

# **Configuration Manual**

MSc Research Project Data Analytics

Souvik Maitra Student ID: X20194617

School of Computing National College of Ireland

Supervisor: Mr. Prashanth Nayak

#### National College of Ireland



#### **MSc Project Submission Sheet**

#### **School of Computing**

| Word Count: 922 Page Count: 23 |                                                                                                                  |                   |  |  |  |  |
|--------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------|--|--|--|--|
| Project Title:                 | Prediction Of Non-Alcoholic Fatty Liver Disease<br>Stages Through CT-Scan And<br>Sonography Using Neural Network |                   |  |  |  |  |
| Date:                          | 15/08/2022                                                                                                       |                   |  |  |  |  |
| Lecturer:                      | Mr. Prashanth Nayak                                                                                              |                   |  |  |  |  |
| Module:                        | Research Project                                                                                                 |                   |  |  |  |  |
| Programme:                     | Data Analytics                                                                                                   | <b>Year:</b> 2022 |  |  |  |  |
| Student ID:                    | X20194617                                                                                                        |                   |  |  |  |  |
| Student Name:                  | Souvik Maitra                                                                                                    |                   |  |  |  |  |

I hereby certify that the information contained in this (my submission) is information pertaining to research I conducted for this project. All information other than my own contribution will be fully referenced and listed in the relevant bibliography section at the rear of the project.

<u>ALL</u> internet material must be referenced in the bibliography section. Students are required to use the Referencing Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature:

Date:

#### PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

| Attach a completed copy of this sheet to each project (including multiple  |  |
|----------------------------------------------------------------------------|--|
| copies)                                                                    |  |
| Attach a Moodle submission receipt of the online project                   |  |
| submission, to each project (including multiple copies).                   |  |
| You must ensure that you retain a HARD COPY of the project, both           |  |
| for your own reference and in case a project is lost or mislaid. It is not |  |
| sufficient to keep a copy on computer.                                     |  |

Assignments that are submitted to the Programme Coordinator Office must be placed into the assignment box located outside the office.

| Office Use Only                  |  |
|----------------------------------|--|
| Signature:                       |  |
| Date:                            |  |
| Penalty Applied (if applicable): |  |

# **Configuration Manual**

Forename Surname Student ID:

# **1** Introduction

In this Configuration Manual all the perquisites required to reproduce the research and its outcomes on individual environment are mentioned. The software and the hardware requirement along with a snapshot of code for Data Import and Exploratory Data Analysis, Data Pre-processing, Label Encoding, Feature Selection, all the models-built Cross Validation and Evaluation are included. The structure of the report is as follows, Section 2, gives the information about environment configuration.

Section 3, provides detail about data collection. Section 4 is data exploration consists of Data Pre-processing and Exploratory Data Analysis. Label Encoding is explained in section 5. Section 6 provides the details about Feature Selection. Class Balancing and train test splits for the data for model training and testing are covered in Section 7. Section 8 provides the details about the models built and cross validation. Section 9, explains how results are computed and visualized.

# 2 Environment

This section provides the details of Software and Hardware requirements to implement the research done.

### 2.1 Hardware Requirements

Below Figure 1, provides the hardware specifications required. Intel i5-1135G7 is the 11th Generation Intel Core CPU @ 2.40 GHz, 8 GB installed DDR4 RAM Memory at speed of 3200 Mhz, 64 Bit Windows 10 operating System, 512 GB SSD.

| Device name   | DESKTOP-7FU1R4Q                                            |
|---------------|------------------------------------------------------------|
| Processor     | 11th Gen Intel(R) Core(TM) i5-1135G7 @ 2.40GHz<br>2.42 GHz |
| Installed RAM | 8.00 GB (7.75 GB usable)                                   |
| Device ID     | F700D426-27BF-44C0-B1B3-9BFA57062453                       |
| Product ID    | 00327-36268-06400-AAOEM                                    |
| System type   | 64-bit operating system, x64-based processor               |
| Pen and touch | No pen or touch input is available for this display        |

Сору

Rename this PC

### Windows specifications

| Edition      | Windows 10 Home Single Language                 |
|--------------|-------------------------------------------------|
| Version      | 21H2                                            |
| Installed on | 09/11/2021                                      |
| OS build     | 19044.1889                                      |
| Experience   | Windows Feature Experience Pack 120.2212.4180.0 |
|              |                                                 |

Сору

Figure 1: Hardware Requirements

### 2.2 Software Requirements

- Anaconda 3 for Windows (Version 4.8.0)
- Jupyter Notebook (Version 6.0.3)
- Python (Version 3.7.6)

# **3** Data Collection

The data is taken from https://www.kaggle.com/datasets/fedesoriano/cirrhosis-prediction-dataset.

# **4** Data Exploration

All the Python libraries required to implement the entire project are listed in Figure 2.

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
from imblearn.over_sampling import SMOTE
import warnings
warnings.filterwarnings('ignore')
from sklearn.preprocessing import MinMaxScaler, LabelEncoder
from sklearn.metrics import accuracy_score
from sklearn.model selection import train test split
from sklearn.metrics import classification report, confusion matrix
from sklearn.neural network import MLPClassifier
from sklearn.svm import SVC
import tensorflow as tf
from sklearn.ensemble import RandomForestClassifier
from tensorflow.keras.layers import Dense, Input, Dropout, Flatten
from tensorflow.keras.models import Sequential, model from json
from tensorflow.keras import optimizers
import joblib
import logging
logging.getLogger('tensorflow').disabled = True
```

```
from google.colab import drive
drive.mount('/content/drive')
```

Figure 2: Required Python Libraries

The Figure 3 represents the code to import data.

data = pd.read\_csv("/content/drive/MyDrive/Thesis\_Code/NAFLD.csv")

data.head()

|   | ID | N_Days | Status | Drug                | Age   | Sex | Ascites | Hepatomegaly | Spiders | Edema |
|---|----|--------|--------|---------------------|-------|-----|---------|--------------|---------|-------|
| 0 | 1  | 400    | D      | D-<br>penicillamine | 21464 | F   | Y       | Y            | Y       | Y     |
| 1 | 2  | 4500   | С      | D-<br>penicillamine | 20617 | F   | Ν       | Y            | Y       | Ν     |
| 2 | 3  | 1012   | D      | D-<br>penicillamine | 25594 | М   | Ν       | Ν            | Ν       | s     |
| 3 | 4  | 1925   | D      | D-<br>penicillamine | 19994 | F   | N       | Y            | Y       | s     |

Figure 3: Data Import

The Figure 4 represents the code to check data information and the count of missing values for each feature column.

data.columns

Figure 4: Data Columns

```
data.info()
```

| <clas<br>Range</clas<br> | ss 'pandas.core<br>eIndex: 418 entr | .fran<br>ries, | ne.DataFrame<br>, 0 to 417 | <b>`</b> > |
|--------------------------|-------------------------------------|----------------|----------------------------|------------|
| Data                     | columns (total                      | 20 (           | columns):                  |            |
| #                        | Column                              | Non            | -Null Count                | Dtype      |
|                          |                                     |                |                            |            |
| 0                        | ID                                  | 418            | non-null                   | int64      |
| 1                        | N_Days                              | 418            | non-null                   | int64      |
| 2                        | Status                              | 418            | non-null                   | object     |
| 3                        | Drug                                | 312            | non-null                   | object     |
| 4                        | Age                                 | 418            | non-null                   | int64      |
| 5                        | Sex                                 | 418            | non-null                   | object     |
| 6                        | Ascites                             | 312            | non-null                   | object     |
| 7                        | Hepatomegaly                        | 312            | non-null                   | object     |
| 8                        | Spiders                             | 312            | non-null                   | object     |
| 9                        | Edema                               | 418            | non-null                   | object     |
| 10                       | Bilirubin                           | 418            | non-null                   | float64    |
| 11                       | Cholesterol                         | 284            | non-null                   | float64    |
| 12                       | Albumin                             | 418            | non-null                   | float64    |
| 13                       | Copper                              | 310            | non-null                   | float64    |
| 14                       | Alk Phos                            | 312            | non-null                   | float64    |
| 15                       | SGOT                                | 312            | non-null                   | float64    |
| 16                       | Tryglicerides                       | 282            | non-null                   | float64    |
| 17                       | Platelets                           | 407            | non-null                   | float64    |
| 18                       | Prothrombin                         | 416            | non-null                   | float64    |
| 19                       | Stage                               | 412            | non-null                   | float64    |
| dtype                    | es: float64(10)                     | , int          | t64(3), objed              | ct(7)      |
| memor                    | ry usage: 65.4+                     | КВ             |                            |            |

Figure 5: Data Information

data.describe()

|       | ID         | N_Days      | Age          | Bilirubin  | Cholesterol | Albumin    | Copper     |
|-------|------------|-------------|--------------|------------|-------------|------------|------------|
| count | 418.000000 | 418.000000  | 418.000000   | 418.000000 | 284.000000  | 418.000000 | 310.000000 |
| mean  | 209.500000 | 1917.782297 | 18533.351675 | 3.220813   | 369.510563  | 3.497440   | 97.648387  |
| std   | 120.810458 | 1104.672992 | 3815.845055  | 4.407506   | 231.944545  | 0.424972   | 85.613920  |
| min   | 1.000000   | 41.000000   | 9598.000000  | 0.300000   | 120.000000  | 1.960000   | 4.000000   |
| 25%   | 105.250000 | 1092.750000 | 15644.500000 | 0.800000   | 249.500000  | 3.242500   | 41.250000  |
| 50%   | 209.500000 | 1730.000000 | 18628.000000 | 1.400000   | 309.500000  | 3.530000   | 73.000000  |
| 75%   | 313.750000 | 2613.500000 | 21272.500000 | 3.400000   | 400.000000  | 3.770000   | 123.000000 |
| max   | 418.000000 | 4795.000000 | 28650.000000 | 28.000000  | 1775.000000 | 4.640000   | 588.000000 |

Figure 6: Data Statistics

| data.isnull().sum() |     |  |  |  |  |
|---------------------|-----|--|--|--|--|
| ID                  | 0   |  |  |  |  |
| N_Days              | 0   |  |  |  |  |
| Status              | 0   |  |  |  |  |
| Drug                | 106 |  |  |  |  |
| Age                 | 0   |  |  |  |  |
| Sex                 | 0   |  |  |  |  |
| Ascites             | 106 |  |  |  |  |
| Hepatomegaly        | 106 |  |  |  |  |
| Spiders             | 106 |  |  |  |  |
| Edema               | 0   |  |  |  |  |
| Bilirubin           | 0   |  |  |  |  |
| Cholesterol         | 134 |  |  |  |  |
| Albumin             | 0   |  |  |  |  |
| Copper              | 108 |  |  |  |  |
| Alk_Phos            | 106 |  |  |  |  |
| SGOT                | 106 |  |  |  |  |
| Tryglicerides       | 136 |  |  |  |  |
| Platelets           | 11  |  |  |  |  |
| Prothrombin         | 2   |  |  |  |  |
| Stage               | 6   |  |  |  |  |
| dtype: int64        |     |  |  |  |  |

Figure 7: Checking for missing Values

```
data=data.drop(['ID', 'N_Days', 'Status'], axis=1)
data['Drug'] = data['Drug'].replace({'D-penicillamine':0, 'Placebo':1})
data['Cholesterol'].fillna(int(data['Cholesterol'].mean()), inplace=True)
data['Copper'].fillna(int(data['Copper'].mean()), inplace=True)
data['Alk_Phos'].fillna(int(data['Alk_Phos'].mean()), inplace=True)
data['SGOT'].fillna(int(data['SGOT'].mean()), inplace=True)
data['SGOT'].fillna(int(data['SGOT'].mean()), inplace=True)
data['Platelets'].fillna(int(data['Platelets'].mean()), inplace=True)
data['Prothrombin'].fillna(int(data['Prothrombin'].mean()), inplace=True)
data['Prothrombin'].fillna(int(data['Prothrombin'].mean()), inplace=True)
data['Spiders'] = data['Spiders'].replace({'N':0, 'Y':1})
data['Spiders'] = data['Sex'].replace({'N':0, 'Y':1})
data['Sex'] = data['Sex'].replace({'N':0, 'Y':1})
data['Ascites'] = data['Ascites'].replace({'N':0, 'Y':1})
```

```
data = data[data['Stage'].notna()]
```

```
# Numerical --> Median
numColumns = data.select_dtypes(include=(['int64', 'float64'])).columns
```

```
for col in numColumns:
    data[col].fillna(data[col].median(), inplace=True)
```

```
# Categorical --> Most Frequent
catColumns = data.select_dtypes(include=('object')).columns
```

```
for col in catColumns:
    data[col].fillna(data[col].mode().values[0], inplace=True)
```

data.Stage = data.Stage.astype(int)

Figure 8: Handling Missing Data

# Plotting the Number of patients with liver disease vs Number of patients with no liver disease
sns.countplot(data=data, x = 'Stage', label='Count')
S1, S2, S3, S4 = data['Stage'].value\_counts()
print('Number of patients diagnosed with Stage 1 disease: ',S1)
print('Number of patients diagnosed with Stage 2 disease: ',S2)
print('Number of patients diagnosed with Stage 3 disease: ',S3)
print('Number of patients diagnosed with Stage 4 disease: ',S4)

Number of patients diagnosed with Stage 1 disease: 155 Number of patients diagnosed with Stage 2 disease: 144 Number of patients diagnosed with Stage 3 disease: 92 Number of patients diagnosed with Stage 4 disease: 21



Figure 9: Plotting the Number of patients with liver disease vs Number of patients with no liver disease

```
# Plotting the Number of Male and Female patients
sns.countplot(data=data, x = 'Sex', label='Count')
M, F = data['Sex'].value_counts()
print('Number of patients that are male: ',M)
print('Number of patients that are female: ',F)
```

```
Number of patients that are male: 368
Number of patients that are female: 44
```



Figure 10: Plotting the Number of Male and Female patients

#### data[['Sex', 'Stage','Age']].groupby(['Stage','Sex'], a

|   | Stage | Sex | Age          |
|---|-------|-----|--------------|
| 6 | 4     | 0   | 22352.411765 |
| 7 | 4     | 1   | 19274.511811 |
| 4 | 3     | 0   | 19704.125000 |
| 5 | 3     | 1   | 17674.007194 |
| 2 | 2     | 0   | 18662.125000 |
| 3 | 2     | 1   | 18010.797619 |
| 0 | 1     | 0   | 16924.333333 |
| 1 | 1     | 1   | 17139.444444 |

### Figure 11: Plotting patient Age vs Gender



```
# Plotting Gender(Male/Female) along with Bilirubin and Prothrombin
g = sns.FacetGrid(data, col="Sex", row="Stage", margin_titles=True)
g.map(plt.scatter,"Bilirubin", "Prothrombin", edgecolor="w")
plt.subplots_adjust(top=0.9)
```



Figure 13: Plotting Gender (Male/Female) along with Bilirubin and Prothrombin

```
Plotting Bilirubin and Prothrombin
ns.jointplot("Bilirubin", "Prothrombin", data=data, kind="reg")
```

```
seaborn.axisgrid.JointGrid at 0x7ff1ea54c910>
```



Figure 14: Plotting Bilirubin and Prothrombin

```
# Plotting Alkaline_Phosphotase vs Albumin
sns.jointplot("Alk_Phos", "Albumin", data=data, kind="reg")
```



<seaborn.axisgrid.JointGrid at 0x7ff1ea40f810>

Figure 15: Plotting Alkaline\_Phosphotase vs Albumin

```
# Plotting Sex(Male/Female) along with Cholesterol and Copper
g = sns.FacetGrid(data, col="Sex", row="Stage", margin_titles=True)
g.map(plt.scatter,"Cholesterol", "Copper", edgecolor="w")
plt.subplots_adjust(top=0.9)
```



Figure 16: Plotting Sex (Male/Female) along with Cholesterol and Copper

]: # Plotting Gender(Male/Female) along with SGOT and Platelets and Triglycerides
g = sns.FacetGrid(data, col="Sex", row="Stage", margin\_titles=True)
g.map(plt.scatter,"SGOT", 'Platelets','Tryglicerides', edgecolor="w")
plt.subplots\_adjust(top=0.9)



Figure 17: Plotting Gender (Male/Female) along with SGOT and Platelets and Triglycerides

# 5 Label Encoding

The Figure 18, illustrate the code to encode all the columns of object type.

```
objs = data.select_dtypes(include=['object']).columns
for cat in objs:
    le = LabelEncoder()
    le.fit(data[cat])
    data[cat] = le.transform(data[cat])
data.head()
```

|   | Drug | Age   | Sex | Ascites | Hepatomegaly | Spiders | Edema | Bilirubin | Chole |
|---|------|-------|-----|---------|--------------|---------|-------|-----------|-------|
| 0 | 0.0  | 21464 | 1   | 1.0     | 1.0          | 1.0     | 1     | 14.5      |       |
| 1 | 0.0  | 20617 | 1   | 0.0     | 1.0          | 1.0     | 0     | 1.1       |       |
| 2 | 0.0  | 25594 | 0   | 0.0     | 0.0          | 0.0     | -1    | 1.4       |       |
| 3 | 0.0  | 19994 | 1   | 0.0     | 1.0          | 1.0     | -1    | 1.8       |       |
| 4 | 1.0  | 13918 | 1   | 0.0     | 1.0          | 1.0     | 0     | 3.4       |       |
|   |      |       |     |         |              |         |       |           |       |

Figure 18: Label Encoding

# **6** Feature Selection

Recursive Feature Estimator is used to select the features using Decision Tree classifier and running a pipeline to find the best features. The Repeated Stratified K-Fold cross-validation is used to check to validate the features selected. Figure 19 below, shows the implementation of this process.

```
liver_corr = data.corr().abs()
liver_corr
```

|              | Drug     | Age      | Sex      | Ascites  | Hepatomegaly | \$  |
|--------------|----------|----------|----------|----------|--------------|-----|
| Drug         | 1.000000 | 0.152435 | 0.023498 | 0.022043 | 0.105890     | 0.  |
| Age          | 0.152435 | 1.000000 | 0.167506 | 0.186908 | 0.105552     | 0.  |
| Sex          | 0.023498 | 0.167506 | 1.000000 | 0.014659 | 0.020082     | 0.  |
| Ascites      | 0.022043 | 0.186908 | 0.014659 | 1.000000 | 0.082779     | 0.  |
| Hepatomegaly | 0.105890 | 0.105552 | 0.020082 | 0.082779 | 1.000000     | 0.  |
| Spiders      | 0.137920 | 0.073749 | 0.106730 | 0.194552 | 0.124224     | 1.  |
| Edema        | 0.076846 | 0.043956 | 0.011353 | 0.303015 | 0.062644     | 0.  |
| Bilirubin    | 0.073527 | 0.006288 | 0.028275 | 0.334812 | 0.237078     | 0.  |
| Cholesterol  | 0.016932 | 0.131378 | 0.009995 | 0.053662 | 0.117976     | 0.  |
| Albumin      | 0.043349 | 0.182836 | 0.028522 | 0.320399 | 0.268351     | 0.  |
| Copper       | 0.001683 | 0.053460 | 0.216280 | 0.220451 | 0.208767     | 0.3 |

Figure 19: Feature selection

```
upper_tri = liver_corr.where(np.triu(np.ones(liver_corr.shape),k=1).astype(np.bool))
upper_tri
```

#### Figure 20: Find the feature with high correlation

```
to_drop = [column for column in upper_tri.columns if any(upper_tri[column] > 0.8)]
data = data.drop(to_drop, axis=1)
data.head()
```

Figure 21: Dropping Features with high correlation

### 7 Class Balancing

```
data['Stage'].value_counts()
3
     155
4
     144
2
      92
1
      21
Name: Stage, dtype: int64
smote = SMOTE(k_neighbors = 3)
data, data['Stage'] = smote.fit_resample(data, data['Stage'])
data['Stage'].value_counts()
4
     155
3
     155
2
     155
     155
1
Name: Stage, dtype: int64
```

Figure 22: SMOTE Class Balancing

```
: train, test = train_test_split(data, test_size=0.2, random_state=42)
: #pd.DataFrame(train).to_csv('/content/drive/MyDrive/Thesis_Code/train.csv')
train = pd.read_csv('/content/drive/MyDrive/Thesis_Code/train.csv',index_col=0)
train
```

Figure 23: Splitting training and testing set (in 80:20 ratio)

```
#pd.DataFrame(test).to_csv('/content/drive/MyDrive/Thesis_Code/test.csv')
test = pd.read_csv('/content/drive/MyDrive/Thesis_Code/test.csv',index_col=0)
test
```

|     | Drug     | Age   | Sex | Ascites | Hepatomegaly | Spiders | Edema | Bilirubin | Cholesterol | Albi |
|-----|----------|-------|-----|---------|--------------|---------|-------|-----------|-------------|------|
| 618 | 0.152718 | 22874 | 0   | 0.0     | 0.847282     | 0.0     | 0     | 0.822174  | 208.991405  | 3.55 |
| 1   | 0.000000 | 20617 | 1   | 0.0     | 1.000000     | 1.0     | 0     | 1.100000  | 302.000000  | 4.14 |
| 424 | 0.265687 | 14518 | 1   | 0.0     | 0.000000     | 0.0     | 0     | 1.067157  | 223.054823  | 3.60 |
| 304 | 1.000000 | 15730 | 1   | 0.0     | 1.000000     | 1.0     | 0     | 2.900000  | 426.000000  | 3.61 |

```
to_drop = [column for column in upper_tri.columns if any(upper_tri[column] > 0.8)]
data = data.drop(to_drop, axis=1)
data.head()
```

Figure 24: Splitting training and testing set (80:20)

```
: X_train = train.drop('Stage', axis=1)
X_test= test.drop('Stage', axis=1)
y_train=train['Stage']
y_test =test['Stage']
X_train = np.asarray(X_train).astype(np.int64)
X_test = np.asarray(X_test).astype(np.int64)
y_train = np.asarray(y_train).astype(np.int64)
y_test = np.asarray(y_test).astype(np.int64)
print (X_train.shape)
print (y_train.shape)
print (X_test.shape)
print (y_test.shape)
```

Figure 25: Feature and target set in training and testing data

```
scaler = MinMaxScaler(feature_range=(0, 1))
X_train= scaler.fit_transform(X_train)
X_test= scaler.fit_transform(X_test)
```

X\_train.shape, X\_test.shape

((496, 16), (120, 16))

Figure 26: Data Scaling

```
X_train.shape, X_test.shape
((496, 16), (120, 16))
xtrain=X_train.reshape(X_train.shape[0],X_train.shape[1],1)
xtest =X_test.reshape(X_test.shape[0],X_test.shape[1],1)
```

Figure 27: Reshaping for neural network models

### 8 Deep Learning Models

#### 8.1 RNN

```
rnn = Sequential()
rnn.add(Dense(32, activation='relu', input_shape=(16,)))
rnn.add(Dense(5, activation='sigmoid'))
rnn.summary()
rnn.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
Model: "sequential"
Layer (type)
                                          Param #
                      Output Shape
_____
dense (Dense)
                      (None, 32)
                                          544
dense_1 (Dense)
                      (None, 5)
                                          165
_____
Total params: 709
Trainable params: 709
Non-trainable params: 0
```

#### Figure 28: Implementation of RNN

| rnn.fit(xtrain, y_train, validation_data=(xtest, y_test), epochs=200)                           |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 333                                                                                             |  |  |  |  |  |
| Epoch 3/200                                                                                     |  |  |  |  |  |
| 16/16 [] - 0s 5ms/step - loss: 1.4576 - accuracy: 0.2661 - val_loss: 1.4204 - val_accuracy: 0.3 |  |  |  |  |  |
| 083                                                                                             |  |  |  |  |  |
| Epoch 4/200                                                                                     |  |  |  |  |  |
| 16/16 [                                                                                         |  |  |  |  |  |
| 500                                                                                             |  |  |  |  |  |
| Epoch 5/200                                                                                     |  |  |  |  |  |
| 16/16 [                                                                                         |  |  |  |  |  |
| 917                                                                                             |  |  |  |  |  |
| Epoch 6/200                                                                                     |  |  |  |  |  |
| 16/16 [====================================                                                     |  |  |  |  |  |
| Figure 29: Implementation of RNN Model training                                                 |  |  |  |  |  |

```
json = open('/content/drive/MyDrive/Thesis_Code/rnnmodel.json')
rnnjson = json.read()
json.close()
rnn = model_from_json(rnnjson)
## Load weights into new modeL
rnn.load_weights("/content/drive/MyDrive/Thesis_Code/rnn.h5")
print("Loaded model from disk")
# evaluate Loaded model on test data
rnn.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
```

Loaded model from disk

#xtest= np.reshape(X\_test, (X\_test[0], X\_test[1]))
rnn\_predicted= np.argmax(rnn.predict(xtest), axis=1)

Figure 30: Loading saved model and making predictions

```
loss, rnn_score = rnn.evaluate(xtrain, y_train)
loss, rnn_score_test = rnn.evaluate(xtest, y_test)
rnn_score_test
```

```
16/16 [=======] - 0s 2ms/step - loss: 0.8675 - accuracy: 0.6250
4/4 [======] - 0s 3ms/step - loss: 0.8737 - accuracy: 0.6417
```

0.6416666507720947

```
tn, fp, fn, tp = confusion_matrix(y_test, rnn_predicted)
rnnspecificity = (tn / (tn+fp)).max()
rnnsensitivity = (tp / (tp + fn)).max()
rnnbalancedAccuracy = np.round(((rnnsensitivity + rnnspecificity) / 2)*100 ,2)
print('specificity: \n', rnnspecificity)
print('sensitivity: \n', rnnsensitivity)
print('Balanced Accuracy: \n', rnnbalancedAccuracy)
print(confusion_matrix(y_test,rnn_predicted))
sns.heatmap(confusion_matrix(y_test,rnn_predicted),annot=True,fmt="d")
```

```
print(classification_report(y_test,rnn_predicted))
```

Figure 31: Evaluating Model Performance

#### 8.2 **DRNN**

```
drnn = Sequential()
drnn.add(Dense(128, activation='relu', input_shape=(16,1)))
drnn.add(Flatten())
drnn.add(Dense(32, activation='relu'))
drnn.add(Dense(5, activation='sigmoid'))
drnn.summary()
drnn.compile(optimizer='adam', loss='sparse categorical crossentropy', metrics=['accuracy'])
```

```
Model: "sequential_1"
```

| Layer (type)                                     | Output Shape    | Param # |  |  |  |  |
|--------------------------------------------------|-----------------|---------|--|--|--|--|
| dense_2 (Dense)                                  | (None, 16, 128) | 256     |  |  |  |  |
| flatten (Flatten)                                | (None, 2048)    | 0       |  |  |  |  |
| dense_3 (Dense)                                  | (None, 32)      | 65568   |  |  |  |  |
| dense_4 (Dense)                                  | (None, 5)       | 165     |  |  |  |  |
| Total params: 65,989<br>Trainable params: 65,989 |                 |         |  |  |  |  |

Non-trainable params: 0

#### Figure 32: Implementation of DRNN

drnn.fit(xtrain, y\_train, validation\_data=(xtest, y\_test), epochs=500)

```
667
 Epoch 3/500
 16/16 [=====
                   ==============] - 0s 6ms/step - loss: 1.1490 - accuracy: 0.5161 - val_loss: 1.0528 - val_accuracy: 0.5
 333
 Epoch 4/500
 16/16 [====
                    ------] - 0s 7ms/step - loss: 1.0773 - accuracy: 0.5504 - val_loss: 0.9987 - val_accuracy: 0.5
 667
 Epoch 5/500
                    ------] - 0s 6ms/step - loss: 1.0543 - accuracy: 0.5343 - val_loss: 1.0086 - val_accuracy: 0.5
 16/16 [====
 417
 Epoch 6/500
                                                   .
                                                        1 010/
```

#### Figure 33: Implementation of DRNN Model training

```
json = open('/content/drive/MyDrive/Thesis_Code/drnnmodel.json')
drnnjson = json.read()
json.close()
rnn = model_from_json(drnnjson)# Load weights into new model
drnn.load_weights("/content/drive/MyDrive/Thesis_Code/drnn.h5")
print("Loaded model from disk")
# evaluate loaded model on test data
drnn.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
```

Loaded model from disk



```
: drnn predicted= np.argmax(drnn.predict(X test), axis=1)
  loss, drnn_score = drnn.evaluate(X_train, y_train)
  loss, drnn_score_test = drnn.evaluate(X_test, y_test)
  print('DRNN Train Score: \n', drnn_score)
  print('DRNN Test Score: \n', drnn_score_test)
  16/16 [------] - 0s 3ms/step - loss: 0.4576 - accuracy: 0.8085
  4/4 [========================] - 0s 5ms/step - loss: 0.6746 - accuracy: 0.7333
  DRNN Train Score:
   0.8084677457809448
  DRNN Test Score:
   0.7333333492279053
: tn, fp, fn, tp = confusion_matrix(y_test, drnn_predicted)
  drnnspecificity = (tn / (tn+fp)).max()
  drnnsensitivity = (tp / (tp + fn)).max()
  drnnbalancedAccuracy = np.round(((drnnsensitivity + drnnspecificity) / 2)*100 ,2)
  drnn_score_test = accuracy_score(y_test,drnn_predicted)
  print('specificity: \n', drnnspecificity)
  print('sensitivity: \n', drnnsensitivity)
  print('Balanced Accuracy: \n', drnnbalancedAccuracy)
  sns.heatmap(confusion_matrix(y_test,drnn_predicted),annot=True,fmt="d")
  print(classification_report(y_test,drnn_predicted))
```

. . . .

Figure 31: Evaluating Model Performance

#### 8.3 Random Forest Trees

```
: with open('/content/drive/MyDrive/Thesis_Code/random_forest.pkl', 'rb') as f:
    random_forest= joblib.load(f)
    random_forest = RandomForestClassifier(min_samples_leaf=5)
```

random\_forest = RandomForestClassifier(min\_samples\_leaf=5)

```
random_forest.fit(X_train, y_train)
# Predict Output
rf_predicted = random_forest.predict(X_test)
random forest score = round(random forest.score(X train, y train) * 100, 2)
rf score test = round(random forest.score(X test, y test) * 100, 2)
print('Random Forest Train Score: \n', random_forest_score)
print('Random Forest Test Score: \n', rf_score_test)
tn, fp, fn, tp = confusion_matrix(y_test, rf_predicted)
rfspecificity = (tn / (tn+fp)).max()
rfsensitivity = (tp / (tp + fn)).max()
rfbalancedAccuracy = np.round(((rfsensitivity + rfspecificity) / 2)*100 ,2)
print('specificity: \n', rfspecificity)
print('sensitivity: \n', rfsensitivity)
print('Balanced Accuracy: \n', rfbalancedAccuracy)
print(classification_report(y_test,rf_predicted))
sns.heatmap(confusion_matrix(y_test, rf_predicted),annot=True,fmt="d")
```



#### 8.4 SVM

```
with open('/content/drive/MyDrive/Thesis_Code/svc.pkl', 'rb') as f:
1
      svc= joblib.load(f)
 svc = SVC(kernel='linear',C=10, gamma =9)
: svc.fit(X_train, y_train)
  # Predict Output
  svc_predicted = svc.predict(X_test)
  svc_score = round(svc.score(X_train, y_train) * 100, 2)
  svc_score_test = round(svc.score(X_test, y_test) * 100, 2)
  print('SVC Train Score: \n', svc_score)
  print('SVC Test Score: \n', svc_score_test)
  tn, fp, fn, tp = confusion_matrix(y_test, svc_predicted)
  svcspecificity = (tn / (tn+fp)).max()
  svcsensitivity = (tp / (tp + fn)).max()
  svmbalancedAccuracy = np.round(((svcsensitivity + svcspecificity) / 2)*100 ,2
  print('specificity: \n', svcspecificity)
  print('sensitivity: \n', svcsensitivity)
  print('Balanced Accuracy: \n', svmbalancedAccuracy)
  sns.heatmap(confusion_matrix(y_test, svc_predicted),annot=True,fmt="d")
  print(classification_report(y_test,svc_predicted))
```

Figure 33: Implementation of SVM

# 9 Model result

This section explains the performance of the models.

57.06

### 9.1 Model Scores

Recurrent Neural Network

Support Vector Machine

0

2

| : | <pre>: result = pd.DataFrame({     'Model': [ 'Recurrent Neural Network', 'Deep Recurrent Neural Network', 'Support Vector Machine', 'Random Forest'     'Train Score': [ np.round(rnn_score*100,2), np.round(drnn_score*100,2), svc_score, random_forest_score],     'Accuracy Score': [ np.round(rnn_score_test*100,2), np.round(drnn_score_test*100,2), svc_score_test, rf_score_te     'Sensitivity': [ rnnsensitivity, drnnsensitivity, svcsensitivity, rfsensitivity],     'Specificity': [ rnnspecificity, drnnspecificity, svcspecificity, rfspecificity],     'Balanced Accuracy Score': [ rnnbalancedAccuracy, drnnbalancedAccuracy, svmbalancedAccuracy, rfbalancedAccuracy]     result sort values(by='Balanced Accuracy Score', ascending=False)</pre> |                               |             |                |             |             |                         |  |  |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------|----------------|-------------|-------------|-------------------------|--|--|
| : |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Model                         | Train Score | Accuracy Score | Sensitivity | Specificity | Balanced Accuracy Score |  |  |
|   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Deep Recurrent Neural Network | 80.85       | 73.33          | 0.935484    | 1.000000    | 96.77                   |  |  |
|   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Random Forest                 | 85.28       | 68.33          | 0.885714    | 1.000000    | 94.29                   |  |  |

| 6 | 57.50     | 0.781250 | 0.694444      |
|---|-----------|----------|---------------|
|   | Figure 34 | : Mode   | l Performance |

84.28

73.78

62.50 64.17 0.823529 0.862069

### 9.2 Model Accuarcy

```
: plt.figure(figsize=(10,10))
plt.plot(result['Model'], result['Train Score'], label="Training Accuracy")
plt.plot(result['Model'], result['Accuracy Score'], label="Testing Accuracy")
plt.legend()
```

: <matplotlib.legend.Legend at 0x7fb10756e690>



Figure 35: Model Accuracy

### 9.3 Model Predictions

|     | Actual | Recurrent Neural Network | Deep Recurrent Neural Network | Support Vector Machine | Random Forest |
|-----|--------|--------------------------|-------------------------------|------------------------|---------------|
| 0   | 4      | 1                        | 3                             | 1                      | 1             |
| 1   | 3      | 4                        | 3                             | 3                      | 4             |
| 2   | 1      | 1                        | 1                             | 1                      | 1             |
| 3   | 3      | 4                        | 3                             | 3                      | 3             |
| 4   | 2      | 2                        | 2                             | 2                      | 2             |
|     |        |                          |                               |                        |               |
| 115 | 2      | 2                        | 2                             | 2                      | 2             |
| 116 | 4      | 2                        | 4                             | 1                      | 2             |
| 117 | 2      | 3                        | 4                             | 3                      | 2             |
| 118 | 2      | 2                        | 2                             | 2                      | 2             |
| 119 | 4      | 4                        | 4                             | 4                      | 4             |

120 rows × 5 columns

Figure 36: Model Predictions

# References

https://www.geeksforgeeks.org/introduction-to-recurrent-neural-network/

https://scikit-learn.org/stable/modules/svm.html

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html