~

National
Collegef
[reland

Fraudulent News Detection on Social Media

MSc Research Project
Data Analytics

Archana Uday Mahajan
Student I1D: x20198825

School of Computing
National College of Ireland

Supervisor: Prof. Taimur Hafeez

National College of Ireland National

Project Submission Sheet Colle geof
School of Computing Ireland
Student Name: Archana Uday Mahajan
Student ID: X20198825
Programme: Data Analytics
Year: 2022
Module: MSc Research Project
Supervisor: Prof. Taimur Hameez
Submission Due Date: 15/08/2022
Project Title: Configuration Manual
Word Count: 713
Page Count: 8

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Archana Uday Mahajan

Date: 15th August 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). m|
Attach a Moodle submission receipt of the online project submission, to | o
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | o
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Archana Uday Mahajan - x20198825

1 Introduction

Many experiments were performed for this research, and this configuration manual
states and explains all the device specifications like hardware and software require-
ments to fulfill those experiments. It also specifies the programming language, li-
braries, and required packages. It then explains how the dataset was loaded, the data
exploration, preprocessing, and how the models were implemented.

2 System Configuration

This section describes the Hardware and Software requirements to run this project.

2.1 Hardware Specification

Figure 1 shows the hardware requirements for this project, local machine was used
for the implementation:

Hardware Build

System HP Laptop 14s - LAPTOP-3UMQKSR

Processor Intel{R) Core(TM) i5-1035G1 CPU @ 1.00GHz 1.19 GHz
RAM 2.00 GE

System Type 64-bit operating system, x64-based processor

Figure 1: Hardware Specification

2.2 Software Specification

Windows 10 OS was used, all required libraries were installed, and Jupyter Notebook
was used to implement the algorithms. Libraries like tqdm, sklearn, pyenchant, en-
chant, TensorFlow was used to run the algorithm. Matplotlib and Plotly were used
for visualizations. Numpy, pandas, nltk, and re were used for preprocessing.

Libraries

Version

Python
numpy
pandas
plotly
tgdm
pyenchant
enchant
nitk

re

sklearn
matplotlib
tensorflow
seaborn
transformers

3.8.8
1.20.1
1.2.4
5.5.0
4.59.0
3.2.2
3.2.2
3.6.1
2021.4.4
0.24.1
3.2.4
2.9.1
0.11.1
4.21.0

Figure 2: Software Specification

3 Data Set Preparation

The data were selected and combined from various datasets from Kaggle.com; it was
a total of two datasets, Fake and Real news, which were imported into the Jupyter
Notebook and then concatenated into one single data frame. The final dataset had
six features title, text, subject, date, len, and is_fake, where is_fake = 1 meant news

is_fake and 0 meant that the news is real.

o title text subject date len
o As U.S. budget fight looms, Republicans flip t. WASHINGTON (Reuters) - The head of a conservat. poliicsNews December 31, 2017 749
b U_S. military to accept transgender recruits o. 'WASHINGTON (Reuters) - Transgender people will politicsNews December 29, 2017 624
3 FBI Russia probe helped by Australian diplomat 'WASHINGTON (Reuters) - Trump campaign adviser politicsNews December 30, 2017 376
4 Trump wants Postal Service to charge ‘much mor.. SEATTLE/WASHINGTON (Reuters) - President Donal... politicsNews December 29, 2017 852
In [8]: fake["is_fake'] = 1
true["is_fake'] = @
concat = pd.concat([fake, true])
3 - News Structure
In [9] concat.head()
Out
title text subject date len is_fake
o Donald Trump Sends Out Embarrassing New Year'. Donald Trump just couldn t wish all Americans .. News December 31,2017 495 %
: | Drunk Bragging Trump Staffer Started Russian House Intelligence Committee Chairman Devin Nu. Mews December 31,2017 305 1
2 Sheriff David Clarke Becomes An Internet Joke. On Friday, it was revealed that former Milwauk. MNews December 30,2017 580 1

Figure 3: Data Set Preparation

4 Project Implementation

After the dataset concatenation, the data was explored barplots and pyplots, where
it was seen that the data was biased toward fake news as seen in Figure 4.

In [10]: fake_ = concat[concat['is_fake']==1]
true_ = concat[concat['is_fake']==0]
fig = go.Figure()
fig.add_trace(go.Box(y=11st(fake_['len']), name="Fake',
: marker_color = 'indianred'))
fig.add_trace(go.Box(y=11st(true_['len']), name = 'Real’,
marker_color = 'lightseagreen'))

0 fig.update layout({
"plot_bgeolor': 'rgha(e, @, 8, 9)',
"paper_bgcolor': 'rgha(®, @, 8, 8)',
"title": 'Box plot’,
1
4 fig.shou()

Box plot

[rake
[Real

8000

7000

6000

5000

4000
3000 {]

2000

1000 RN S———

Fake Real

Figure 4: Data Set Bar Plot

4.1 Dataset Preprocessing

To reduce the bias of the dataset, below Figure 5 preprocessing steps were applied to
it, using the nltk and re packages, the results of which are shown in Figure 6:

I r171

1e0%| | 23a21/23481 [00:@e<00:00, 87382 85iL/s]
Tee | 23331773431 [@a-62<AA-AA, 968> AS1t/s]
100%| | 23881723881 [00:52<00:00, 44/.121T/5]

Yoo% | | 23221/23251 [00:ee<0e:08, 40655.321t/5]

In f1s7:

2 - uniguc_tokensz(fake)
2 = unigue Lokens2(lrus)

| 238U1/23481 [00:EI<EBICE, 6229.UbIT/S]
| 21117/21117 [ee:e3:00:00, 5789.911T/s]

In [191:| 1 flg - go.Figure()
2 fig. sdd_tracs(ge-sar(y-[len

fake2), len(uniqus_tokens_trus2)].
take ', “irue’l,
marker_color-"lightsalmon
s ()
© fig.update_layout({
7 “plot_bgcolor™: “rgba(e. ©. 9. @),
‘paper_bgeolor': ‘rgha(d, 8, 8, 8) ',

Figure 5: Data Preprocessing

B Non exist
W exist

Real News

Figure 6: Words after Preprocessing

4.2 Feature Extraction

For creating an accurate model, relevant words were extracted using the chi2 hypoth-
esis and used for the modeling shown in Figure 7, for which SelectKBest was used :

In [24]: 1 def get_wrong_tokens(list_):
2 d = enchant.DictWithPuL("en_US", "vocab.txt")
£ tokens = set()
4 for token in tqdm(list):
5 if not d.check(token) and not d.check(token.capitalize()):
6 tokens. add (token)
return tokens

8

9 def get_top_n_words2(corpus, n=None, vocabulary=None):

18 vec = CountVectorizer(vocabulary=vocabulary).fit(corpus)

11 bag_of_words = vec.transform(corpus)

17 sum_words = bag_of_words.sum(axis=@)

13 words_freq = [(word, sum words[@, idx]) for word, idx in vac.vocabulary_.items()]
14 words_freq =sorted(words_freq, key = lambda x: x[1], reverse=True)

15 return words_freq[:n]

16

17 wrong = get_wrong_tokens(unique_tokens_true?)
18 wrong_true = get_top_n_words2(true['text_pre'], n=108, vocabulary=wrong)
19 wrong = get_wrong_tokens(unique_tokens_fake2)
26 wrong_fake = get_top_n_words2(fake['text_pre'], n=108, vocabulary=wrong)

The next step was to model the word by topic, which was done using the Latent-
Dirichlet Allocation, a popular topic modelling technique, as shown in Figure 8:

new_list_words = [seq[@] for seq in wrong_true]
new_1ist_values = [seq[1] for seq in wrong_true]

fig - go.Figure()
fig.add_trace(go.Bar(y-new list_values,
x=new_list words,
marker_color="1ightsalmon’

)

fig.update_layout({
‘plot_bgcolor: ‘rgba(e, e, @, €)',
‘paper_bgcolor': ‘rgba(e, ©, @, 8)°,
‘title’: ‘Real chiz'

b
35 fig.show()

100%| | 78844/78044 [81:87<08:08, 1154.83it/s]
100%| 160734/168734 [02:42<00:00, 989.90it/s]

In [25]: new_list_words = [seqg[e@] for seq in wrong_fake]
new_list_wvalues = [seq[1] for seq in wrong_fake]
fig = go.Figure()
fig.add_trace(go.Bar(y=new_list values,

5 x=new_list words,
marker_color="lightsalmon’

BWwN R

))
& fig.update_layout({
‘plot_bgcolor ‘rgba(e, @, @, @)
‘paper_bgcolor ‘rgba(e, e, @, @)",
‘title’: °Fake chi2®

3]
Fig.shou()

Figure 7: Feature Extraction using chi2 hypothesis

In [38]: from sklearn.decomposition import NMF, LatentDirichletAllocation
def topics(model, feature_names, no_top_words):

dict_ - {}

for topic_idx, topic in enumerate(model.components |

dict_[topic_idx] - [feature_names[i] for i in topic.argsort()[:-no_top_words

6 return dict_
7 lda - LatentDirichletAllocation(random_state-42).fit(X)
topic_all - topics(lda, vectorizer.get feature names(), 15)

o w

CountVectorizer()
CountVectorizer()

In [31]: vectorizer_fake

vectorizer_true

PWNR

X_fake = vectorizer_fake.fit_transform(fake[text_pre'])
X_true = vectorizer_true.fit_transform(true[text_pre'])

1da_fake - LatentDirichletAllocation(random_state-42, n_components-5).fit(X_fake)
1da_true = LatentDirichletAllocation(random_state=42, n_components=5).fit(X_true)

topic_true - topics{lda_true, vectorizer_true.get_feature_names(), 15)
topic_fake - topics(lda_fake, vectorizer_fake.get_feature_names(), 15)

Separ tment

mevv. —
O0E

inmvestigation

= oy
clinmton
Osr:g,te, = JPeomeoi=n

= Topics Tomics 3

Figure 8: LDA Topic Modelling

5 Modelling

In this section, the first step was to vectorize the words for which purpose a TF-IDF
vectorizer was used (Jalilifard et al., 2021), the code of which can be seen in Figure
9. For this the sklearn.feature_extraction.text package was used:

from
from
from
from
from
from

vect
X =
y:

sklearn
sklearn
sklearn
sklearn
sklearn
sklearn

.datasets import load_digits

.feature_selection import SelectKBest, chi2
.feature extraction.text import TfidfVectorizer
.linear_model import LogisticRegression

.model selection import train_test_split
.metrics import accuracy score

= TfidfVectorizer()

vect.fit_transform{concat2[text_pre'])
concat2['is_fake']

Figure 9: TF-IDF Vectorizer

The above vectorized words are then given as input to three models that are Naive
Bayes, Bi-directional LSTM and BERT, which is explained in below subsections:

5.1 Naive Bayes

Naive Bayes is a Machine learning Model based on the Bayes theorem, which assumes
that predictors are independent, therefore the name naive. Below Figure 9 shows
the implementation of the code for which the BernoulliNB from sklearn.naive_bayes

package was used:

In [87]:

L def select(X, y):

dict =

{}

for i in tqdm(range(1, 11)):
value = X.shape[1] * i * 8.1
X_new = SelectkBest(chi2, k=int(value)).fit_transform(X, y)
X_train, X test, y_train, y_test = train_test_split(X_new, y, test size=8.33, random_state=42)
from sklearn.naive_bayes import Bernoullin
from sklearn.metrics import confusion_matrix, classification_report
bnb = BernoulliNB().fit(X_train, y_train)
print(’\nAccuracy score :°,bnb.score(X_test, y_test))
predict = bnb.predict(X_test)
score = accuracy_score(y_test, predict)
dict_[str(int(value))] = score
from sklearn.metrics import confusion_matrix, classification_report

print('Confusion Metrics : \n\n', confusion_matrix(y_test, predict),'\nm\n")
print('Classification Report :\n\n', classification_report(y_test, predict))

return

dict_

dict_ = select(X, y)

Figure 10: Naive Bayes Implementation

5.2 Bidirectional LSTM

The Bidirectional LSTM was implemented using the Keras API, for which the To-
kenizer from tensorflow.keras.preprocessing.text and sklearn.model selectio package
was used (Jain et al., 2022), the code implementation for which is given in Figure 11:

In [105]: tokenizer = text.Tokenizer(num words=max_features)
tokenizer.fit_on_texts(X_train)
X_train = tokenizer.texts_to_sequences(X_train)
X_test = tokenizer.texts to sequences(X_test)
X_train = tf.keras.preprocessing.sequence.pad_sequences(X_train, padding='post’', maxlen=256)
X_test = tf.keras.preprocessing.sequence.pad_sequences(X_test, padding='post', maxlen=236)

In [1089]: | model = tf.keras.Sequential([
2 tf.keras.layers.Embedding(max_vocab, 32),
tf.keras.layers.Bidirectional (tf.keras.layers.LSTM(64, return_sequences=True)),
tf.keras.layers.Bidirectional (tf.keras.layers.LSTM(16)),
tf.keras.layers.Dense(64, activation="relu'),
tf.keras.layers.Dropout(8.5),
tf.keras.layers.Dense(1)

D

model. summary ()

Figure 11: Bidirectional LSTM Implementation

5.3 BERT

The BERT Model was implemented using transformers and param packages, which
after training was saved in the model_after_train.pt model, as shown in Figure 12.

In [129] total = len(test_data)
number_right -
3 model.eval()
with torch.no_grad():
for idx, row in test_data.iterrows():
text_parts = preprocess_text(str(row[text']))
label - torch.tensor([row['is_fake']]).float().to(device)

owerall_output = torch.zeros((1,2}).to(device)
try:

for part in text_parts:

if len(part) > @:
overall_output +- model(part.reshape(1, -1))[e]

except RuntimeError:

Print("GPU out of memory, skipping this entry.")

continue

overall output - F.softmax(overall_output[8], dim--1)
result - overall_output.max(8)[1].float().item()

if result -- label.item()
number_right += 1

if idx % print_every -- @ and idx > ©:
print("{}/{}. Current accuracy: {}".format(idx, total, number_right / idx))
print("Accuracy on test data: {}*.format(number_right / total))

Figure 12: BERT Implementation
The BERT model was further validated on two random posts from the internet
which received a accuracy of fake at 95.24649381637573% real at 88.04030418395996%,
and was thus concluded to be the best fit model.
References

Agrawal, C., Pandey, A. and Goyal, S. (2021). A Survey on Role of Machine Learn-
ing and NLP in fraud News Detection on Social Media.2021 TEEE 4th International

Conference on Computing, Power and Communication

Technologies (GUCON).

Jain, P.; Sharma, S., Monica and Aggarwal, P.K. (2022). Classifying fraud News
Detection Using SVM, Naive Bayes and LSTM. [online] IEEE Xplore.
Available at: https://ieeexplore.ieee.org/document /9734129 [Accessed 9 Apr. 2022].

Jalilifard, A. and Carida, V.F. (2021). Semantic Sensitive TF-IDF to Determine Word
Relevance in Documents. [online] Available at: https://arxiv.org/abs/2001.09896.

