
Configuration Manual

MSc Research Project

Data Analytics

Tiago Leonel do Nascimento
Student ID: 19143486

School of Computing

National College of Ireland

Supervisor: Jorge Basilio

www.ncirl.ie

National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Tiago Leonel do Nascimento

Student ID: 19143486

Programme: Data Analytics

Year: 2022

Module: MSc Research Project

Supervisor: Jorge Basilio

Submission Due Date: 15/08/2022

Project Title: Configuration Manual

Word Count: 1822

Page Count: 15

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 18th September 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Tiago Leonel do Nascimento
19143486

1 Introduction

The specifications for the A Comparative Study of Pixel Values and Landmark Detection
Features to Solve for Facial Emotion Recognition research are described in this config-
uration manual. It covers hardware and system specifications that should be considered
minimum requirements for the study results replication. The following sections cover all
phases of the implementation process and the overall assessment of the research work.

2 System Specification

2.1 Configuration of Hardware

A M1 MacBook pro 8GB was used for the entire study. Figure 1 shows the specific
information regarding Device, Chip, Memory and OS also listed below.

• Device: MacBook Pro (13-inch, M1, 2020)

• Chip: Apple M1

• Memory: 8 GB

MacOS Information

Figure 1: Device Specification

1

2.2 Software Configuration

Google Colaboratory (Colab) was used for the entire duration of the study. Due to the
Mac M1 have a very laborious process to install TensorFlow which can be easily accessed
by utilizing Colab online. This meant that a combination of Google Drive and Google
Colab had to be used to importing the datasets used. Figure 2 displays the landing page
for google colab1

Software Requirements below:

• OS: macOS Monterey v 12.5

• Google Account to access Google Drive to store files.

• Google Basic Subscription Plan for 100mb of drive storage (some datasets were over
the free storage capacity.).

• Same google account can be used to access Google Colab.

• Google Colab Pro+ subscription (enables access to higher RAM and GPU, TPU.).

Google Colab

Figure 2: Colab Landing Page

As features extracted were numerous, particularly for 224 x 224 pixel images in data-
sets that were augmented resulting in dataframes with large number of columns memory
crashes. At times the data was over 35k rows and 150k columns. This mostly happened
during the experimentation phase of the project and it is not part of the needed steps to
complete the study but as RAM was crashing at around 25gb+ a decision was reached
to upgrade to Colab Pro+ which unlocked 54gb of RAM as per Figure 3.

GPU was also available and used during the CNN creation. Figure 4 shows the
configuration in Google Colab. Figure 5 displays how to confirm that GPU is available
and how to select High RAM.

1Google Colaboratory: https://colab.research.google.com/

2

https://colab.research.google.com/

Google Colab Memory

Figure 3: Colab Memory

How to Change Runtime to GPU

(a) Selecting Runtime (b) Selecting GPU

Figure 4: Selecting GPU

Google Colab GPU

Figure 5: Colab’s GPU details

3

3 Database Sources

Many different datasets were requested to be part of this study. Due to time limitations
and resources constraints two datasets were selected to the final report.

1. The posed dataset Japanese Female Facial Expression (JAFFE) created by Lyons
et al. consists of 10 Japanese female subjects displaying the 6 basic facial emotions
plus neutral emotion. There are 213 images in total in 256 by 256 pixes grayscale.
Images are in the Tiff format with no compression. Images were created with
excellent lighting and background. This dataset has over 25 years and is utilized in
many different papers (Lyons; 2021).

2. The unposed dataset Static Facial Expressions in the Wild (SFEW) (Dhall et al.;
2012) was selected to contrast the JAFFE dateset for having ”in-the-wild” type
of images. The dataset contains 700 images and 68 subjects. The images were
collected from different movies and display a variety of genders, occlusions, differ-
ent illumination and poses, being referred as close to real life environment by the
authors.

4 Libraries Used, Image Importing and Train/Test

Split

This section looks into libraries used and how to point to the right directory and import
the images and extract Features. The code is the same for both datasets the only thing
that changes is the directory pointing at either JAFFE or SFEW folders.

4.1 Libraries Used

Figure 6 shows all the used libraries to execute the code. Please note that Augmentor
library is commented out as it required to be ”!pip installed” every time the google
colab notebook was switched between GPU and normal RAM. Once the process of Data
Augmentation was completed with Augmentor it was commented out to avoid this step.

4.2 Loading the data

The first step after loading the libraries is to point at where the folder with the dataset
chosen is. Figure 7 displays the code.

4.3 Data Exploration and First Look at Landmarks

The following code is a loop that goes into each of the emotion folders, grabs one image,
converts from BGR to RGB (more details in the paper), resizes it to 224 x 224 pixels,
labels it based on the name of the folder. Extract 68 landmark features from the face and
displays both the resulting image created from the points and the superimposed image
above the original face. The code then breaks and jumps into the next folder until all
named folders have been ”visited”. Figure 8 shows the code utilized and Figure 9 some
of the resulting emotions and faces.

4

Imported Libraries

Figure 6: All Imported Libraries

Path and Emotion Folder Names

Figure 7: Pointing to the Right Path

5

Emotion Labels and Landmarks Code

Figure 8: Emotion Labels and Landmarks Code

Emotion Labels and Landmarks Results

Figure 9: Emotion Labels and Landmarks Results

6

Variation of the code in figure 10 import the data either as Pixel Values, 68 Landmarks
or the calculation of the euclidean distances between landmark points. Figure 10 shows
a version of the code and the main difference is explained in the list below.

read data Function

Figure 10: read data Function

The version of the code with the two lines below after image is resized with img new
= cv2.resize(img array, (IMGSIZE, IMGSIZE)) collects flattened RGB pixel values.

• img new = np.array(img new).flatten() (flattens the np array image after it was
resized).

• data.append([img new, class num]) (appends the information that was just flattened
to the data empty list).

The following 3 lines instead of the ones above after image resize takes place (img new
= cv2.resize(img array, (IMGSIZE, IMGSIZE))) collects information on the 68 landamrk
points.

• landmarks = extract face landmarks(img new) (extracts 68 facial landmark points
using the Mlxtend library).

• landmarks = np.array(landmarks).flatten() (flattens the landmark information).

• data.append([landmarks, class num]) (appends the information that was just flattened
to the data empty list).

The following 3 lines instead of the ones above after image resize takes place (img new
= cv2.resize(img array, (IMGSIZE, IMGSIZE))) collects information on the 68 landamrk
points.

• landmarks = extract face landmarks(img new) (extracts 68 facial landmark points
using the Mlxtend library).

• distances = compute landmark distances(landmarks) (utilizes the code function to
calculate euclidean distance).

• data.append([distances, class num]) (appends the information that was just flattened
to the data empty list).

7

Function to calculate euclidean distances

Figure 11: Function to calculate euclidean distances

Additional function to calculate euclidean distance between points can be seen in
figure 11.

Once data is read, it needs to be shuffled, random shuffle is used, first setting the seed
so results can be replicated, second shuffling the data and finally assigning the data to
X and y variables and changing from list to np.array. For pixel values, the values can be
normalised by dividing X = X/255.0. After everything is ready a pickle file is created
so that in future data reading step doesn’t have to be repeated. Figure 12 shows it in
details.

reading, shuffling and saving pickle file

Figure 12: reading, shuffling and saving pickle file

4.4 Looking for missing values

Transforming the data from np.array to dataframe allows us to look into the data better
and see if any values are null or 0.0000 where landmark detection could not read faces.
This didn’t happen for JAFFE dataset or for extraction of pixel values but happened for
SFEW over 26k times with data augmented and normal dataset. Figure 13 shows how
the table looks like when there’s no missing data. Figure 14 shows the table with missing
data.

There’s no need to try to trust your vision only as a simple code df = df.loc[(df.iloc[:,
0:4623] == 0).all(axis=1)] removes the missing values and the table is ready to be saved

8

No missing data

Figure 13: No missing data

Missing data

Figure 14: missing data

as X again now without unwanted 0 values. After all is confirmed and pickled file saved
it can be loaded using the code displayed in figure 15.

Reading pickle file

Figure 15: reading pickle file

4.5 Creating Train and Test Split

The code in Figure 16 splits X and y into train and test data that can be used to train
a model.

5 Training a ML model

This section follows the code in the colab book named ”Machine Learning Techniques”.
Once data is assigned to the X train and X test, y train and y test it is ready to be used
with the different ML models.

Baseline models are run as per Figure 17.
figure 18 shows an example of the grid search parameters.
Follow the code lines running both baseline models and grid search. Some of the grid

search combination took above 11 hours to run.

9

Train and Test Split

Figure 16: Creating Train and Test Split

Baseline model

Figure 17: Baseline model

Grid search parameters

Figure 18: Grid search parameters

10

5.1 Data Transformation

Two types of data transformation were used to reduce dimensionality in the data LDA
transformation and PCA. Once new X train and X test variables were created using PCA
or LDA methods the same models were ran again, with the new variables, so that results
could be compared.

6 Data Augmentation

Data augmentation was used to increase the number of image examples to train the
model. Both a library called Augmentor and a Keras approach were used at different
times in the process of the code creation. Augmentor generated images in a folder called
output in the different emotion classes. These were then manually moved and reorganised
but as Mlxtend library struggled to find faces in the data this step was not used in the
main project data. Augmentor steps can be seen in figure 19.

Augmentor Data Augmentation

Figure 19: Augmentor Data Augmentation

Figure 20 shows the data augmentation that was used in the creation of the CNN.
Although results did not increase with the data augmentation so this step is not present
in the main accuracy of the CNN model.

CNN Test Data

Figure 20: CNN Test Data

7 CNN Setup

To import data for the CNN with the right dimension the code is almost the same as the
pixel value feature extraction code but without the .flatten() line as displayed by figure
21.

11

Importing data for CNN

Figure 21: Importing data for CNN

Run the code to create the function that plots the history of the model training as
seen in figure 22. Followed by the code with the CNN layers in figure 23. and to compile
the model in figure 24.

CNN History

Figure 22: CNN history

The next lines of code create the prediction function that will use the test data to
test the model with data that hasn’t been seen by the model yet. It runs the entire test
folder through the model and lets you pick a random image to test individually. As seen
in figure 25.

8 Model Ensemble

A model ensemble made of the best performing models of this study was created in an
attempt to increase the maximum achieved accuracy. This ensemble was successful and
increased accuracy from 87% to 89%. Image 26 shows the details of the ensemble.

12

CNN Layers

Figure 23: CNN Layers

CNN Compiler

Figure 24: CNN Compiler

CNN Test Data

Figure 25: CNN Test Data

13

Model Ensemble

Figure 26: Model Ensemble

The ensemble used a repetition of the same model 3 times which increased the accuracy
rather than using the algorithm just once. each repeated model builds up on each other
and using hard voting helps increase accuracy.

9 Confusion Matrix

Confusion matrix is used to display model accuracy and F1-score information. This is
shown in detail per emotional class, support and macro weighted average.

References

Dhall, A., Goecke, R., Lucey, S. and Gedeon, T. (2012). Collecting large, richly annotated
facial-expression databases from movies, IEEE multimedia 19(03): 34–41.

Lyons, M. J. (2021). ” excavating ai” re-excavated: Debunking a fallacious account of
the jaffe dataset, arXiv preprint arXiv:2107.13998 .

Lyons, M. J., Kamachi, M. and Gyoba, J. (2020). Coding facial expressions with gabor
wavelets (ivc special issue), arXiv preprint arXiv:2009.05938 .

14

Confusion Matrix

Figure 27: Confusion Matrix

15

	Introduction
	System Specification
	Configuration of Hardware
	Software Configuration

	Database Sources
	Libraries Used, Image Importing and Train/Test Split
	Libraries Used
	Loading the data
	Data Exploration and First Look at Landmarks
	Looking for missing values
	Creating Train and Test Split

	Training a ML model
	Data Transformation

	Data Augmentation
	CNN Setup
	Model Ensemble
	Confusion Matrix

