"'—-
\ National

Configuration Manual

MSc Research Project
Data Analytics

Tiago Leonel do Nascimento
Student 1D: 19143486

School of Computing
National College of Ireland

Supervisor: Jorge Basilio

~

College
Ireland

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Tiago Leonel do Nascimento
Student ID: 19143486
Programme: Data Analytics
Year: 2022
Module: MSc Research Project
Supervisor: Jorge Basilio
Submission Due Date: 15/08/2022
Project Title: Configuration Manual
Word Count: 1822
Page Count: [15

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 18th September 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Tiago Leonel do Nascimento
19143486

1 Introduction

The specifications for the A Comparative Study of Pixel Values and Landmark Detection
Features to Solve for Facial Emotion Recognition research are described in this config-
uration manual. It covers hardware and system specifications that should be considered
minimum requirements for the study results replication. The following sections cover all
phases of the implementation process and the overall assessment of the research work.

2 System Specification

2.1 Configuration of Hardware

A M1 MacBook pro 8GB was used for the entire study. Figure 1 shows the specific
information regarding Device, Chip, Memory and OS also listed below.

e Device: MacBook Pro (13-inch, M1, 2020)
e Chip: Apple M1

e Memory: 8 GB

MacOS Information

[] Overview Displays Storage Support Resources

macOS Monterey

. Version 12.5

MacBook Pro (13-inch, M1, 2020)
Chip Apple M1
Memory 8 GB
Serial Number FVFDMR1ZQ05D

System Report.. Software Update...

Figure 1: Device Specification

2.2 Software Configuration

Google Colaboratory (Colab) was used for the entire duration of the study. Due to the
Mac M1 have a very laborious process to install TensorFlow which can be easily accessed
by utilizing Colab online. This meant that a combination of Google Drive and Google
Colab had to be used to importing the datasets used. Figure 2 displays the landing page
for google colaH[]

Software Requirements below:

e OS: macOS Monterey v 12.5

Google Account to access Google Drive to store files.

Google Basic Subscription Plan for 100mb of drive storage (some datasets were over
the free storage capacity.).

Same google account can be used to access Google Colab.

Google Colab Pro+ subscription (enables access to higher RAM and GPU, TPU.).

Google Colab

Examples Recent Google Drive GitHub

verview of Colaboratory Features

€O Markdown Guide

€O Charts in Colaboratory

€O External data: Drive, Sheets, and Cloud Storage

€O Getting started with BigQuery

New notebook Cancel

Figure 2: Colab Landing Page

As features extracted were numerous, particularly for 224 x 224 pixel images in data-
sets that were augmented resulting in dataframes with large number of columns memory
crashes. At times the data was over 35k rows and 150k columns. This mostly happened
during the experimentation phase of the project and it is not part of the needed steps to
complete the study but as RAM was crashing at around 25gb+ a decision was reached
to upgrade to Colab Pro+ which unlocked 54gb of RAM as per Figure 3.

GPU was also available and used during the CNN creation. Figure 4 shows the
configuration in Google Colab. Figure 5 displays how to confirm that GPU is available
and how to select High RAM.

1Google Colaboratory: https://colab.research.google.com/

https://colab.research.google.com/

Google Colab Memory

° 1 ### extra memory
2
3 from psutil import virtual memory
4 ram_gb = virtual memory().total / le9
5 print('Your runtime has {:.1f} gigabytes of available RAM\n'.format(ram gb))
6
7 if ram gb < 20:
8 print('Not using a high-RAM runtime')
9 else:
10 print('You are using a high-RAM runtime!')

[» Your runtime has 54.8 gigabytes of available RAM

You are using a high-RAM runtime!

Figure 3: Colab Memory

How to Change Runtime to GPU

O & JAFFE_Pixel_Landmark_detection_Final Notebook settings
PRO* File Edit View Insert Runtime Tools Help All changes saved
. +Code + Text Runall /Ctrl+F9 Hardware accelerator
Q ; Run the focused cell $8/Ctrl+Enter
© : import numpy To get the most out of Colab Pro, avoid using a GPU unless you
2 import matpl Runselection 3/Ctrl+Shift+Enter | .
N need one. Learn more
a} 3 smatplotlib Runafter /CtrHF10 T
4 import os
=) 5 import cv2 # Runtime shape
6 import rando N
7 import pickl High-RAM v
(o) 8 from yellowb

9 import panda . Background execution
D) fers P Disconnect and delete runtime . . .
S D Omit code cell output when saving this notebook
11 import numpy
12 import time
13 import math
14 #import Augm Manage sessions Cancel Save
15
16 #### librari

R i e

(a) Selecting Runtime (b) Selecting GPU

Change runtime type

Ce o o o

Figure 4: Selecting GPU

Google Colab GPU

checking if connected to GPU for faster times

1
2
3 gpu_info = !nvidia-smi

4 gpu_info = '\n'.join(gpu_info)

5 if gpu_info.find('failed') >= 0:
6 print('Not connected to a GPU')
7 else:

8 print(gpu_info)

> Wed Aug 10 22:54:19 2022
+

NVIDIA-SMI 460.32.03 Driver Version: 460.32.03 CUDA Version: 11.2 |

+ +. +
GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC
Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M.
| MIG M.
0 Tesla P100-PCIE... Off | 00000000:00:04.0 Off | [
N/A 36C PO 32w / 250W | 1501MiB / 16280MiB | 0% Default
| | N/A

+ + + +

Processes:
GPU GI CI PID Type Process name GPU Memory
D I Usage

Figure 5: Colab’s GPU details

3 Database Sources

Many different datasets were requested to be part of this study. Due to time limitations
and resources constraints two datasets were selected to the final report.

1. The posed dataset Japanese Female Facial Expression (JAFFE) created by |[Lyons
et al.| consists of 10 Japanese female subjects displaying the 6 basic facial emotions
plus neutral emotion. There are 213 images in total in 256 by 256 pixes grayscale.
Images are in the Tiff format with no compression. Images were created with
excellent lighting and background. This dataset has over 25 years and is utilized in
many different papers (Lyons; [2021]).

2. The unposed dataset Static Facial Expressions in the Wild (SFEW) (Dhall et al.
2012)) was selected to contrast the JAFFE dateset for having ”in-the-wild” type
of images. The dataset contains 700 images and 68 subjects. The images were
collected from different movies and display a variety of genders, occlusions, differ-
ent illumination and poses, being referred as close to real life environment by the
authors.

4 Libraries Used, Image Importing and Train/Test
Split

This section looks into libraries used and how to point to the right directory and import
the images and extract Features. The code is the same for both datasets the only thing
that changes is the directory pointing at either JAFFE or SFEW folders.

4.1 Libraries Used

Figure 6 shows all the used libraries to execute the code. Please note that Augmentor
library is commented out as it required to be ”!pip installed” every time the google
colab notebook was switched between GPU and normal RAM. Once the process of Data
Augmentation was completed with Augmentor it was commented out to avoid this step.

4.2 Loading the data

The first step after loading the libraries is to point at where the folder with the dataset
chosen is. Figure 7 displays the code.

4.3 Data Exploration and First Look at Landmarks

The following code is a loop that goes into each of the emotion folders, grabs one image,
converts from BGR to RGB (more details in the paper), resizes it to 224 x 224 pixels,
labels it based on the name of the folder. Extract 68 landmark features from the face and
displays both the resulting image created from the points and the superimposed image
above the original face. The code then breaks and jumps into the next folder until all
named folders have been "visited”. Figure 8 shows the code utilized and Figure 9 some
of the resulting emotions and faces.

Imported Libraries

1 import numpy as np

2 import matplotlib.pyplot as plt

3 smatplotlib inline

4 import os

5 import cv2 ##computer vision library

6 import random

7 import pickle

8 from yellowbrick.target import ClassBalance

9 import pandas as pd

10 import seaborn as sn

11 import numpy as np

12 import time

13 import math

14 #import Augmentor

15

16 #### libraries for landmark facial detection

17 from mlxtend.image import extract_ face landmarks

18

19 #### From Sklearn

20 from sklearn import svm

21 from sklearn.svm import SVC

22 from sklearn.preprocessing import StandardScaler

23 from sklearn.model_selection import train_test_split
24 from sklearn.model_selection import GridSearchCv

25 from sklearn.naive_bayes import GaussianNB

26 from sklearn import neighbors

27 from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
28 from sklearn.neighbors import KNeighborsClassifier

29 from sklearn.ensemble import RandomForestClassifier

30 from sklearn.ensemble import ExtraTreesClassifier

31 from sklearn import tree

32 from sklearn.decomposition import PCA

33 from sklearn.ensemble import VotingClassifier

34 from sklearn import metrics

35 from sklearn.metrics import classification report, confusion matrix
36 from sklearn.pipeline import make_pipeline

37 from sklearn.metrics import accuracy_score

38 from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
39 from sklearn.model_selection import RandomizedSearchCvV
40

41

42 ## Tensorflow

43 import tensorflow as tf

44 import tensorflow.keras as keras

45 from tensorflow.keras.callbacks import EarlyStopping
46 from tensorflow.keras.preprocessing import image

47 from tensorflow.keras.preprocessing.image import ImageDataGenerator

Figure 6: All Imported Libraries

Path and Emotion Folder Names

[] 1PATH = "/content/drive/MyDrive/ 1 manual”
2 CATEGORIES = 'Angry', 'Disgust', 'Fear', 'Happy', 'Neutral', 'Sad', 'Surprise’ ## 0, 1, 2, 3, 4, 5, 6

Figure 7: Pointing to the Right Path

Emotion Labels and Landmarks Code

© 1 def show_landmarks(PaTH):
2 landmarks = []
3 for x in CATEGORIES:
4 path = os.path.join(PATH, x)
5 for img in os.listdir(path):
6 img_array = cv2.imread(os.path.join(path, img))
7 img_array = cv2.cvtColor(img_array, cv2.COLOR BGR2RGB)
8 img_new = cv2.resize(img_array, (224, 224))

9 1 ks = _face_1 ks (img_new)

10 fig = plt.figure(figsize=(15, 5))

11 ax = fig.add subplot(1, 3, 1)

12 plt.title(f'Emotion: {x}')

13 ax.imshow(img_new)

14 ax = fig.add_subplot(l, 3, 2)

15 ax.scatter(landmarks[:, 0], -landmarks[:, 1], alpha=0.8)
16 ax = fig.add_subplot(l, 3, 3)

17 img2 = img_new.copy()

18

19 for p in landmarks:

20 img2[p[1]-3:p[1]+3, p[0]-3:p[0]+3, :] = (255, 255, 255)
21 # note that the values -3 and +3 will make the landmarks
22 # overlayed on the image 6 pixels wide; depending on the
23 # resolution of the face image, you may want to change
24 # this value

25

26 ax.imshow(img2)

27 plt.title(f'Emotion: {x}')

28 plt.show()

29 break

Figure 8: Emotion Labels and Landmarks Code

Emotion Labels and Landmarks Results

© : stow_landnarks (pats)

53 Emotion: Angry Emotion: Angry
e Py PF

Emotion: Fear Emotion: Fear

Figure 9: Emotion Labels and Landmarks Results

Variation of the code in figure 10 import the data either as Pixel Values, 68 Landmarks
or the calculation of the euclidean distances between landmark points. Figure 10 shows
a version of the code and the main difference is explained in the list below.

read data Function

© ! #### extracting array inline
2 IMGSIZE = 224
3 data = []
4
5 def read_data(PATH):
6 for category in CATEGORIES:
% path = os.path.join(PATH, category)
8 class_num = CATEGORIES.index(category)
9 for img in os.listdir(path):
10 try:
11 img_array = cv2.i os.path.join(path, img))

3
14 img_new = np. new).flatten()
15 data.append([
16 except Exception as e:

17 print(£"Image {path}/{img} causes troubles")
18 continue

[1 1 read data(PATH)

Figure 10: read data Function

The version of the code with the two lines below after image is resized with img new
= cv2.resize(img_array, (IMGSIZE, IMGSIZE)) collects flattened RGB pixel values.

e img new = np.array(img-new).flatten() (flattens the np array image after it was
resized).

e data.append([img_new, class num|) (appends the information that was just flattened
to the data empty list).

The following 3 lines instead of the ones above after image resize takes place (img new
= cv2.resize(img_array, (IMGSIZE, IMGSIZE))) collects information on the 68 landamrk
points.

e landmarks = extract_face_landmarks(img new) (extracts 68 facial landmark points
using the Mlxztend library).

e landmarks = np.array(landmarks).flatten() (flattens the landmark information).

e data.append([landmarks, class num|) (appends the information that was just flattened
to the data empty list).

The following 3 lines instead of the ones above after image resize takes place (img_new
= cv2.resize(img_array, (IMGSIZE, IMGSIZE))) collects information on the 68 landamrk
points.

e landmarks = extract_face_landmarks(img new) (extracts 68 facial landmark points
using the Mlztend library).

e distances = compute_landmark_distances(landmarks) (utilizes the code function to
calculate euclidean distance).

e data.append([distances, class_num]) (appends the information that was just flattened
to the data empty list).

Function to calculate euclidean distances

© 1 def compute landmark_distances(landmarks):

3 Computing the distance of landmarks from each other
4 :param landmarks: np.array in format [[x, yl, [X, y]]
5 :return: list of distances
6 mn
7
8

dists = []

X = landmarks[:, 0]
9 Y = landmarks[:, 1]
10 for i in range(len(X)):
11 for j in range(len(X)):

12 x1 = X[i]

13 x2 = X[j]

14 yl = Y[i]

15 ¥2 = ¥[j]

16 # computing the euclidean distance

17 dist = math.sqrt(math.pow((x2 - x1), 2) + math.pow((y2 - yl), 2))
18 dists.append(dist / 60)

19 return dists

Figure 11: Function to calculate euclidean distances

Additional function to calculate euclidean distance between points can be seen in
figure 11.

Once data is read, it needs to be shuffled, random shuffie is used, first setting the seed
so results can be replicated, second shuffling the data and finally assigning the data to
X and y variables and changing from list to np.array. For pixel values, the values can be
normalised by dividing X = X/255.0. After everything is ready a pickle file is created
so that in future data reading step doesn’t have to be repeated. Figure 12 shows it in
details.

reading, shuflling and saving pickle file

1 read_data(PATH)

1 random.seed(42)
2 random.shuffle(data)

X.append (features)

1
2
3
4
5 for features, label in data:
6
7 y-append(label)
8

10 X = np.array(X)
11 X = X/255.0
12y = np.array(y)

[1 1X.shape

(1394, 150528)

© 1 #saving the features to a pickle file
2 with open('/content/drive/MyDrive/Masters/Sfew/Train/X_pickle RGB.pickle', 'wb') as f:
3 pickle.dump(X, f)
a
5 with open('/content/drive/MyDrive/Masters/Sfew/Train/y pickle RGB.pickle', 'wb') as f£:
3 pickle.dump(y, f)

Figure 12: reading, shuffling and saving pickle file

4.4 Looking for missing values

Transforming the data from np.array to dataframe allows us to look into the data better
and see if any values are null or 0.0000 where landmark detection could not read faces.
This didn’t happen for JAFFE dataset or for extraction of pixel values but happened for
SFEW over 26k times with data augmented and normal dataset. Figure 13 shows how
the table looks like when there’s no missing data. Figure 14 shows the table with missing
data.

There’s no need to try to trust your vision only as a simple code df = df.loc[(df.iloc[:,
0:4623] == 0).all(axis=1)| removes the missing values and the table is ready to be saved

No missing data

ae x

" 1.

ar

© 00 0250885 050110 0760560 101374 1226386 1426024 TO126 1800914 .. 0.190020 0236702 0000000 0.100000 0183333 O3S0 01833 01000
100 0250585 0520950 0756637 1000278 1224972 1461060 U060 1952562 .. O.AT7I6O 0166667 0086667 0120185 0195078 0366667 0200000 01000
2 00 0250685 0485013 0729610 0954521 118106 1377206 155704 1719577 1833106 . 0166667 0184080 0037268 0105400 0.186330 0417000 0200000 01013
300 0205702 0464911 0663221 0905692 1122621 1313181 1516292 1666667 1791967 .. 0142400 0216667 013333 0177169 0263529 0608 021707 01178
4 00 0233028 046633 07095 0941925 1170233 1360744 156043 1728840 1G07TTE .. OAMITI 0190029 0.1BABO 0105078 0250000 0960932 0166667 00833
206 00 0267167 OSIAB4 0701974 1085804 1291532 1536488 17ASH 1932255 20573 .. O.164R2 0153650 O.116GE7 0.166667 0226691 0372678 0.184080 0.1000
207 00 0300000 0603692 0895970 1164369 1465630 1767374 2008686 2150253 2200160 .. 0169967 033D 04T 0AIGES7 0ACB 0471699 0216667 01178
208 00 0217307 0A3AI2 06GI387 0860444 10BSTES 1204B31 1469654 1600657 1724658 . 0.120185 074005 0066667 000713 079505 0AO3NI3 01833 00833

200 00 0250565 0504425 0750020 0967140 1213362 1424001 159131 1700454 146122 .. 0177169 0150923 0016667 00833 0184089 0334996 018333 00833

210 00 0266667 053594 08OISE! 1058432 1204433 1509120 1770515 1924765 2030462 .. 0.188562 0166667 0066667 0.007IED 01ISOTE 0350000 018X 00849

211 rows x 4626 comns

Figure 13: No missing data

Missing data

0
o) 2 s . s . , . 5. s wes e s ses e e
00 000000 0000600 0000000 0000000 000GOD 00CGD00 0000000 0.000GGD 000GN00 . 0000000 0.0000G0 G00GN00 0.0G000 0000000 00T 00N 0
100 0000000 0000000 0000000 000000 000GOD 0000000 0000000 0.000GGD 000GND . 0000000 0000000 000GN00 00000 0000000 000G OGN0 O
2 00 000000 0000000 0000000 000000 0000GOD 00GG000 0000000 0.00GGD 000000 . 000000 0.000000 000GK00 00000 0000000 000C00 00N O
300 000000 0000000 0000000 0000000 000GCD 00CGO00 0000000 0000GGD 000GK0 . 000000 0000000 G00GN00 00000 000000 OG0 000 O
400 000000 0000000 0000000 0000000 00GOD 00CC000 0000000 0.000GGD G00GN00 . 000000 0.0000G0 G00GN0D 0G0 000000 GG 00RO 0
199900 0AV7BS1 0217307 0320500 0306162 OATOBTS OSTH73 0643126 0S0008 OTITE! . 00736 0101STO 00I6KET 00270 0052705 0083 002705 OC
1990 00 0000000 0000000 0000000 0000000 0000000 0000000 0.0000C0 G00G000 OCC00 . 000000 G00GC00 00G000 0000000 H00G V0G0 0000 0
1991 00 00BGBS 016333 0260667 0351564 0ASNONI 05275 OSTOTS! 026276 O67AHO . 00B00G3 0037268 0000000 00268 00GSTIE 0153650 0067IE OC
1992 00 0000000 0000000 0000000 0000000 0000000 0000000 0.0000G0 000G000 O0G0000 . 000000 G0GC00 0000000 0000000 O00GK 0.0G0. Q00 0
1993 00 0000000 0000000 0000000 0000000 0000000 0000000 0000000 000G000 00G0000 . 0000000 G00GC00 0.0G000 0000000 000G 0G0 G000 0

1304 rows x 4625 columns.

Figure 14: missing data

as X again now without unwanted 0 values. After all is confirmed and pickled file saved
it can be loaded using the code displayed in figure 15.

Reading pickle file

[] 1#load data as needed if starting a mew colab or starting work separately than
2
3 with open(’/content/drive/MyDrive/Masters/jatfedbase manual/pickle_landmark_dist.pickle’, 'rb') as f:

X = pickle.load(f)

s
6
7 with open('/content/drive/MyDr: i manual/y_pickle_landmark_dist.pickle', 'rb') as f:
8 y = pickle.load(f)

Figure 15: reading pickle file

4.5 Creating Train and Test Split

The code in Figure 16 splits X and y into train and test data that can be used to train
a model.

5 Training a ML model

This section follows the code in the colab book named ”Machine Learning Techniques”.
Once data is assigned to the X_train and X_test, y_train and y_test it is ready to be used
with the different ML models.

Baseline models are run as per Figure 17.

figure 18 shows an example of the grid search parameters.

Follow the code lines running both baseline models and grid search. Some of the grid
search combination took above 11 hours to run.

Train and Test Split

Creating X_train/y_train/X_Test/y_test

© 17 create train/test split
2 X _train, X test, y_train, y_test = train_test split(X, y, test size~

4 ### edited from code https://www.the article/bui

= learn

6 # details

7 # n samples in training data

8 print("[+] Number of training samples
9 # n samples in testing data

10 pr

. X_train.shape[0])

(“[+) Number of testing samples:", X_test.shape[0])

Figure 16: Creating Train and Test Split

Baseline model

v KNN

o !

1 ## model = nbrs.fit(X train, y train) ## normalised non-lda
2 nbrs = KNeighborsClassifier(n_nei)
3

4y _pred = nbrs.fit(X_train, y_train).predict(X_test)
5 print("Number of mislabeled points out of a total %d points : %d"
6 % (X_test.shape[0], (y_test != y_pred).sum()))

Number of mislabeled points out of a total 53 points : 29

print("Overal Accuracy:",metrics.accuracy_score(y_test, y_pred))
print("\n")

confusion matrix = pd.crosstab(y_test, y pred, rownames=|

sn.heatmap(confusion matrix, annot=True, fmt="d")
plt.show()

print(classification_report(y_test,y_pred))

oOveral Accuracy: 0.4528301886792453

Figure 17: Baseline model

Grid search parameters

.25, stratify=y, shuffle=True, random state=i2)

‘Actual’'], colnames=['Predicted’], margins = False)

code edited from the original - https://medium.com/@erik 3/k-neighbors-classifier- ics-3c445ddeb657
grid_params = {

‘n_neighbors': [3,5,11,15,19,23,25,331,

‘weights': ['uniform', 'distance’l],

‘metric': ['euclidean’, 'manhattan’)
}
code edited from the original - https://medium.com/erik 3/k-neighbors-classifier-: ics-3c445ddeb657
gs = GridSearchcv(

KNeighborsClassifier(),

grid_parans,

verbose = 1,

ov = 10,

n_jobs = -1
)

gs_results = gs.fit(X_train, y_train)

[» Fitting 10 folds for each of 32 candidates, totalling 320 fits

| 1 gs_results.best_estimator_

lassifier (metric=' ', n_nei =3, weights='distance')

Figure 18: Grid search parameters

10

5.1 Data Transformation

Two types of data transformation were used to reduce dimensionality in the data LDA
transformation and PCA. Once new X _train and X _test variables were created using PCA
or LDA methods the same models were ran again, with the new variables, so that results
could be compared.

6 Data Augmentation

Data augmentation was used to increase the number of image examples to train the
model. Both a library called Augmentor and a Keras approach were used at different
times in the process of the code creation. Augmentor generated images in a folder called
output in the different emotion classes. These were then manually moved and reorganised
but as Mlxtend library struggled to find faces in the data this step was not used in the
main project data. Augmentor steps can be seen in figure 19.

Augmentor Data Augmentation

Data Augmentation

© 1 - Augmentor.Pipeline(*/content/drive/NyDrive/Mastors/Sten/Tratn/Disgust*) #dissust incressing from 66 to Sk exanples

[> Initialised with 66 image(s) found.

output airectory set to /pisgust/output.
1 p.random_distortion(probability=1, grid width=2, grid_height=2, magnitude=d)

2 p-£lip_left_right (probability=1)

3 porotate(probability=l, max_left s 4, max right rotation=t)

‘ p.crop_random(probsbility=1, percentage_area=0.os)

(4} 1 p.sample(5000)

Processing <PIL.Image.Inage inage mode-RGB size-684x547 at OX7FEB05451390>: 100% NN 5000/5000 [04:12<00:00, 19.84 Samples/s]
(G0] P = Augmentor.Pipeline("/content, » Masters/Sfew/’ ") #Angry in ng from 178 to 5k examples

Initialised with 178 image(s) found.
Output directory set to /content.

[] 1p.random distortion(probability=1, grid width=2, grid height=2, magnitude=i)
2 p.£lip_left_right(probability=1)
Lit:

b « , mas u max_right) =4)
4 p.crop_random(probability=1, percentage_area=0.95)
{1 1p.sample(5000)
Processing <PIL.Image.Image image mode=RGB size=684x547 at 0x7F8B8BD59690>: 100% |INMMN| 5000/5000 [04:40<00:00, 17.85 Samples/s)

Figure 19: Augmentor Data Augmentation

Figure 20 shows the data augmentation that was used in the creation of the CNN.
Although results did not increase with the data augmentation so this step is not present
in the main accuracy of the CNN model.

CNN Test Data

© ! ### data augmentation
2
3
4 from tensorflow.keras import layers
5

6 data_ ion = keras.Sequential([layers. i 1.pr ing.RandomFlip("horizontal",
7 input_shape= (224,224,3)),
8 #layers. experimental .preprocessing.Randomzoom(0.1) ,

9 layers. i l.pr ing ion(0.1),

10 1)

Figure 20: CNN Test Data

7 CNN Setup

To import data for the CNN with the right dimension the code is almost the same as the
pixel value feature extraction code but without the .flatten() line as displayed by figure
21.

11

Importing data for CNN

[] 1PATH = "/content/drive/MyDrive/Masters/jaffedbase manual"
2 CATEGORIES = 'Angry', 'Disgust', 'Fear', 'Happy', 'Neutral', 'Sad', 'Surprise' ### 0, 1, 2, 3, 4, 5, 6

© 1 #### extracting array inline
2 IMGSIZE = 224
3 data = []
4
5 def read data():

6 for x in CATEGORIES:

7 path = os.path.join(PATH, x)

8 class_num = CATEGORIES.index(x)

9 for img in os.listdir(path):

10 try:

il img_array = cv2.imread(os.path.join(path, img))

12 img_array = cv2.cvtColor(img array, cv2.COLOR BGR2RGB)
13 img_new = cv2.resize(img_array, (IMGSIZE, IMGSIZE))
14 data.append([img_new,class_num])

15 except Exception as e:

16 pass

] 1 read_data()

random. shuffle(data)

X=
y =

for features, label in data:
X.append (features)

1
2
3
4
bl
6
9
8 y.append (label)
9

10 X = np.array(X)

11y = np.array(y)

[] 1X.shape

Figure 21: Importing data for CNN

Run the code to create the function that plots the history of the model training as
seen in figure 22. Followed by the code with the CNN layers in figure 23. and to compile
the model in figure 24.

CNN History

def plot_history(history):
fig, axs = plt.subplots(2)

1
2
3
4 # create accuracy sublpot

5 axs[0].plot(history.history["accuracy"], label="train accuracy")

6 axs[0].plot(history.history["val_accuracy"], label="val accuracy")
7 axs[0].set_ylabel("Accuracy")

8 axs[0].legend(loc="lower right")

9 axs[0].set_title("Accuracy eval")

10

11 # create error sublpot

12 axs[1l].plot(history.history["loss"], label="train error")
i3 axs[1l].plot(history.history["val_loss"], label="val error")
14 axs[1l].set_ylabel("Error")

13 axs[1l].set_xlabel("Epoch")

16 axs[1l].legend(loc="upper right")

17 axs[1l].set_title("Error eval")

18

19 plt.show()

Figure 22: CNN history

The next lines of code create the prediction function that will use the test data to
test the model with data that hasn’t been seen by the model yet. It runs the entire test
folder through the model and lets you pick a random image to test individually. As seen
in figure 25.

8 Model Ensemble

A model ensemble made of the best performing models of this study was created in an
attempt to increase the maximum achieved accuracy. This ensemble was successful and
increased accuracy from 87% to 89%. Image 26 shows the details of the ensemble.

12

=3

CNN Layers

1 model = tf.k nodel tial([#data :
2 t£.keras.layers.Conv2D(16,(3,3), 1, activation='relu',input_shape = (224,224,3)), ### lst conv layer
3 t£.keras. layers.MaxPool2D() ,

4

5 ## 2nd conv layer

6 t£.keras. layers.Conv2D(32, (3,3), 1, activation='relu'),
7 t£.keras. layers.MaxPool2D() ,

8 t£.keras. layers.BatchNormalization(),

9

10 ## Sth conv layer

1 t£.keras. layers.Conv2D(16,(3,3), 1, activation='relu'),
12 t£.keras. layers.axPool2D() ,

13 keras. layers.Dropout (0.2),

14 t£.keras. layers.BatchNormalization(),

15

16 ### £latten output and feed it into dense layer

17 tf.keras.layers.Flatten(),

18 £k 1 Dense(512, ‘relu'),

19

20 ## output layer

21 tf.keras.layers.Dense(7, activation='softmax')

22 N

Figure 23: CNN Layers

CNN Compiler

1# compile model
2 # optimiser = keras.optinizers.Adan(learning rate=0.001)
3

4 # nodel.compile(optinizer=optimiser,

se Loss="categorical_crossentropy’,

6 metrics=('accuracy’

7 # print("Creating FarlyStopping Callback ...")

8 # carly_stopping_callback = EarlyStopping(monitor='val_loss' patience=5)

10 model

rate=0.0001), loss = ££.k

11 aarly.stopping. Gallback = Eeriystopping (menisore. val. ione'spatiencess)

12
15 model. surmary ()

Hodel: "sequential 23°

Layer (type) output shape aren ¥

convzd_a5 (Conv2D) (None, 222, 222, 16) 18

nax_pooling2d 45 (MaxPoolin (None, 111, 111, 16)
q20)

conv2a_as (conv2) (one, 109, 109, 32) 4640

max_pooling2d_16 (MaxPoolin (Nome, 54, 54, 32)
q20)

batch_normalization 22 (3at (Nome, 54, 54, 32) 128
chNormalization)

convzd_47 (conv2D) (None, 52, 52, 16) 624
max_pooling2d_47 (MaxPoolin (Nome, 26, 26, 16) o

q20)

aropout_18 (propout) (one, 26, 26, 16) o
batch normalization 23 (sat (None, 26, 26, 16) 64
hNormalization)

flatten_15 (Flatten) (tone, 10816) o
dense 34 (Dense) (one, 512) 5538308
dense_35 (Dense) (one, 7) 3se1

Total parans:
Trainable params: 5,5
Non-trainable params: 96

Figure 24: CNN Compiler

CNN Test Data

def predict(model, X, y):

X = X[np.newaxis, ...] # array shape (new dimention, 130, 13, 1)

perform prediction

get index with max value

predicted_index = np.argmax(prediction, axis=1)

1
2

3

4

5

6 prediction = model.predict(X)
7

8

9

0

1

print("Target: {}, Predicted label:

{}".format(y, predicted_index))

© ! ### here we evaluate the model using the test dataset,
2 ###this files have not been seen by the DL model

3

4 test_loss, test_acc = model.evaluate(X_test, y test, verbose=2)

5 print('\nTest accuracy:', test_acc)

6

7 # pick a sample to predict from the test set (30 chosen at random)

8 X_to_predict = X_test[5]
9 y_to_predict = y_test[5]
10

11 # predict sample

12 predict(model, X to_predict, y_to_predict)

> 2/2 - 0s - loss: 0.6847 - accuracy: 0.8140 - 26ms/epoch - 13ms/step

Test accuracy: 0.8139534592628479
Target: 2, Predicted label: [2]

Figure 25: CNN Test Data

13

+ metrics=['accuracy’])

add a dimension to input data for sample - model.predict() expects a 4d array in this case

Model Ensemble

© L # import voting classifier
2 from sklearn.ensemble import VotingClassifier
3
4
5 # create a voting classifier with hard voting
6 voting_classifier_hard = VotingClassifier(

estimators = [{'rf', RandomForestClassifier(random state=42)),
8 ('rf2', RandomForestClassifier(random state=42)),
9 ('etc', ExtraTreesClassifier()),
10 ('etc2’, ExtraTreesClassifier()),
11 ('sve', SUC(C=0.01, gamma=1, kernel='linear', probability=True)),
12 ('sve2', svC(C=0.01, gamma=1, kernel='linear', probability=True))],
13 voting="hard")

14
15

16 # make predictions with the hard voting model

17 voting_classifier_hard.fit(X_train, y_train)

18 y_pred veh = voting classifier hard.predict(X_test)

19

20 confusion matrix = pd.crosstab(y_test, y pred vch, rownames=['Actual'], colnames=['Predicted'], margins = False)
21 sn.heatmap (confusion matrix, annot=True, fmt="d")

22 plt.show()

23 print(classification report(y test, y pred wch))

C 8
7
3
5
3
2
0

3 4

Predicted

precision recall fl-score support
0 0.88 1.00 0.93 7
1 1.00 0.86 0.92 7
2 1.00 0.62 0.77 8
3 1.00 0.75 0.86 8
4 0.78 1.00 0.88 7
5 0.73 1.00 0.84 8
6 1.00 1.00 1.00 8
accuracy 0.89 53
macro avg 0.91 0.89 0.89 53
weighted avg 0.91 0.89 0.88 53

Figure 26: Model Ensemble

The ensemble used a repetition of the same model 3 times which increased the accuracy
rather than using the algorithm just once. each repeated model builds up on each other
and using hard voting helps increase accuracy.

9 Confusion Matrix

Confusion matrix is used to display model accuracy and Fl-score information. This is
shown in detail per emotional class, support and macro weighted average.

References

Dhall, A., Goecke, R., Lucey, S. and Gedeon, T. (2012). Collecting large, richly annotated
facial-expression databases from movies, IEEE multimedia 19(03): 34-41.

Lyons, M. J. (2021). 7 excavating ai” re-excavated: Debunking a fallacious account of
the jaffe dataset, arXiv preprint arXiw:2107.13998 .

Lyons, M. J., Kamachi, M. and Gyoba, J. (2020). Coding facial expressions with gabor
wavelets (ive special issue), arXiv preprint arXiv:2009.05938 .

14

Confusion Matrix

20 confusion_matrix = pd.crosstab(y_test, y_pred_vch, rownames=['Actual'], colnames=['Predicted'], margins = False)
21 sn.heatmap(confusion_matrix, annot=True, fmt="d")
22 plt.show()

23 print(classification_report(y_test, y_pred vch))

Predicted

precision recall fl-score support
0 0.88 1.00 0.93 7

1 1.00 0.86 0.92 7

2 1.00 0.62 0.77 8

3 1.00 0.75 0.86 8

4 0.78 1.00 0.88 7

5 0.73 1.00 0.84 8

6 1.00 1.00 1.00 8

accuracy 0.89 53
macro avg 0.91 0.89 0.89 53
weighted avg 0.91 0.89 0.88 53

Figure 27: Confusion Matrix

15

	Introduction
	System Specification
	Configuration of Hardware
	Software Configuration

	Database Sources
	Libraries Used, Image Importing and Train/Test Split
	Libraries Used
	Loading the data
	Data Exploration and First Look at Landmarks
	Looking for missing values
	Creating Train and Test Split

	Training a ML model
	Data Transformation

	Data Augmentation
	CNN Setup
	Model Ensemble
	Confusion Matrix

