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Abstract

Image classification is a field with many viable methods towards solv-
ing problems within it. It is therefore important to analyse and determine
whether there exists a best machine learning technique which can be applied
when categorising images. This report analyses nine approaches: K-nearest
Neighbours; Support Vector Machine; Random Forest; Logistic Regression;
Gaussian Naive Bayes; Multinomial Naive Bayes; Complement Naive Bayes;
LightGBM; and a Convolutional Neural Network to determine if one of these
approaches is ideal in classifying images of the surface of Mars.

1 Introduction

This project aims to analyse multiple image classification processes to de-
termine which is the most viable in classifying images of the Martian sur-
face as found in datasets published by NASA. Image classification is a
subsection of computer vision, whereby images are analysed to determine
whether specific features are present in those images. Classification specif-
ically refers to images that have known potential contents, i.e., a dataset
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will contain images of a city and images of a rural area. It is known that
the image will be sortable into one of two or more buckets (ScienceDirect
2022). This is different to object detection, where while the goal is still
to identify the semantic contents of an image, a bounding box is drawn
around the object rather than the images themselves being categorised (Pa-
pers With Code 2022). This does not necessarily address the same problem.
Classification algorithms may examine a photograph of a dog and identify
the breed. Detection algorithms may examine a photo and identify whether
a dog is present.

Image classification is a complex problem with many possible different ap-
proaches to solving. Some approaches feature complex techniques such as
Neural Networks (S. Xie and Tu 2015); some utilise simpler techniques,
such as Support Vector Machine (SVM) or Random Forest (RF) (Mercier
and Lennon 2003). While there are many studies analysing the efficacy of
these models, there is a knowledge gap with regards to direct comparisons.
Image classification studies typically feature one technique carried out on
one dataset. Like for like comparisons using the same metrics using dif-
ferent models, each trained on the same data, are absent from the body of
knowledge.

1.1 Research Question

Classifying images is a problem that appears in a wide array of fields. In
recent years there has been an increase in classification problems thanks to
the explosion in popularity of the Internet Of Things (IOT). Identifying
which frames of a home security video feature an intruder; whether an
obstruction is blocking an autonomous vehicle; whether cancer is visible
in an x-ray. These are all examples of commercial applications of image
classification where a clear direction on model choice would be a valuable
boon. This presents the question:

RQ: "To what extent can direct comparisons between modelling techniques
identify a clearly favourable method when applied to an image classifica-
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tion problem?"

1.2 Research Objectives

1. Conduct an investigation and state of the art review to determine the
landscape of the field.

2. Pre-processing of images to allow input into a model.

3. Implementation and evaluation of modelling approaches.

(a) Implementation and evaluation of a Convolutional Neural Net-
work (CNN) model.

(b) Implementation and evaluation of a K-Nearest Neighbour (KNN)
model.

(c) Implementation and evaluation of a LightGBM (LGBM) model.
(d) Implementation and evaluation of a Logistic Regression (Logit)

model.
(e) Implementation and evaluation of Naive Bayes (NB) models.
(f) Implementation and evaluation of a Random Forest (RF) model.
(g) Implementation and evaluation of a Support Vector Machine (SVM)

model.

4. Comparison of the developed models.

1.3 Research Value

As outlined in Section 1.1, image classification is a field quickly growing in
scope, with problems in everyday scenarios for both large companies and
end users. There are many different approaches to solving image classifi-
cation problems. As such, identifying the best method provides value for
both further studies and for commercial users in reducing the time spent on
model pre-screening and selection.

3



1.4 Roadmap

Each of the research objectives are explored in sections of this study. Sec-
tion 2 examines the landscape of the field, as outlined in Objective 1. Ob-
jective 2 is addressed in Section 3.2 where the preprocessing of the data is
documented. Each of the modelling approaches outlined in objectives 3(a)
through 3(g) are subsections of Section 5. Results are discussed in Section
5, addressing Objective 4.

2 Literature Review

In order to understand the outlook of the image classification field, a study
of previous works ranging from seminal papers in the 1970s, to more con-
temporary papers of the 2020s. This study focused largely on papers pub-
lished between 2012 and 2022, but acknowledgements to important earlier
papers were included to better understand the evolution of the field.

2.1 Comparison of Previously Developed Models in Im-
age Classification

Many studies have been conducted to determine and report on the effective-
ness of a single model approach. Some notable studies are briefly outlined
in Table 1 overleaf.
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Table 1: Existing Models.
Model Paper Authors Results

SVM A Relative Evaluation of Multiclass Image
Classification by Support Vector Machines

Foody and Mathur
2004

87-93%
Acc

SVM Multi-Class Active Learning for Image Classification
Joshi, Porikli, and
Papanikolopoulos
2009

70-94%
Acc

SVM Scalable active learning for multiclass image
classification

Joshi, Porikli, and
Papanikolopoulos
2012

Up to 90%
Acc

CNN
Systematic outperformance of 112 dermatologists in
multiclass skin cancer image classification by
convolutional neural networks

Maron et al. 2019

91%
Specific
75%
Sensitive

GAN (CNN)
Classification of hyperspectral images based on
multiclass spatial-spectral generative adversarial
networks

Feng et al. 2019 98.7-
99.4% Acc

Logistic Regression,
GBM, SVM

Deep learning framework for multi-class breast
cancer histology image classification

Vang, Zhen Chen,
and X. Xie 2018

77-83%
Acc

ResNet (CNN) Multi-class brain tumor classification using residual
network and global average pooling

R. L. Kumar et al.
2021

97% aver-
age Acc.

Logistic Regression Single-Label Multi-Class Image Classification by Deep
Logistic Regression

Dong, Zhu, and
Gong 2019

62-72%
Acc.

Naive Bayes / Fusion
CNN

Automatic crack recognition for concrete bridges by
fully convolutional neural network and Naive Bayes
data fusion based on visual detection system

Li et al. 2020 92-94%
Acc.
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The papers in Table 1 show a preference for CNN based models in recent
years. Results appear consistently higher with these models applied; how-
ever, this often comes with a longer training time and black box model,
making it difficult or impossible to understand the process the model takes
when coming to a classification decision. Some key papers from a more
nascent period of the field prefer simpler models, often SVM, as is dis-
cussed in Section 2.2.

2.2 Image Classification

Image classification problems have been a prominent area of study in com-
puter vision since the 1970s when researchers aimed at classifying images
as examples of satellite photography, aerial photography, or microphotog-
raphy (Haralick, Shanmugam, and Dinstein 1973). Early studies such as
this typically focused on extracting textural features from images, notably
smoothness and roughness. This has its issues. One such issue is in texture
definition. What does it mean for an image to be "smooth" or "coarse"? Is
it enough to suggest that a large variation in pixel values identifies coarse-
ness, or are large contrasting blocks of pixels a better means of identifying
rough patches; perhaps both are adequate (Lark 1996). Due to some of the
issues presented in textural analysis, later studies examined different fea-
tures in their analysis. One study focusing on colour showed the potential
power of the feature when creating image segmentations (Belongie et al.
1998). Earlier, (Niblack et al. 1993) were among the first to use colour in
classifying photographs. Niblack et al. also examined the shape of objects
in the image using edge detection methods. Developments such as those
introduced by these studies laid the foundations for future studies which ex-
amine a plethora more features, such as contextual features; spectromatic
features; vegetation indices; post-transformation images; multi-temporal
images; and ancillary data and metadata.
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2.3 A Critical Review of Feature Selection

When choosing a means of classifying images, different features offer dif-
ferent levels of precision, and different results, as well as requiring differ-
ent levels of pre-processing and a different shape of input. Commonly used
features include texture, colour, shapes and metadata. However, these fea-
tures can also be further delved into, introducing another degree of caution
researchers must exhibit. As aforementioned, texture requires a clear and
obvious definition in the data.

2.3.1 Shape

When classifying images often the analysis of the shapes of image parts
provide a lot of information. Shape analysis is commonly used in clas-
sification of photographic images (Bosch, Zisserman, and Munoz 2007),
spectral images (Blaschke 2003), and hyperspectral images (Mirzapour and
Ghassemian 2015, Mercier and Lennon 2003).

When using shape as a feature it is also important to determine how shapes
are defined. One method of shape detection is through edge detection,
such as in (David 2020), or using "blobs" of colour as in (Belongie et al.
1998). Using edge detection techniques is common with Convolutional
Neural Networks (S. Xie and Tu 2015), whereas simpler modelling tech-
niques often utilise areas of similar colour. This analysis of colour blocks
for identifying shape is the basis of the landmark face detection algorithm
developed by Jones and Viola in the early 21st century (Jones and Viola
2003). Face detection algorithms have changed very little in the near 20
years since the article was published. This is due to the speed and accuracy
of face detection by using areas of light and areas of shadow to identify
faces. This simple algorithm can be looked to as an example indicating the
power of colour blocks as a feature in object recognition.
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2.3.2 Colour

Colour may take the form of one of many different colour spaces - or how
the colour data is represented numerically. Common colour spaces are
RGB, where Red, Green, and Blue pixel values are stored as a number
between 0-255. HEX representation of a colour uses a base-16 number to
identify colours. HSB represents the Hue, Saturation, and Brightness of
pixels; YCbCr represents Luminance, Green-Blue difference, and Green-
Red difference for pixels; CMYK uses the Cyan, Magenta, Yellow, and
Black values for each pixel, among many others. The multitude of options
means that researchers must make a careful choice when designing their
model.

It was determined in a 2017 paper that choice of colour space can have
a significant impact on the output of a model when detecting humans by
skin tone (Kolkur et al. 2017). A 2018 study found differences in output of
leukemia detection models when using CIELAB and CMYK colour spaces
(Anilkumar, Manoj, and Sagi 2018).

Colour as a feature is very rarely used in isolation. When combined with
other metrics, colour can be a powerful variable to include. Studies can of-
ten omit colour, with models frequently converting input images to greyscale
as one of the early steps. The inclusion of colour can greatly increase the re-
quired processing power, as colour images can contain three to four times
more data than black and white images. Colour sees greater use in ob-
ject detection than image classification, as classification frequently uses
greyscale images. One example of a colour based classification model ap-
pears in a paper by Ding et al. 2018.

2.3.3 Sub-pixel and Spectrographic Approaches

Image classification approaches are often taken in the field of remote sens-
ing - the process of detecting the physical aspects of an area by measuring
its reflected and emitted radiation at a long distance, such as from satellite
imagery or aerial photography. These types of problems often introduce
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mixed-pixels, pixel values which represent the energy output of an area.
In reading the energy data for aerial photographs, one pixel will often rep-
resent an area with some variation in output. The accuracy of the data is
frequently bottle-necked by the resolution of the images. Because of this,
sub-pixel fluctuations are accounted for using stochastic models (Bosdo-
gianni, Petrou, and Kittler 1994). These sub-pixel variations have proven
to be a major issue in remote sensing classification models (Fisher 1997,
Cracknell 1998).

Another frequently utilised approach in remote sensing is analysis of veg-
etation indices. The vegetation index of an area is determined by applying
transformations to aerial images to produce images which focus on spe-
cific wavelengths of light. These transformations are then combined and
adjusted to enhance the presence of green vegetation in the images. While
this approach may not be useful in the analysis of images of the Martian
surface, it has been successfully used in combination with other metrics in
classification problems (Dai and Khorram 1998), indicating the viability of
multi-modal models in image classification. Vegetation indices are used to
enhance the green aspects of satellite imagery. However, a variation on the
model to focus on other colour bands may be viable in different scenarios.

2.4 Identified Gaps and Conclusion

It is clear that feature selection plays an important role in classifying im-
ages based on their contents. Many studies have been conducted to examine
the influence of colour space, shaping method, or aggregation approaches.
However, a knowledge gap can be found in applying multiple models to
the same images, and reviewing the same metrics on each. It is not clear
whether any given model will produce the best results in these conditions.
Studies often focus on one modelling approach, perhaps with a compari-
son to one previously favoured method. A full comparison of a breadth of
modelling approaches appears to not exist in the image classification space.
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3 Research Methodology and Design Specifica-
tion

3.1 Data collection

Data were collected from the NASA Open Data Repository, an open source
repository of data collected, used, or analysed by NASA JPL. The data are
subject to a Creative Commons Attribution 4.0 International licence and are
associated with the DOI 10.5281/zenodo.2538136.

3.2 Data Description and Preprocessing

3.2.1 Data Description

The data consist of 73,031 greyscale JPEG images with a resolution of
227x227 pixels. The images are labelled as featuring one of eight geo-
logical phenomena (’bright_dune’, ’crater’, ’dark_dune’, ’impact_ejecta’,
’other’, ’slope_streak’, ’spider’, ’swiss_cheese’). The dataset consists of
10,433 unique images, each of which has undergone six transformations
to increase the number of datapoints in the set and to increase the variety
of images ensuring models have the ability to recognise these phenomena
when photographed from different angles. The six transformations are:

• 90 degrees clockwise rotation

• 180 degrees clockwise rotation

• 270 degrees clockwise rotation

• Horizontal flip

• Vertical flip
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• Random brightness adjustment

The distribution of the classes is imbalanced, with one of the eight classes
featuring 83% of the data. Class representation can be seen in Table 1.

Table 2: Class distributions.
index proportion count

bright_dune 2.40% 1,750
crater 6.71% 4,900

dark_dune 1.56% 1,141
impact_ejecta 0.32% 231

other 83.60% 61,054
slope_streak 3.19% 2,331

spider 0.65% 476
swiss_cheese 1.57% 1,148

This imbalance is further addressed in section 3.2.3 below.

3.2.2 Justification

These data were chosen for the study as they are presented with an open li-
cence; the images are aerial photographs which is a frequent scenario where
image classification problems appear; they present a degree of novelty, with
HiRISE data seeing little use in similar studies; and the data were recently
published, uploaded to the NASA repository in December 2021. The de-
grees of availability, applicability, novelty, and recency were determined to
be strong enough for use in a study such as this.

3.2.3 Preprocessing

Little preprocessing was done to the images themselves, but in order to be
usable as an input to various models, amendments to the structure of the
dataset were required. The data were sourced as a zip folder, containing
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text and csv files, and a sub-folder which contained all 73,031 of the image
files. The zip folder was decompressed. The text file included was a data
description document. There were two csv files included; the first identi-
fied which of the classes each of JPEG files represented using a numeric
encoding; the second contained a dictionary identifying which encoding
was paired with which feature.

The images were grouped into folders, each folder representing one of the
geological phenomena. This was to ensure the input for neural network
models was organised matching the model’s expectations. While this struc-
ture is standard for a neural model, other models (such as SVM) are more
adaptable in input shape.

Before any of the data could be fed into a model, a change was made to
the colour space. The images in the dataset are black and white from the
source, however the encoding uses the RGB colour space. Each image was
converted to a greyscale colour space. This was done in order to reduce
the dimensionality of the image three-fold, thereby reducing its memory
usage in kind. As the images were visually greyscale before this step, this
conversion was lossless.

Models were generated using three different python modules - scikit-learn1

(Pedregosa et al. 2011), LightGBM2 (Ke et al. 2017) and tensorflow.keras3

(Abadi et al. 2016). The TensorFlow models were trained using a Tensor-
Flow Dataset object4 which was generated using the TensorFlow function
image_dataset_ f rom_directory. The LightGBM and scikit-learn models
were trained on a dataset which was generated using Principal Component
Analysis (PCA). The dataset consisted of 15 components, covering 87.45%
of the variance of the original pixel value dataset. The dataset contained
51% of the original data in order to minimise the heavy class imbalance.
This subset consisted of all of the original data in seven classes (11,977
images), and 25,000 of the images from the other class. The values in the

1https://scikit-learn.org/stable/about.html
2https://lightgbm.readthedocs.io/en/v3.3.2/
3https://www.tensorflow.org/about
4https://www.tensorflow.org/api_docs/python/tf/data/Dataset
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Table 3: Models and Frameworks.
Framework Model Dataset
scikit-learn K-nearest Neighbours PCA

Gaussian Naive Bayes PCA
Multinomial Naive Bayes PCA
Complement Naive Bayes PCA

Logistic Regression PCA
Random Forest PCA

Support Vector Machine PCA
LightGBM LightGBM PCA
TensorFlow Convolutional Neural Network TensorFlow Dataset

PCA DataFrame were scaled between 0 and 1 for better interaction with
the models.

4 Research Methodology

Nine different modelling approaches were carried out. These approaches
are outlined in Table 3 , identifying the framework and the dataset the model
utilised.

5 Implementation and Evaluation

Each of the methods carried out were analysed using multiple metrics.
Namely the accuracy, weighted average recall, F1 score, and Cohen’s kappa
value. Accuracy is the overall proportion of correct predictions. Recall is
the fraction of the positive class which were correctly identified as positive.
The F1 score is the harmonic mean of the precision and recall, where preci-
sion is the proportion of positive classifications that were correct. Cohen’s
kappa score is an accuracy score which has been adjusted for agreement
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occurring by chance. Formulae for each metric can be seen below.

Accuracy =
(T P+T N)

(T P+T N +FP+FN)

Recall =
T P

T P+FN

F1 =
Precision×Recall
Precision+Recall

Kappa(κ) =
2× (T P×T N −FN ×FP)

(T P+FP)× (FP+T N)+(T P+FN)× (FN +T N)

where T P = TruePositive, T N = TrueNegative, FP = FalsePositive and
FN = FalseNegative.

5.1 K-nearest Neighbours

The K-nearest neighbour (KNN) algorithm is used to classify datapoints
into a category by taking the most frequent category of neighbours to that
datapoint when plotted in n dimensional space, where k refers to the number
of neighbours examined in classification.

Implementation: The K-nearest neighbours approach was carried out us-
ing a k-value of 5. This was due to the largely imbalanced dataset. Larger
values for k inflated the likelihood of elements having a significant number
of neighbours in the other class. K-nearest neighbours models were gen-
erated using the KNeighboursClassi f ier class from the scikit-learn frame-
work5

Evaluation: The low kappa values indicate a weak model, with minimal
agreement (McHugh 2012). This indicates that while the accuracy of the
model is in the 60-70% range, this is largely due to chance more so than
the inherent strength of the model.

5https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
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Table 4: K-nearest neighbour metrics.
Metric Score
Kappa 0.28

Accuracy 66.66%
F1 0.6396

Weighted Recall 0.6666

5.2 Naive Bayes

The Naive Bayes method of classification is a probabilistic model, bas-
ing classifications on Bayes’ theorem where probability of a given event is
based on knowledge of conditions leading to the event. Bayes’ theorem can
be expressed as P(A|B) = P(B|A)P(A)

P(B) .

Three Bayesian approaches were carried out. A Gaussian approach; a
multinomial approach; and a complement approach. The models were gen-
erated using the GaussianNB, ComplementNB, and MultinomialNB classes
from the scikit-learn framework6.

5.2.1 Gaussian Naive Bayes

A Gaussian Naive Bayes model allows for classification of a continuous
variable. In this instance, the target variable can be encoded as a value
between 0 and 1 to enable the use of a Gaussian approach. The values for
a Gaussian classifier can be determined through the equation for a normal
distribution:

P(x = v |Ck) =
1√

2πσ2
k

exp

(
−(xi −µk)

2

2σ2
k

)

where x is a continuous attribute, µk represents the mean of the values in
x associated with class Ck, and σ2

k is the Bessel corrected variance of the

6https://scikit-learn.org/stable/modules/naive_bayes.html
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values in x associated with class Ck.

Implementation: The model was created using the GaussianNB function
from the scikit-learn framework. Default values were used when running
the model and no priors were specified.

Table 5: Gaussian Naive Bayes metrics.
Metric Score
Kappa 0.15

Accuracy 52.60%
F1 0.5372

Weighted Recall 0.5260

Evaluation: Once again, the kappa score is very low. Through McHugh’s
analysis, 0-4% of data produced by the model are reliable. This indicates
that the predictions from the model are very weak. The accuracy score of
53% is not indicative of a strong model.

5.2.2 Multinomial Naive Bayes

A Multinomial Naive Bayes model is used where data is multinomially dis-
tributed. This is most useful in making predictions with multiple predictive
variables.

The distribution of the data is specified by vectors θy = (θy1, . . . ,θyn) for
each class y, where n is the number of features, and θyi is the probability
P(xi | y) of feature i appearing in a sample belonging to class y.

The parameters θy are estimated using a smoothed maximum likelihood
formula: θ̂yi =

Nyi+α

Ny+αn where Nyi = ∑x∈T xi is the number of times feature i
appears in a sample of class y in the training set T , and Ny = ∑

n
i=1 Nyi is the

total count of all features for class y.

Implementation: The model was created using the MultinomialNB func-
tion from the scikit-learn framework. The data were fed into the model
using the default arguments. Smoothing was applied with an α value of 1.
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Table 6: Multinomial NB metrics.
Metric Score
Kappa 0.00

Accuracy 67.61
F1 0.5455

Weighted Recall 0.6761

Evaluation: The kappa score of 0 indicates that the model is completely
unreliable. This is due to the model predicting every input to correspond
to the other class. This is not surprising as multinomial models, while
applicable to multi-class data, typically favour binary prediction.

5.2.3 Complement Naive Bayes

Complement Naive Bayes is an adaptation of a Multinomial Naive Bayes
that is better suited to unbalanced datasets. As one class in the PCA trans-
formed data accounts for 68% of the training data, it was posited that a
CNB would be a better approach.

Implementation: The model was created using the ComplementNB func-
tion from the scikit-learn framework. As with the multinomial model, the
data were fed into the model using the default arguments with smoothing
applied at an α value of 1.

Table 7: Complement Naive Bayes metrics.
Metric Score
Kappa 0.06113

Accuracy 22.54
F1 0.2481

Weighted Recall 0.2254

Evaluation: Once more, a low kappa signifies the model’s inability to re-
liably predict images from this dataset. A marginal improvement over the
multinomial classifier can be seen but this is largely insignificant due to the
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low scores. As the complement model is based on the multinomial model,
it is also an expected result to have poor performance.

5.3 Logistic Regression

Logistic Regression is a classification algorithm which generates a proba-
bility of a datapoint belonging to a class. Typically used for binary classi-
fication, but through the scikit-learn framework and multinomial approach
is possible.

Implementation: The model was created using the LogisticRegression
class from the linear_model module of scikit-learn7. L2 was chosen as the
penalty to apply. Scikit-learn allows multiple options when using a logistic
regressor for multi-class data: OvR (One versus rest) or multinomial. Both
methods were applied and the best results chosen. The reported results
relate to the multinomial implementation.

Table 8: Logistic Regression metrics.
Metric Score
Kappa 0.03154

Accuracy 67.58%
F1 0.55631

Weighted Recall 0.67577

Evaluation: The logistic model also produces a very poor kappa value.
Agreement is near zero, once again indicating that the model produces cor-
rect classifications largely through chance.

5.4 Random Forest

A Random Forest is a collection and aggregation of multiple decision tree
models, each trained on different subsets of the total training dataset.

7https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
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Implementation: The model was produced using the RandomForestClas-
sifier function from the scikit-learn framework8. The Gini impurity crite-
rion was used to measure split purity. In all, 100 estimators were used in
the model.

Table 9: Random Forest metrics.
Metric Score
Kappa 0.2806

Accuracy 72.07
F1 0.6629

Weighted Recall 0.7207

Evaluation: The Random Forest model produces a kappa value slightly
better than most previous mentioned models, however the results are still
considered to be poor, with minimal agreement.

5.5 Support Vector Machine

A Support Vector Machine (SVM) is a classifier that finds a hyperplane
of the data and generates a decision boundary to categorise the data as
inside or outside. Once again, an SVM is generally preferred for use in
binary classification problems, but scikit-learn allows multiclass operations
through OvO (One vs One) classification or OvR classification, as it does
with logistic regression. Many previous studies have utilised SVM in image
classification to great success; however this often takes the form of binary
classification such as in Goh, Chang, and Cheng 2001, Rejani and Selvi
2009, Vijayarajeswari et al. 2019, and Murugan, Nair, and K. Kumar 2019.

Implementation: The model was generated using the SVC function of the
svm class from the scikit-learn framework9. Simple hyperparamter tuning
was carried out using the GridSearchCV function10. This tuning revealed a

8https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
9https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

10https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
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C value of 10 and a gamma value of 0.001 to be ideal; however the results
show that an SVM was not the correct classifier for these data.

Table 10: Support Vector Machine metrics.
Metric Score
Kappa 0.2451

Accuracy 71.91%
F1 0.6457

Weighted Recall 0.7191

Evaluation: The results for the SVM show poor to moderate agreement be-
tween the predictions and the true classes. While a marginal improvement
over previous models is visible, the results are still too poor to consider vi-
able in application.

5.6 LightGBM

LightGBM is a node first decision tree based gradient boosting algorithm.
As most decision tree algorithms use a depth first build, LightGBM is struc-
tured quite differently. LightGBM is generally faster to compute, and more
memory efficient than other similar models11.

Implementation: An LGBMClassifier object was used to create the model.
In this instance, the default values were used for each parameter. This
includes a learning rate of 0.1, and an objective of multiclass.

Table 11: LightGBM metrics.
Metric Score
Kappa 0.3286

Accuracy 70.39%
F1 0.6735

Weighted Recall 0.7039

11https://lightgbm.readthedocs.io/en/latest/Features.html
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Evaluation: The results of the lightGBM model show more promise than
many of the previous models; however a kappa score of 0.33 is still too low
to deem the model to be successful.

5.7 Convolutional Neural Network

Implementation: The neural network was generated using a TensorFlow
Keras Sequential model. The shape of the model was as seen in Table 12.
The model was run for 10 epochs. Due to a difference in the architecture
of the framework, it was not possible to obtain an F1 score or a weighted
recall score for the Tensorflow model. A SparseCategoricalCrossentropy12

loss function was used in its place. The metrics for the validation set for
each epoch of the neural network can be seen in Table 13. Table 14 contains
the metrics for the training set.

Table 12: Convolutional Neural Network summary.
Layer Output shape Num of Params

Rescaling/Normalisation (None, 227,227,1) 0
Conv2D (None, 227, 227, 16) 160

MaxPooling2D (None, 113, 113, 16) 0
Conv2D (None, 113, 113, 32) 4,640

MaxPooling2D (None, 56, 56, 32) 0
Conv2D (None, 56, 56, 64) 18,496

MaxPooling2D (None, 28, 28, 64) 0
Flatten (None, 50176) 0
Dense (None, 128) 6,422,656
Dense (None, 8) 1,032

Evaluation: It can be seen that the neural model produces a moderate to
strong kappa value, ranging from 0.49 to 0.63 on the validation set, and
reaching values as high as 0.99 on the training set. The high value in train-
ing implies a degree of overfitting on the data; however, the validation re-

12https://www.tensorflow.org/api_docs/python/tf/keras/losses/SparseCategoricalCrossentropy
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Table 13: Convolutional Neural Network metrics (Validation Data).
Epoch Kappa (V) Accuracy (V) loss (V)

1 0.4986 88.55% 0.3712
2 0.6080 89.65% 0.3432
3 0.6011 90.38% 0.4324
4 0.6270 90.04% 0.4239
5 0.6437 90.55% 0.6125
6 0.6384 90.65% 0.6503
7 0.6034 90.01% 0.8180
8 0.6430 90.37% 0.7235
9 0.6331 90.68% 0.8868
10 0.6262 89.98% 0.9021

sults are evidence of a slightly better balanced model. The change in the
loss value may be an indicator of a sub-optimal model. While the valida-
tion loss rises with each iteration, the training loss decreases. This may be
an indicator that the learning rate for the model is too high, and requires
further tuning.

Table 14: Convolutional Neural Network metrics (Training data).

Epoch Kappa (T) Accuracy (T) loss (T)
1 0.4848 88.18% 0.3844
2 0.6358 90.89% 0.2791
3 0.7648 93.68% 0.1852
4 0.8565 95.98% 0.1167
5 0.9118 97.47% 0.0732
6 0.9407 98.28% 0.0493
7 0.9535 98.65% 0.0407
8 0.9664 99.02% 0.0303
9 0.9698 99.12% 0.0276
10 0.9727 99.20% 0.0259

The metrics for both the training and validation sets are visualised in
Figure 1 overleaf.
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Figure 1: Metrics for training and validation sets of CNN.
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5.8 Collated Results

For easier comparison, the results of each of the models can be seen in
Table 15.13

Table 15: Collated metrics.
Technique Kappa Acc. F1 Recall
KNN 0.28 66.66% 0.64 0.67
Gaussian NB 0.15 52.60% 0.54 0.53
Multinomial NB 0.00 67.62% 0.55 0.68
Complement NB 0.06 22.54% 0.25 0.23
Logistic Regression 0.03 67.58% 0.56 0.68
Random Forest 0.28 72.07% 0.66 0.72
SVM 0.25 71.92% 0.65 0.72
LightGBM 0.33 70.39% 0.67 0.70
CNN (val) 0.63 89.98% N/A 0.90

5.9 Discussion

It is clear when reviewing the metrics that the Convolutional Neural Net-
work produced the most favourable results. In establishing this, we may
accept an answer to our research question posed in Section 1.1. The ques-
tion "To what extent can direct comparisons between modelling techniques
identify a clearly favourable method when applied to an image classifi-
cation problem?"" appears to be answerable. With the above review, it
appears that a convolutional neural network is the most effective model
with some significance. This does come with some caveats however. It is
worth noting that the device on which the study was conducted was power
limited. It is possible that with more robust training and more in-depth and
automated hyperparameter tuning, improvements to all models could occur.
However due to the bottlenecks on the system, this would not be viable in a

13CNN results shown are from final epoch.
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speedy manner. As such, little tuning was possible. This is a consideration
that future works may address. This can also be seen in the method of data
preprocessing used in many of the models. This technological constraint
also created a limit where some models were unable to be generated using
the image data itself, but rather required dimensionality reduction.

Principal Component Analysis was used as a dimensionality reduction tech-
nique to overcome technical barriers. More powerful machines may be able
to train and fit models using the original data unaltered. As scikit-learn
based models require a dataframe input, this would result in a dataframe
with 73,032 rows and 51,530 columns, or approximately 3.6× 109 data
points. This proved too large a dataset, and as such dimensionality reduc-
tion was used to increase the digestibility of the data. Some information
loss occurs in this dimensionality change.

6 Future Works and Conclusions

Future works may also consider the size and balancing of the dataset. The
full dataset of 73,031 images while not insignificant, is likely too small
to have produced the best models possible. The imbalance of one class
containing 83% of images in the dataset also possibly hindered the devel-
opment of some models. With the large number of instances in one of the
classes, addressing this imbalance meant reducing the already small num-
ber of images used to train and fit the models. It can be determined that a
larger dataset would address these issues.

While the results of this study show a CNN to be the preferred method of
classification in images, these aforementioned concerns prevent certainty in
this suggestion. A further consideration for developers designing an image
classification system is time to train. The Convolutional Neural Network
used in this study took approximately 3 hours to fully train, whereas each
of the other models took minutes to train. This is largely due to the PCA
dataset used by other models; however, it is expected that a CNN will take
longer to train its weights and biases.
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