

Configuration Manual

MSc Research Project

MSCDATOP

Tom MacNamara

Student ID: x19144768

School of Computing

National College of Ireland

Supervisor: Dr Catherine Mulwa

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student

Name:

…….………

Student ID:

………..……

Programme:

………………………………………………………………

Year:

…………………………..

Module:

…….………

Lecturer:

…….………

Submission

Due Date:

…….………

Project

Title:

…….………

Word

Count:

……………………………………… Page Count: ………………………………….…….………

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

……

Date:

……

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project,

both for your own reference and in case a project is lost or mislaid. It is

not sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Tom MacNamara

x19144768

MSCDATOP 2022

MSC Research Project

Dr Catherine Mulwa

19/09/2022

MSC Research Project - Configuration Document

3492 20

18/09/2022

3

Configuration Document
Tom MacNamara

Student Number: x19144768

1 Contents
1 Hardware and Software ... 5

2 Technical files ... 5

2.1 __pycache__ and .ipynb_checkpoints folders... 5

2.2 config folder .. 5

2.2.1 config.py ... 5

2.3 data folder ... 5

2.4 data_processed folder .. 6

2.4.1 PCA.tsv ... 6

2.4.2 Data files ... 6

2.5 model_notebooks folder .. 6

2.6 model_scripts folder .. 6

2.7 models folder .. 6

2.8 plots folder .. 6

2.9 res folder ... 6

2.10 setup folder .. 7

2.10.1 PCA_versions.tsv .. 7

2.10.2 PCA.ipynb ... 7

2.11 __init__.py .. 7

2.12 dataRestructure.ipynb ... 7

2.13 functions.py ... 7

2.14 labels.py .. 7

2.15 main.py.. 7

2.16 model_functions.py ... 8

2.17 reporting.py ... 9

2.18 requirements.txt .. 9

2.19 setup.py ... 9

2.20 vars.py ... 9

3 Data and Setup .. 9

4 Model creation .. 11

4.1 Model Notebooks .. 11

4

4.1.1 Initialise ... 11

4.1.2 Load Data .. 12

4.1.3 Initialise Model ... 12

4.1.4 Make Predictions... 13

4.1.5 Reporting ... 13

4.1.6 Save Model ... 15

5 Further detail on key files/folders ... 15

5.1 config.py ... 15

5.2 PCA.ipynb ... 17

5.3 functions.py ... 17

5.4 model_functions.py ... 17

5.5 main.py.. 18

5.6 reporting.py ... 19

5.7 setup.py ... 20

5

1 Hardware and Software
Analysis was carried out on a desktop PC using Windows 10 and a laptop computer running Windows

11. The majority of programming was carried out on the desktop. The desktop features an Intel 6600k

processor, an Nvidia 1060 6GB graphics card, and 16GB of DDR4 RAM. All of the models were

trained and all predictions were made using this hardware.

Analysis was conducted in the Python programming language using the Microsoft VSCode Integrated

Development Environment (IDE). The analysis was conducted using both python files and Jupyter

notebooks. Notebooks were hosted in VSCode. Various versions of Python 3.10 were used in

development. Versions of some of the key Python modules used were:

• NumPy 1.22.3

• Pandas 1.4.2

• TensorFlow1 2.8.0

• Scikit-learn 1.1.1

Full details of the versions of all of the modules used can be found in the requirements.txt file.

2 Technical files
The file structure used in carrying out analysis can be seen in Figure 1. Each file and folder pertains to

one specific purpose, as outlined in the following sections.

2.1 __pycache__ and

.ipynb_checkpoints folders
System generated folders. Not used in analysis

2.2 config folder
Contains one file: config.py.

2.2.1 config.py

config.py contains functions and variables that

are useful in the configuration of models and

images. Such variables include the names of the

classes, the batch size to use in the tensor

model, and some file paths to data locations.

Functions to rescale and retrieve the data are

contained in config.py. This file is further

examined in section 5.1 below.

2.3 data folder
Contains eight subfolders: bright_dune; crater;

dark_dune; impact_ejecta; other; slope_streak;

spider; swiss_cheese. Each of these folders

represents one of the classes of the images, and

contains all of the images of that class.

1 All modules were installed through pip. This

means TensorFlow did not access CUDA GPU

cores, as this requires a conda installation.

Figure 1: File structure

6

2.4 data_processed folder
Contains 26 files: PCA.tsv and 25 data files.

2.4.1 PCA.tsv

A tab separated file that contains three columns to identify some aspects of various versions

of Principal Component Analysis that was conducted. The columns identify the number of

components, the total variance explained, and the variance explained by each component.

2.4.2 Data files

Multiple versions of Principal Component Analysis were tested. Each version generated five

files; four csv files and one pickle file. The files were named as seen in Table 1.

File Name File Extension File Role

PCA15c_200px_51pct_test .csv Contained the test data

PCA15c_200px_51pct_train .csv Contained the training

data

PCA15c_200px_51pct_test_y .csv Contained the labels for

the test data

PCA15c_200px_51pct_train_y .csv Contained the labels for

the training data

PCA15c_200px_51pct .pkl Contained the PCA model

in case it was required to

re-run.

Each file is named with the number of components, the number of pixels in the image (if it

was resized before PCA applied) and the proportion of the data used in PCA.

2.5 model_notebooks folder
Contains seven files, each containing the code for one model type: knn.ipynb; lightgbm.ipynb;

logistic_regression.ipynb; naïve_bayes.ipynb; random_forest.ipynb; SVM.ipynb;

tensorflowCNN.ipynb. This is a key folder.

The files in each folder contain the code where the models were trained and fit, and results saved.

This folder is further examined in section 4.1 below.

2.6 model_scripts folder
Contains two files: SVM.py; tensorCNN.py

This folder was created to contain a streamlined version of each notebook in the model_notebooks

folder in the form of a .py file. This method was scrapped during development in lieu of a main file.

This is outlined further in Section 2.15 – main.py.

2.7 models folder
Artifact of a previous file structure. Not used in final project.

2.8 plots folder
Contains a folder for each model where graphics were generated to visualise metrics.

2.9 res folder
Results folder. Contains eight folders: Collated; KNN, lightGBM; logisticRegression; NB; RF; SVM;

tensorflowCNN. This is a key folder.

7

Each folder contains the pickle files for various versions of each created model. The Collated folder

contains one file with information of each of the models. Collated.tsv contains six columns: Version

Number; Model Name; f1 Score; Recall; Kappa; Accuracy.

2.10 setup folder
Contains two files: PCA_versions.tsv; PCA.ipynb

2.10.1 PCA_versions.tsv

Contains information on each of the iterations of the principal component analysis.

Created after multiple iterations so is not a complete history of all PCA attempts. Shown

in Figure 2.

2.10.2 PCA.ipynb

Contains the code used to transform the image data into a dataframe through Principal

Component Analysis. PCA was conducted using the PCA function from the

sklearn.decomposition module. This is a key file.

Figure 2: PCA_versions.tsv

This file is further examined in section 5.2 below.

2.11 __init__.py
File which python uses to identify the folder as a module, allowing file imports.

2.12 dataRestructure.ipynb
Contains the code used to separate each class of image into its own folder at the beginning of analysis.

This script was used to create the folders in Section 2.3 above.

2.13 functions.py
Contains some general use functions useful in analysis, such as for saving models with a patterned file

name, loading models with context managers, and pretty printing steps of the modelling process. This

file is further examined in section 5.3 below.

2.14 labels.py
Contains only one function, used to identify which files are associated with which classes. This

function is used in dataRestructure.ipynb to reorganise the files into their respective folders. The

contents of labels.py can be seen in Figure 6: labels.py on page 11.

2.15 main.py
The python script used to load all of the models2, make predictions, and output a table containing key

metrics of the models. The script should be run at the command line. The arguments that can be

passed when running the model are [-v, --version] to specify the PCA version to use as input

data; [-knn, --n_neighbours] to manually input the number of neighbours to use in the KNN

2 Excludes the CNN model as training takes multiple hours. Other models can be loaded with training scores

included in the output more easily.

8

model; and [--run-models, --no-run-models] to indicate whether the models should be

trained anew, or previously saved models should be used. By default, the --version argument

returns the most recently saved version. The --knn argument uses the default of the KNN function

as its default. One of --run-models or --no-run-models is required. A sample output can be

seen in Figure 3 below. This file is further examined in section 5.5 below.

Figure 3: main.py sample

2.16 model_functions.py

Contains functions useful to running each of the models in main.py if the --run-models flag is

specified. Rather than each model requiring the full process of setup, fitting, and predicting within

main.py, model_functions.py contains functions for each model that conducts all of these steps. These

functions are then imported to main.py and can be run in place. This file is further examined in

section 5.4 below.

9

2.17 reporting.py
This file contains functions used to report on the outputs of the models. This includes confusion

matrix generation, metric generation and recording, and simple value counts of predictions. The

getMetrics() function is used to record the f-score, weighted recall, kappa, and accuracy figures

used for analysis. The recordScores() function takes these scores as an input to save the details to

collated.tsv. This file is further examined in section 5.6 below.

2.18 requirements.txt
A file generated by the python pip module using the pip freeze command. Contains a list of all

modules used, dependencies of these models, and the version installed at the time the command was

run.

2.19 setup.py
A file containing functions useful in the setting up of the modelling environment. Contains some

overlap with config.py (Section 2.2.1). This file is further examined in section 5.7 below.

2.20 vars.py
Artefact from previous file structure. Not used in final analysis.

3 Data and Setup
Data were downloaded from the NASA Open Data Portal in the form of a zip folder3. Once extracted

from the zip, a folder named Images was present, alongside a .txt file which acted as a dictionary to

identify the class of each image. The Images folder contained 73,031 images with names in the format

ESP_011623_2100_RED-0069_augmentation. There are 10,433 unique images in the dataset, each

appearing once unaltered, and with six copies that have each been augmented in some way. The

augmentations and their encoding in the file names are:

Adjustment File name example

Unaltered ESP_011623_2100_RED-0069.jpg

90 degree clockwise rotation ESP_011623_2100_RED-0069-r90.jpg

180 degree clockwise rotation ESP_011623_2100_RED-0069-r180.jpg

270 degree clockwise rotation ESP_011623_2100_RED-0069-r270.jpg

Flip horizontal ESP_011623_2100_RED-0069-fh.jpg

Flip vertical ESP_011623_2100_RED-0069-fv.jpg

Random brightness adjustment ESP_011623_2100_RED-0069-brt.jpg

In order to properly structure the images for a model, each image needed to be placed in a subfolder.

Each class should have a folder containing only images from that class. This file structure was

achieved programmatically using Python with the os library. This was carried out in the

dataRestructure.ipynb file. The data directory was specified and os.mkdir() was used to create

subfolders within that directory (Figure 4).

3 https://data.nasa.gov/Space-Science/Mars-orbital-image-HiRISE-labeled-data-set-version/egmv-36wq

10

Figure 4: Folder creation

After this step the data folder contained a subfolder for each of the data classes, and the original

Images folder. All images remained in the Images folder. The os.rename() function was then used

to move each of the images into its appropriate folder (Figure 5). This was done by referencing the

labels.txt file from the original zip folder. The fileLabs variable is a python dictionary with the

contents of labels.txt and is generated in the labels.py file (Figure 6).

Figure 5: Moving image files

11

Figure 6: labels.py

4 Model creation
The model_notebooks folder (Section 2.5, Page 6) contains scripts for each of the models generated.

Each of these notebooks follows the same structure, changing only the model function which is used.

Each of the files is split into multiple sections.

1. Initialise

2. Load Data

3. Initialise Model

4. Make Predictions

5. Reporting

6. Save Model

Each of these sections is explained further in the following section. For this example, SVM.ipynb was

chosen. As mentioned above, the general structure is the same for all of the modelling approaches.

4.1 Model Notebooks

4.1.1 Initialise

The initialise section contains three code blocks, as seen in Figure 7 below. The first code block

imports the sys module and adds .. to the path, allowing imports of modules stored one folder above

the current working folder. Cell 2 imports further modules, including those that are now available

thanks to the import from cell 1. These imports are themselves grouped. Lines 1-3 relate to the models

and the data. Lines 4-6 import the other modules which were created by the author. The remainder of

the imports relate to the model implementation. The 3rd cell creates the ver variable, which contains

the version of Principal Component Analysis data to use. ver is generated through the

getLastVersion() function from setup.py. This file is further examined in section 5.7 below.

12

Figure 7: Initialise section

4.1.2 Load Data

Contains one cell (Figure 8). This cell is used to generate four datasets, train_x, test_x,

train_y, and test_y. These datasets are generated using the getProcessedData() function

from setup.py. This file is further examined in section 5.7 below. train_x contains the training data

from the PCA_version_number_train.csv file in the data_processed folder. test_x contains the test

data from the PCA_version_number_test.csv file in the data_processed folder. train_y, and

test_y contain the instance labels for train_x and test_x, from the

PCA_version_number_y_train.csv and PCA_version_number_y_test.csv files from the

data_processed folder.

Figure 8: Load Data

4.1.3 Initialise Model

Contains one cell (Figure 9). Here, the clf variable is the model. clf is set to an SVC object from

the scikit-learn SVM module. The model is fit/trained in this cell, using the fit method. The model

is fit using the train_x and train_y variables, teaching the data to associate the values in

train_x with the classes in train_y.

13

Figure 9: Init Model

4.1.4 Make Predictions

Predictions are made using the predict method of the clf object. test_x, the data values for

the test set are used to predict on. The predictions are saved into a variable preds. preds is a

numpy ndarray4 containing one value per row in the test set. This value is compared to test_y in
the reporting stage.

4.1.5 Reporting

The reporting stage contains four cells, each of which contain one function taken from reporting.py.

These functions are explained in further detail in section 5.6 below. An example output is seen in

Figure 10 below.

Figure 10: Rep - confusion matrix

In the first reporting step, a confusion matrix is generated, with the predictions presented column-wise

and the actual values presented row wise. These confusion matrices were used to determine accuracy

of the model through visual inspection, and data were not saved every time a matrix was generated.

4 https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html

14

These matrices help show how the data imbalance affected predictions, with all cases having a

favouritism towards predicting the other class.

The reportAccuracies() function is used to generate an output containing accuracy, precision,

recall, f1, and support scores on a class level and a dataset level (Figure 11).

Figure 11: reportAccuracies

A variable scores is defined, which is set to equal the output of the getMeterics() function. The

four values correspond to the f1, weighted recall, kappa value, and accuracy of the model

respectively. These figures are truncated to five decimal places and saved to Collated.tsv using the

recordScores() function (Figure 12).

Figure 12: Collecting and saving scores

15

4.1.6 Save Model

The model is saved as a .pkl file in order to be accessible after the Jupyter kernel is shut down.

(Figure 13)

Figure 13: Saving model

5 Further detail on key files/folders
Some folders and files contain code which is vital to the operation. These are outlined further in this

section.

5.1 config.py
config.py contains some information on model structures, file locations, and image details that are key

to the successful generation of some of the models. The entire file contents are pictured in Figure 14

on Page 16 below. Details of each of the variables, constants, and functions are outlined below.

Element Type Description

DATA_LOCATION Constant The Path to the folder which contains the

image data.

RESULT_PARENT_FOLDER Constant The Path to the folder where model results

are to be saved.

IMG_HEIGHT Constant The height of the images in pixels before

processing

IMG_WIDTH Constant The width of the images in pixels before

processing

BATCH_SIZE Constant The size of the input batches to a TF model.

CLASS_NAMES Constant All of the classes in the original dataset.

getDatasets() Function Uses the tensorflow (TF)

image_dataset_from_directory

function to generate training and validation

data for use in the TF models.

rescaleData Function Normalises the values in a TF Dataset object

to between 0…1

checkDataRange Function Used to confirm the rescaleData function

was successful.

16

 Figure 14: config.py

17

5.2 PCA.ipynb
The notebook used to generate the datasets used in the non-TF models works by collecting the image

data, storing the pixel values for each image. Each image is stored as one row in a DataFrame, with

each pixel's greyscale value representing one column. PCA is applied using the PCA function from

the sklearn.decomposition library. Many different versions were created, some where the image data

were resized before PCA, some with varying numbers of components in the PCA. A final dataset was

created with 15 components on data that were not resized. This accounted for 87.45% of the variance

in the data.

5.3 functions.py
The functions.py file contains 7 functions which are used in the modelling process.

5.4 model_functions.py
model_functions.py contains the functions to run the models which are utilised in main.py. Each of

the model generation functions consists of the same three key steps: initialising, fitting, and

predicting. These are typically carried out using the same keywords, as most of the models are from

the scikit-learn module. An example can be seen in Figure 15 below.

Element Type Description

timePrint Function Prints an input string and the time it was called in the

format HH:MM:SS String

pathExists Function A wrapper for the pathlib Path.exists() function.

saveModelHistory Function Saves a TensorFlow model’s history attribute to a

specified path as a .pkl file.

loadModelHistory Function Loads a pkl file that was generated by

saveModelHistory above.

saveTensorModel Function Saves a TensorFlow Sequential object to the specified path

using the tf.keras.models.save_model function.

loadTensorModel Function Wrapper for the tf.keras.models.load_model

function.

loadDataFrame Function Wrapper for the pandas read_csv function.

Element Type Inputs Description

runLGBM Function train_x, train_y,

test_x

Wrapper to initialise, fit, and make

predictions on the LightGBM model.

runKNN Function train_x, train_y,

test_x

n_neighbours

Wrapper to initialise, fit, and make

predictions on the K nearest neighbours

model. User specifies the number of

neighbours using the n_neighbours

input variable.

runNB Function train_x, train_y,

test_x, nb_type

Wrapper to initialise, fit, and make

predictions on the Naïve Bayes model.

User specifies the type of naïve bayes

(Gaussian, Complement, Multinomial)

using the nb_type input variable.

runLogit Function train_x, train_y,

test_x

Wrapper to initialise, fit, and make

predictions on the logistic regression

model.

18

Figure 15: runLGBM function

5.5 main.py
main.py is the primary script used in generating the data for all models. Each of the functions created

in model_functions.py are used to generate all of the models and results in one file. An example of

running main.py can be seen in Figure 3 above. main.py does not introduce any new functionality, it

simply uses functions taken from other files in the directory. The argparse module is used to define

three variables when calling the module from the command line. These variables are the version of

data to use, the number of neighbours in the KNN, and whether new models should be generated or

saved models be used. When saved models are used, the results are reported in a table on the

command line and not saved. This is due to the script being run a large number of times in

development, and as the models do not need to be generated it is not time intensive to run again. A

screenshot of the process where trained models are loaded is seen in Figure 16 below.

runRF Function train_x, train_y,

test_x

Wrapper to initialise, fit, and make

predictions on the Random Forest model.

runSVM Function train_x, train_y,

test_x

Wrapper to initialise, fit, and make

predictions on the SVM model.

runCNN Function train_x, train_y,

test_x

Wrapper to initialise, fit, and make

predictions on the CNN model.

predict Function model, test_y A wrapper function for the model.predict

method.

19

Figure 16: main.py loading models

5.6 reporting.py
reporting.py contains functions used in analysing the results of the models. These functions are used

both as a means of quickly visually assessing model outputs and for thoroughly recording and

reporting on key metrics of the models.

Element Type Inputs Description

value_counts Function arr Returns the value counts of an array.

Used to get the value counts of a target

variable array

confusionMatrix Function true_y

pred_y save

filepath

filename

Wrapper for the sklearn.metrics

confusion_matrix function with

some added functionality. Allows

saving to disk. Total column and row

are added to normal sklearn matrix.

confusionMatrixAccuracy Function cmat Prints the accuracy for each class in a

confusion matrix row-wise.

reportAccuracies Function true_y

pred_y

Collates and prints various functions

from sklearn.metrics. Includes the

accuracy_score

cohen_kappa_score and

classification_report functions.

getMetrics Function true_y

pred_y

Collates and returns the f1_score,

recall_score,

20

5.7 setup.py
setup.py contains three functions. These are mainly used in relation to the PCA data. The functions

are as below:

6 Bibliography
There are no sources in the current document.

cohen_kappa_score, and

accuracy_score scikit-learn metrics.

recordScores Function ver

model_name

scores

Records the version number, model

name, and output of getMetrics into

collated.tsv

Element Type Inputs Description

getLastVersion Function return_all

path

Returns the version number of the

latest saved PCA data.

getProcessedData Function version

rescale_data

Uses pandas read_csv to load

train_x train_y test_x and

test_y variables. The csv files

relate to the data specified using

the version input variable. The

user can specify if the values

should be normalised between 0

and 1 using the rescale_data

flag.

rescale Function df Normalises the data between 0 and

1 in a dataframe.

