model.

e Summarization with BDLSTM

1 News: great snack bought try ordering morethey taste somewhat like cross jack parmesan cheeseyou get dimesized fat discs crispy baked cheese saltybut love ththem

original summary: start crispy salty cheezyyum end
predicted summary: end start start start start start start start start start start start

2 News: one favorite flavors green tea happy find amazon local wal stopped carrying itbr br got nice peach skin essence flavor easy taste peach flavor green tea get nice stron
original summary: start great tasting well priced green tea end

predicted summary: end start start start start start start start start start start start

3 News: using cat food years vet recommended dental cleaning expensive put ththem anesthesia way cat healthy teeth sethem good condition loves taste size eat small food anymor
original summary: start live without cat food end

predicted summary: end start start start start start start start start start start start

4 News: received selection kcups im familiar green mountain thought id try something newand good made ounce cup well flavored nice deep bitter would definitely buy one

original summary: start nice strong cupnot bitter end
predicted summary: end start start start start start start start start start start start

5 News: compared grocery store mix sissy

original summary: start great deal end

predicted summary: end start start start start start start start start start start start

6 News: want know pleased quality service company provides sincerely appreciate responsiveness way conduct business recommended company others satisfaction service product loo
original summary: start grrrrate end

predicted summary: end start start start start start start start start start start start

7 News: honestly say shots sometimes crutches feel like im pass im majoring mechanical engineering things phenomenal need get late night studying done need energy focus exams
Original summary: start college students best friend end

predicted summary: end start start start start start start start start start start start

4 8 News: amazon clearly stacks sitting around warehouse months bars chalky tasted old besides though know much would like bars anyway mean love anything peanut butter bars cut

original summary: start poor taste fresh end
predicted summary: end start start start start start start start start start start start

9 News: tasty filling easy would recommend kraft velveeta ultimate cheesburger skillets dinner body wants hand fast tasty meal

Figure 30

Figure 30 shows the summarization of the food reviews by the BDLSTM model.

e ROUGE Score

17

original = []
predicted = []
text = []

for i in range(e, 15):
text.append(seq2text (x_val_padded[i]))
original.append(seq2summary(y_val_padded[i]))

from rouge_score import rouge_scorer
scorer = rouge_scorer.Rougescorer(['rougel'])
results = {'precision’: [], 'recall’: [], 'fmeasure': []}
for (h, r) in zip(text, predicted):
computing the ROUGE
score = scorer.score(h, r)
separating the measurements
precision, recall, fmeasure = score['rougel']
add them to the proper list in the dictionary
results[‘'precision’].append(precision)
results[‘recall’].append(recall)
results[' fmeasure’].append(fmeasure)

result = pd.DataFrame(results)
esult

predicted.append(decode_sequence_seq2seq_model_with_bidirectional_lstm(x_val_padded[i].reshape(1, max_text_len), encoder_model,decoder_model))

Figure 31
Figure 31 shows the code for ROUGE score for BDLSTM model.

e ROUGE Matrix for LSTM

precision recall fmeasure
0 040 0.058824 0.102564
1 0.50 0.125000 0.200000
2 0.00 0.000000 0.000000
3 0.00 0.000000 0.000000
- 0.25 0.030303 0.054054
5 0.25 0.015873 0.029851
6 0.00 0.000000 0.000000
7 0.00 0.000000 0.000000
8 0.00 0.000000 0.000000
9 0.20 0.022727 0.040816
10 0.25 0.028571 0.051282

Figure 32
Figure 32 shows the precision, recall and flmeasure for LSTM model.

e LSTM with Attention Mechanism Model

18

ATTENTION LAYERS

[1 #!pip install tensorflow-gpu==1.15

[1 import tensorflow as tf
import os
from tensorflow.python.keras.layers import Layer
from tensorflow.python.keras import backend as K

class AttentionLayer(Layer):

def _ init_ (self, **kwargs):
super(AttentionLayer, self). init (**kwargs)

de

-

build(self, input_shape):
assert isinstance(input_shape, list)
Create a trainable weight variable for this layer.

self.W_a = self.add weight(name="W a“,
shape=tf.Tensorshape((input_shape[©][2], input_shape[@][2])),
initializer="uniform’,
trainable=True)
self.U_a = self.add weight(name="U_a",
shape=tf.TensorShape((input_shape[1][2], input_shape[@][2])),
initializer="uniform",
trainable=True)
self.v_a = self,add_weight(name='v_a",
shape=tf.Tensorshape((input_shape[@][2], 1)),

e s A

Figure 33

Figure 33 shows building of the LSTM with Attention Mechanism Model.

e Summary of LSTM with Attention Mechanism Model

Layer (type) Output Shape Param # Connected to
input_1 (InputLayer) [(none, 1@@)] 2]
embedding (Embedding) (None, 100, 300) 20268600 input_1[e][e]
lstm (LSTM) [(Mone, 1@@, 240), (519360 embedding[@][e]
input_2 (InputLayer) [(None, None)] 2]
1stm_1 (LSTM) [(none, 108, 24@), (461760 lstm[e][e]
embedding_1 (Embedding) (None, HNone, 300) 4467900 input_2[e][e]
Istm_2 (LSTM) [(None, 1@, 240), (461760 1stm_1[e][e]
lstm_3 (LSTM) [(MNone, None, 24@), 519360 embedding_1[@][@]
lstm_2[@][1]
lstm_2[@][2]
attention_layer (AttentionLayer ((None, None, 240), 115440 lstm_2[@][0]
1stm 3[@][@]
concat_layer (Concatenate) (None, None, 48@) 2] lstm_3[@][0]
attention_layer[@][e]
time_distributed (TimeDistribut (None, None, 14893) 7163533 concat_layer[@][e]
Total params: 33,977,713
Trainable params: 33,977,713

Figure 34

19

Figure 34 shows the summary for LSTM with Attention Mechanism model.

e Epochs of LSTM

Train on 84048 samples, validate on 9339 samples

Epoch 1/8

84048/84048 [] - 193s 2ms/sample - loss: 1.4690 - acc: ©.7892 - val_loss: 1.3649 - val_acc: 0.7975
Epoch 2/8

84048/84048 [=================== ==] - 18@s 2ms/sample - loss: 1.3876 - acc: ©.7932 - val_loss: 1.3322 - val acc: ©.7986
Epoch 3/8

84048/84048 [===== ==] - 1815 2ms/sample - loss: 1.3297 - acc: ©.7968 - val_loss: 1.3011 - val_acc: ©.8012
Epoch 4/8

84048/84048 [==================- ==] - 184s 2ms/sample - loss: 1.2801 - acc: @.8002 - val_loss: 1.2884 - val_acc: 0.8023
Epoch 5/8

84048/84048 [] - 180s 2ms/sample - loss: 1.2376 - acc: ©.8035 - val_loss: 1.2646 - val_acc: ©.8045
Epoch 6/8

84048/84048 [============ ==] - 179s 2ms/sample - loss: 1.1959 - acc: ©.8070 - val_loss: 1.2653 - val _acc: ©.8047
Epoch 7/8

84048/84048 [=] - 179s 2ms/sample - loss: 1.157@ - acc: ©.8106 - val_loss: 1.2555 - val acc: @.8045
Epoch 8/8

84048/84048 [============ ==] - 178s 2ms/sample - loss: 1.1197 - acc: ©.8141 - val_loss: 1.2507 - val_acc: ©.8065

Figure 35
Figure 35 shows the 8 epochs for LSTM with Attention Mechanism model.

e Accuracy of LSTM with Attention Mechanism model for Text Summar-
ization

= train acc
val

T LJ L] L L

0 1 2 3 4 5 6 7
Epoch

Figure 36
Figure 36 shows a graph for accuracy of training and testing data.

e Loss of LSTM with Attention Mechanism model for Text Summarization

20

160 1

155 1

150 f

Loss

145 1

140 1

~-. = ftrain loss

135 -
val

T

0 1 2 3 4 5 6 7
Epoch

Figure 37
Figure 37 shows a graph for loss of training and testing data

e Encoder Decoder LSTM with Attention Mechanism model

encoder_model = Model(inputs=encoder_inputs,outputs=[encoder outputs, state h, state c])

decoder_state_input_h = Input(shape=(latent_dim,))

decoder_state_input_c = Input(shape=(latent_dim,))

decoder_hidden_state_input = Input(shape=(max_text_len,latent_dim))

dec_emb2= dec_emb_layer(decoder_inputs)

decoder_outputs2, state h2, state c2 = decoder lstm(dec_emb2, initial state=[decoder_state input_h, decoder_state input c])
attn_out_inf, attn_states_inf = attn_layer([decoder_hidden_state_input, decoder_outputs2])

decoder_inf_concat = Concatenate(axis=-1, name='concat')([decoder_outputs2, attn_out_inf])

decoder_outputs2 = decoder_dense(decoder_inf_concat)

decoder_model = Model(

[decoder_inputs] + [decoder_hidden_state_input,decoder state input_h, decoder state_ input_c],
[decoder_outputs2] + [state_h2, state_c2])

def decode_sequence(input_seq):

e_out, e_h, e_c = encoder_model.predict(input_seq)
print('input_seq: {}, e out: {} '.format(input_seq,e out))

target_seq = np.zeros((1,1))

Figure 38
Figure 38 shows the Encoder Decoder LSTM with Attention Mechanism model.

e Summarization with LSTM with Attention Mechanism model

21

Review: fans special bars general house like several varieties including lower calorie ones great taste sweet super sweet nt size expected
original summary: start loved house end
input_seq: [[2061 434 153 1072 302 1 214 694 825 664 589 229 5 6

44 383 44 670 130 427 114 6 226 179 4254 37 42 2
675 249 919 81 152 13] @ @]] @] 2]
@ @ (<] @] [} a 5] 5] a @ @ (]]
@ @] Q Q 2}]]] [} @ Q] Q
]]] @) [} e @ @]] @] e
@ @ (<] @] @ a 5] 5] a @ @ (]]
@ @]], e_out: [[[3.278696%9e-02 2.8049177e-02 8.7306574€-02 ... -8.4276207e-02

-7.4950397e-02 1.0502533e-03]
[1.0906560e-01 1.0310741le-01 2.0168208e-81 ... -1,7765377e-01
-1.4954491e-01 4.6468940e-02]
[4.3882394e-01 4.0380952e-01 2.8437217e-81 ... -3.4313601e-01
-9,9306196e-02 -7.5081497e-02]

[7.8391671e-01 -6.46@1987e-18 -2.1850672e-11 ... 5.2688652¢-01

3.4803629e-01 -5.4071647e-01]

[7.8371793e-01 -2.5516748e-18 -1.2761886e-11 ... 5.2736801e-01
3.4755141e-01 -5.4147786e-01]

[7.8349812e-01 -1.0081952e-18 -7.4506634e-12 ... 5.2825880e-01

3.4706676e-01 -5.4227281e-01]]]
sampled_token: kind
sampled_token: bar
sampled_token: end
predicted summary: kind bar

Figure 39

Figure 39 shows the summarization of the food reviews by the LSTM with Attention
Mechanism model.

e ROUGE Score

from rouge score import rouge scorer
scorer = rouge_scorer.RougeScorer(['rougel’])
results = {"precision’: [], 'recall’: [], 'fmeasure’: []}
for (h, r) in zip(text, predicted):

computing the ROUGE

score = scorer.score(h, r)

separating the measurements

precision, recall, fmeasure = score['rougel']

add them to the proper list in the dictionary

results['precision’].append(precision)

results['recall’].append{recall}

results['fmeasure’].append(fmeasure)

result = pd.DataFrame(results)
result

Figure 40

Figure 40 shows the code for ROUGE score for LSTM with Attention Mechanism
model.

e ROUGE Matrix for LSTM

22

precision recall fmeasure
0 040 0.058824 0.102564
1 0.50 0.125000 0.200000
2 0.00 0.000000 0.000000
3 0.00 0.000000 0.000000
4 0.25 0.030303 0.054054
5 0.25 0.015873 0.029851
6 0.00 0.000000 0.000000
7 0.00 0.000000 0.000000
8 0.00 0.000000 0.000000
9 0.20 0.022727 0.040816
10 0.25 0.028571 0.051282

Figure 23

Figure 23 shows the precision, recall and flmeasure for LSTM with Attention Mech-
anism model.

23

	Introduction
	System Specification
	Hardware configuration
	Software configuration

	Downloads and Installation
	Code

